1
|
Cao X, Fan T, Shao X, Wang C, Wang X, Guan P, Hu X. Controlled preparation of tannic acid-derived carbonized dots and their use to inhibit amyloid aggregation and promote aggregate disaggregation. Mikrochim Acta 2024; 191:573. [PMID: 39227417 DOI: 10.1007/s00604-024-06646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Tannic acid (TA)-derived carbon dots (TACDs) were synthesized for the first time via a solvothermal method using TA as one of the raw materials, which may effectively inhibit amyloid fibril aggregation and disaggregate mature fibril. The fluorescent property of TACDs were modulated by adjusting the ratio of TA to o-phenylenediamine (oPD), and TACDs fabricated with the precursor ratio as 1:1 showed the best fluorescent property. Circular dichroism spectra (CD) showed that the structure of β-sheet decreased as the concentration of TACDs increased. The inhibition efficiency, as confirmed by thioflavin T (ThT) and transmission electron microscopy (TEM), is extraordinary at 98.16%, whereas disaggregation efficiency is noteworthy at 97.97%, and the disaggregated lysozyme fibrils did not reaggregate after 7 days. More critically, TACDs can also alleviate the cellular toxicity caused by Aβ fibrils and improve cell viability. This work offers a new perspective on the design of scavengers for amyloid plaques.
Collapse
Affiliation(s)
- Xiuyun Cao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Tiange Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
2
|
Sturabotti E, Camilli A, Leonelli F, Vetica F. Carbon Dots as Bioactive Antifungal Nanomaterials. ChemMedChem 2024:e202400463. [PMID: 39103288 DOI: 10.1002/cmdc.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Nowadays, the widespread diffusion of infections caused by opportunistic fungi represents a demanding threat for global health security. This phenomenon has also worsened by the emergence of contagious events in hospitalisation environments and by the fact that many fungi have developed harsh and serious resistance mechanisms to the traditional antimycotic drugs. Hence, the design of novel antifungal agents is a key factor to counteract mycotic infections and resistance. Within this context, nanomaterials are gaining increasing attention thanks to their biocidal character. Among these, carbon dots (CDs) represent a class of zero-dimensional, photoluminescent and quasi-spherical nanoparticles which, for their great and tuneable features, have found applications in catalysis, sensing and biomedicine. Nevertheless, only a few works define and recapitulate their antifungal properties. Therefore, we aim to give an overview about the recent advances in the synthesis of CDs active against infective fungi. We described the general features of CDs and fungal cells, by highlighting some of the most common antimycotic mechanisms. Then, we evaluated the effects of CDs, antimicrobial drugs-loaded CDs and CDs-incorporated packaging systems on different fungi and analysed the use of CDs as fluorescent nano-trackers for bioimaging, showing, to all effects, their promising application as antifungal agents.
Collapse
Affiliation(s)
- Elisa Sturabotti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Alessandro Camilli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
3
|
Khalifa MKA, Abdel-Sattar SA, Amin OM, Kohaf NA, Zaky HS, Abd El-Fattah MA, Mohammed KHA, Badawi NM, Mansoor I, Eassa HA. Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer's disease in a rat/mouse model: a systematic review. Daru 2024; 32:319-337. [PMID: 38079104 PMCID: PMC11087435 DOI: 10.1007/s40199-023-00494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological disease that causes memory loss over time. Current therapies are limited and frequently inadequate. Epigallocatechin gallate (EGCG), has antioxidant, anti-inflammatory, antifibrosis, anti-remodeling and tissue-protective qualities that may be effective in treatment of different diseases, including AD. Because of nanoparticles' high surface area, they can enhance solubility, stability, pharmacokinetics and biodistribution, and diminish toxicities. Besides, lipid nanoparticles have a high binding affinity that can enhance the rate of drug transport across BBB. So, EGCG nanoparticles represent a promising treatment for AD. OBJECTIVES This systematic review sought to assess the efficacy of EGCG nanoparticles against AD in rat/mouse models. METHODS Study was conducted in accordance with PRISMA guidelines, and the protocol was registered in PROSPERO. Electronic databases were searched to discover relevant studies published up to October 2022. RESULTS Two studies met the inclusion criteria out of 1338 and were included in this systematic review. Collectively, the results indicate that EGCG has a significant potential for reducing AD pathology and improving cognitive deficits in rat/mouse models. The formulated particles were in the nanometer range, as indicated by TEM, with good particle size control and stability. EGCG nanoparticles showed superior pharmacokinetic characteristics and improved blood-brain barrier permeability, and increased brain bioavailability compared to free EGCG. Additionally, nanoEGCG were more effective in modulating oxidative stress than free formulation and decreased AChE in the cortex and hippocampus of AlCl3-treated rats. CONCLUSION This systematic analysis of the two studies included showed that EGCG nanoparticles are efficacious as a potential therapeutic intervention for AD in rat/mouse models. However, limited number of studies found indicates insufficient data in this research point that requires further investigation by experimental studies.
Collapse
Affiliation(s)
- Maha K A Khalifa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, 11884, Cairo, Egypt
| | - Omnya M Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, 11884, Cairo, Egypt
| | - Marwa A Abd El-Fattah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Kamilia H A Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | | | - Heba A Eassa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt.
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies, University of Saint Joseph, West Hartford, CT, 06117, USA.
| |
Collapse
|
4
|
Khan S, Jatala FH, Muti A, Afza N, Noor A, Mumtaz S, Zafar S. Therapeutic Potential of Nitrogen-Doped Rutin-Bound Glucose Carbon Dots for Alzheimer's Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:153-164. [PMID: 38947101 PMCID: PMC11202111 DOI: 10.59249/ewoi2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sana Khan
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Alveena Muti
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Noor Afza
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University
of Medical Sciences, Rawalpindi, Pakistan
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
- Clinical Department of Neurology, University Medical
Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE),
Göttingen, Germany
| |
Collapse
|
5
|
Zhang M, Li Y, Han C, Chu S, Yu P, Cheng W. Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis. Int J Nanomedicine 2024; 19:4299-4317. [PMID: 38766654 PMCID: PMC11102095 DOI: 10.2147/ijn.s451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background Inhibition of amyloid β protein fragment (Aβ) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods The interaction between EGCG and Aβ42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aβ42 aggregation. Results EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aβ42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aβ42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mai Zhang
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Yan Li
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| | - Chunli Han
- Mass Spectrometry Application Center, Shandong CAS Intelligent Manufacturing Medical Device Technology Co., Ltd, Zaozhuang, People’s Republic of China
| | - Shiying Chu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Peng Yu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| |
Collapse
|
6
|
Shao X, Wang C, Wang C, Bai M, Hou T, Wang X, Yan C, Guan P, Hu X. Novel photocatalytic carbon dots: efficiently inhibiting amyloid aggregation and quickly disaggregating amyloid aggregates. NANOSCALE 2024; 16:8074-8089. [PMID: 38563405 DOI: 10.1039/d3nr06165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a β-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aβ42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
7
|
Prabhu MPT, Chrungoo S, Sarkar N. Amine Group Surface-Functionalized Carbon Quantum Dots Exhibit Anti-amyloidogenic Effects Towards Hen Egg White Lysozyme by Inducing Formation of Nontoxic Spherical Aggregates. Protein J 2023; 42:728-740. [PMID: 37803220 DOI: 10.1007/s10930-023-10157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
The tendency of polypeptide chains to deviate from their conventional protein folding pathway and instead get trapped as off-pathway intermediates, has been a matter of great concern. These off-pathway intermediates eventually lead to the formation of insoluble, ordered fibrillar aggregates called amyloids, which are responsible for a host of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Type II diabetes. In spite of extensive research, development of an effective therapeutic strategy against amyloidosis still remains elusive. In recent times, carbon quantum dots (CQD) have grabbed the attention of researchers against amyloidogenesis due to their ease of preparation, aqueous soluble nature, unique optical properties, high surface to volume ratio, physio-chemical properties, semi-conducting nature and mainly biocompatible. In the current study, we have reported an easy-to-prepare procedure for synthesis of amine group surface functionalized CQDs from commonly available kitchen spices with anti-oxidant properties. The as-synthesized CQDs were evaluated for their anti-amyloidogenic properties towards Hen Egg White Lysozyme (HEWL). Our results clearly show that the surfaced functionalized CQDs were able to interact with HEWL, thereby forming a stable complex, which was resistant towards amyloid formation and instead lead to the formation of non-toxic globular aggregates.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|
9
|
Yan C, Wang C, Shao X, Teng Y, Chen P, Hu X, Guan P, Wu H. Multifunctional Carbon-Dot-Photosensitizer Nanoassemblies for Inhibiting Amyloid Aggregates, Suppressing Microbial Infection, and Overcoming the Blood-Brain Barrier. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47432-47444. [PMID: 36254877 DOI: 10.1021/acsami.2c14118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid aggregation, microbial infection, and the blood-brain barrier (BBB) are considered critical obstructions for the treatment of Alzheimer's disease (AD). At present, existing treatment strategies are rarely able to overcome these critical factors. Herein, we propose an innovative treatment strategy and design multifunctional nanoassemblies (yCDs-Ce6) from coassembling photosensitizers (chlorine e6) and yellow fluorescent carbon dots, which endow yCDs-Ce6 with the functions for photodynamic and photothermal therapy (PDT and PTT). Compared with reported inhibitors, yCDs-Ce6 can suppress amyloid aggregation for 7 days, disaggregate aggregates, reduce amyloid aggregation-induced cytotoxicity, and prevent microbial growth by PDT and PTT. Moreover, yCDs-Ce6 can specifically target amyloid aggregates and visually label amyloid aggregates. yCDs-Ce6 can also cross the BBB upon near-infrared light irradiation and clear amyloid deposition in APP/PS1 mice by PDT and PTT. Meanwhile, yCDs-Ce6 did not cause significant negative effects on normal cells or tissues. Based on the methods of PPT and PTT treatment, the research deeply explores the effect of the novel nanoassemblies on two hypotheses of AD, opening a novel therapeutic paradigm for research amyloid-related diseases.
Collapse
Affiliation(s)
- Chaoren Yan
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Yonggang Teng
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Peng Chen
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Hong Wu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
10
|
Szunerits S, Abderrahmani A, Boukherroub R. Nanoparticles and Nanocolloidal Carbon: Will They Be the Next Antidiabetic Class That Targets Fibrillation and Aggregation of Human Islet Amyloid Polypeptide in Type 2 Diabetes? Acc Chem Res 2022; 55:2869-2881. [PMID: 36174237 DOI: 10.1021/acs.accounts.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanotechnology is revolutionizing human medicine. Nanoparticles (NPs) are currently used for treating various cancers, for developing vaccines, and for imaging, and other promises offered by NPs might come true soon. Due to the interplay between NPs and proteins, there is more and more evidence supporting the role of NPs for treating amyloid-based diseases. NPs can induce some conformational changes of the adsorbed protein molecules via various molecular interactions, leading to inhibition of aggregation and fibrillation of several and different amyloid proteins. Though an in depth understanding of such interactions between NPs and amyloid structures is still lacking, the inhibition of protein aggregation by NPs represents a new generation of innovative and effective medicines to combat metabolic diseases such as type 2 diabetes (T2D). Here, we lay out advances made in the field of T2D notably for optimizing protein aggregation inhibition strategies. This Account covers discussions about the current understanding of β-cells, the insulin producing cells within the pancreas, under diabetic conditions, notably increased glucose and fatty acid levels, and the implication of these conditions on the formation of human islet amyloid polypeptide (hIAPP) amylin oligomers and aggregates. Owing to the great potential of carbon nanostructures to interfere with protein aggregation, an important part of this Account will be devoted to the state of the art of therapeutic options in the form of emerging nanomaterials-based amyloidosis inhibitors. Our group has recently made some substantial progress in this regard by investigating the impact of glucose and fatty acid concentrations on hIAPP aggregation and β-cell toxicity. Furthermore, the great potential of carbon nanocolloids in reversing hIAPP aggregation under diabetic conditions will be highlighted as the approach has been validated on β-cell cultures from rats. We hope that this Account will evoke new ideas and concepts in this regard. We give some lead references below on pancreatic β-cell aspects and carbon quantum dots for managing diabetics and nanomedicine related aspects, a topic of interest in our laboratory.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| |
Collapse
|
11
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
12
|
Bera T, Saha PC, Chatterjee T, Kar S, Guha S. Construction of Self-Assembling Lipopeptide-Based Benign Nanovesicles to Prevent Amyloid Fibril Formation and Reduce Cytotoxicity of GxxxGxxxGxxxG Motif. Bioconjug Chem 2022; 33:1201-1209. [PMID: 35581017 DOI: 10.1021/acs.bioconjchem.2c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease, a progressive severe neurodegenerative disorder, has been until now incurable, in spite of serious efforts worldwide. We have designed self-assembled myristoyl-KPGPK lipopeptide-based biocompatible nanovesicles, which can inhibit amyloid fibrillation made by the transmembrane GxxxGxxxGxxxG motif of Aβ-protein and human myelin protein zero as well as reduce their neurotoxicity. Various spectroscopic and microscopic investigations illuminate that the lipopeptide-based nanovesicles dramatically inhibit random coil-to-β-sheet transformation of Aβ25-37 and human myelin protein zero protein precursor, which is the prerequisite of GxxxGxxxGxxxG motif-mediated fibril formation. Förster resonance energy transfer (FRET) assay using synthesized Cy-3 (FRET donor) and Cy-5 (FRET acceptor)-conjugated Aβ25-37 also exhibits that nanovesicles strongly inhibit the fibril formation of Aβ25-37. The mouse neuro-2a neuroblastoma cell line is used, which revealed the GxxxGxxxGxxxG-mediated cytotoxicity. However, the neurotoxicity has been diminished by co-incubating the GxxxGxxxGxxxG motif with the nanovesicles.
Collapse
Affiliation(s)
- Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Pranab Chandra Saha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tanima Chatterjee
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|