1
|
Rothammer B, Feile K, Werner S, Frank R, Bartz M, Wartzack S, Schubert DW, Drummer D, Detsch R, Wang B, Rosenkranz A, Marian M. Ti 3C 2T x-UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants. J Biomed Mater Res A 2024. [PMID: 39446576 DOI: 10.1002/jbm.a.37819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti3C2Tx-UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, Ti3C2Tx-reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.
Collapse
Affiliation(s)
- Benedict Rothammer
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klara Feile
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Siegfried Werner
- Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Frank
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU), Erlangen, Germany
| | - Marcel Bartz
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandro Wartzack
- Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dietmar Drummer
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU), Erlangen, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bo Wang
- Department of Functional Materials, Saarland University, Saarbrücken, Germany
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile
| | - Max Marian
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Machine Design and Tribology (IMKT), Leibniz University Hannover, Garbsen, Germany
| |
Collapse
|
2
|
Tripathi S, Raheem A, Dash M, Kumar P, Elsebahy A, Singh H, Manivasagam G, Nanda HS. Surface engineering of orthopedic implants for better clinical adoption. J Mater Chem B 2024. [PMID: 39412900 DOI: 10.1039/d4tb01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Musculoskeletal disorders are on the rise, and despite advances in alternative materials, treatment for orthopedic conditions still heavily relies on biometal-based implants and scaffolds due to their strength, durability, and biocompatibility in load-bearing applications. Bare metallic implants have been under scrutiny since their introduction, primarily due to their bioinert nature, which results in poor cell-material interaction. This challenge is further intensified by mechanical mismatches that accelerate failure, tribocorrosion-induced material degradation, and bacterial colonization, all contributing to long-term implant failure and posing a significant burden on patient populations. Recent efforts to improve orthopedic medical devices focus on surface engineering strategies that enhance the interaction between cells and materials, creating a biomimetic microenvironment and extending the service life of these implants. This review compiles various physical, chemical, and biological surface engineering approaches currently under research, providing insights into their potential and the challenges associated with their adoption from bench to bedside. Significant emphasis is placed on exploring the future of bioactive coatings, particularly the development of smart coatings like self-healing and drug-eluting coatings, the immunomodulatory effects of functional coatings and biomimetic surfaces to tackle secondary infections, representing the forefront of biomedical surface engineering. The article provides the reader with an overview of the engineering approaches to surface modification of metallic implants, covering both clinical and research perspectives and discussing limitations and future scope.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ahmad Elsebahy
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| |
Collapse
|
3
|
Ji H, Xie X, Jiang Z, Wu X. Wear and corrosion of titanium alloy spinal implants in vivo. Sci Rep 2024; 14:16847. [PMID: 39039225 PMCID: PMC11263591 DOI: 10.1038/s41598-024-68057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
To investigate the wear and corrosion of titanium alloy spinal implants in vivo, we evaluated removed implants and their surrounding scar tissues from 27 patients between May 2019 and April 2021. We performed scanning electron microscopy, energy-dispersive X-ray spectroscopy, and histological analysis. The results revealed metal-like particles in the soft tissues of seven patients, without any considerable increase in inflammatory cell infiltration. Patients with fractures showed lower percentages of wear and corrosion compared with other patients (42% and 17% vs. 59% and 26%). Polyaxial screws exhibited higher wear and corrosion percentages (53% and 23%) compared with uniaxial screws (39% and 3%), although in patients with fracture, the reverse was observed (20% and 0% vs. 39% and 3%). We found that titanium alloy spinal implants experience some degree of wear and corrosion in vivo. The titanium alloy particles formed by wear exhibited good histocompatibility, not causing inflammation, foreign body reactions, or osteolysis. Therefore, spinal implants should be removed cautiously when treating titanium alloy spinal metallosis. The wear and corrosion of the implants increase with the increase in implantation time, although the screw structure does not significantly affect these changes.
Collapse
Affiliation(s)
- Hangyu Ji
- Department of Orthopedics, ZhongDa Hospital of Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, China.
- School of Medicine, Southeast University, Nanjing, China.
| | - Xinhui Xie
- Department of Orthopedics, ZhongDa Hospital of Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, China
| | - Zhe Jiang
- The Department of Pathology, Xishan People's Hospital, Wuxi, China
| | - Xiaotao Wu
- Department of Orthopedics, ZhongDa Hospital of Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, China.
- School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Sellin ML, Seyfarth-Sehlke A, Aziz M, Fabry C, Wenke K, Høl PJ, Rios-Mondragon I, Cimpan MR, Frank M, Bader R, Jonitz-Heincke A. Isolation of TiNbN wear particles from a coated metal-on-metal bearing: Morphological characterization and in vitro evaluation of cytotoxicity in human osteoblasts. J Biomed Mater Res B Appl Biomater 2024; 112:e35357. [PMID: 38247242 DOI: 10.1002/jbm.b.35357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
To improve the wear resistance of articulating metallic joint endoprostheses, the surfaces can be coated with titanium niobium nitride (TiNbN). Under poor tribological conditions or malalignment, wear can occur on these implant surfaces in situ. This study investigated the biological response of human osteoblasts to wear particles generated from TiNbN-coated hip implants. Abrasive particles were generated in a hip simulator according to ISO 14242-1/-2 and extracted with Proteinase K. Particle characteristics were evaluated by electron microscopy and energy dispersive x-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and dynamic light scattering (DLS) measurements. Human osteoblasts were exposed to different particle dilutions (1:20, 1:50, and 1:100), and cell viability and gene expression levels of osteogenic markers and inflammatory mediators were analyzed after 4 and 7 days. Using ICP-MS, EDS, and DLS measurements, ~70% of the particles were identified as TiNbN, ranging from 39 to 94 nm. The particles exhibited a flat and subangular morphology. Exposure to particles did not influence cell viability and osteoblastic differentiation capacity. Protein levels of collagen type 1, osteoprotegerin, and receptor activator of nuclear factor κB ligand were almost unaffected. Moreover, the pro-inflammatory response via interleukins 6 and 8 was minor induced after particle contact. A high number of TiNbN wear particles only slightly affected osteoblasts' differentiation ability and inflammatory response compared to metallic particles. Nevertheless, further studies should investigate the role of these particles in peri-implant bone tissue, especially concerning other cell types.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Anika Seyfarth-Sehlke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | - Mahammad Aziz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| | | | | | - Paul Johan Høl
- Department of Orthopaedic Surgery, Biomatlab, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Biomaterials, University of Bergen, Bergen, Norway
| | - Ivan Rios-Mondragon
- Department for Clinical Dentistry Biomaterials, University of Bergen, Bergen, Norway
| | - Mihaela Roxana Cimpan
- Department for Clinical Dentistry Biomaterials, University of Bergen, Bergen, Norway
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
5
|
Murphy B, Baez J, Morris MA. Characterising Hydroxyapatite Deposited from Solution onto Novel Substrates: Growth Mechanism and Physical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2483. [PMID: 37686991 PMCID: PMC10489777 DOI: 10.3390/nano13172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Whilst titanium, stainless steel, and cobalt-chrome alloys are the most common materials for use in orthopaedic implant devices, there are significant advantages in moving to alternative non-metallic substrates. Substrates such as polymers may have advantageous mechanical biological properties whilst other substrates may bring unique capability. A key challenge in the use of non-metal products is producing substrates which can be modified to allow the formation of well-adhered hydroxyapatite films which promote osteointegration and have other beneficial properties. In this work, we aim to develop methodology for the growth of hydroxyapatite films on surfaces other than bulk metallic parts using a wet chemical coating process, and we provide a detailed characterisation of the coatings. In this study, hydroxyapatite is grown from saturated solutions onto thin titanium films and silicon substrates and compared to results from titanium alloy substrates. The coating process efficacy is shown to be dependent on substrate roughness, hydrophilicity, and activation. The mechanism of the hydroxyapatite growth is investigated in terms of initial attachment and morphological development using SEM and XPS analysis. XPS analysis reveals the exact chemical state of the hydroxyapatite compositional elements of Ca, P, and O. The characterisation of grown hydroxyapatite layers by XRD reveals that the hydroxyapatite forms from amorphous phases, displaying preferential crystal growth along the [002] direction, with TEM imagery confirming polycrystalline pockets amid an amorphous matrix. SEM-EDX and FTIR confirmed the presence of hydroxyapatite phases through elemental atomic weight percentages and bond assignment. All data are collated and reviewed for the different substrates. The results demonstrate that once hydroxyapatite seeds, it crystallises in the same manner as bulk titanium whether that be on a titanium or silicon substrate. These data suggest that a range of substrates may be coated using this facile hydroxyapatite deposition technique, just broadening the choice of substrate for a particular function.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
6
|
Deng Q, Feng Q, Jing P, Ma D, Li M, Gong Y, Li Y, Wen F, Leng Y. Metal-Driven Autoantifriction Function of Artificial Hip Joint. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301095. [PMID: 37409439 PMCID: PMC10477871 DOI: 10.1002/advs.202301095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Indexed: 07/07/2023]
Abstract
The service life of an artificial hip joint is limited to 10-15 years, which is not ideal for young patients. To extend the lifespan of these prostheses, the coefficient of friction and wear resistance of metallic femoral heads must be improved. In this study, a Cu-doped titanium nitride (TiNX -Cu) film with "autoantifriction" properties is deposited on a CoCrMo alloy via magnetron sputtering. When delivered in a protein-containing lubricating medium, the Cu in TiNX -Cu quickly and consistently binds to the protein molecules in the microenvironment, resulting in the formation of a stable protein layer. The proteins adsorbed on the TiNX -Cu surface decompose into hydrocarbon fragments owing to the shear stress between the Al2 O3 /TiNX -Cu tribopair. The synergistic effect of the catalysis of Cu and shear stress between the Al2 O3 /TiNX -Cu tribopair transforms these fragments into graphite-like carbon tribofilms with an antifriction property. These tribofilms can simultaneously reduce the friction coefficient of the Al2 O3 /TiNX -Cu tribopair and enhance the wear resistance of the TiNX -Cu film. Based on these findings, it is believed that the autoantifriction film can drive the generation of antifriction tribofilms for lubricating and increasing the wear resistance of prosthetic devices, thereby prolonging their lifespan.
Collapse
Affiliation(s)
- Qiaoyuan Deng
- Institute of Biomedical EngineeringKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationCollege of MedicineSouthwest Jiaotong UniversityChengduSichuan610031China
- Key Laboratory of Advanced Material of Tropical Island Resources of Educational MinistrySchool of Materials Science and EngineeringHainan UniversityHaikouHainan570228China
| | - Qingguo Feng
- Institute of Biomedical EngineeringKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationCollege of MedicineSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Peipei Jing
- Institute of Biomedical EngineeringKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationCollege of MedicineSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Donglin Ma
- College of Physics and EngineeringChengdu Normal UniversityChengduSichuan611130China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, School of Chemical Engineering and TechnologyHainan UniversityHaikouHainan570228P. R. China
| | - Yanli Gong
- Institute of Biomedical EngineeringKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationCollege of MedicineSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Yantao Li
- Institute of Biomedical EngineeringKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationCollege of MedicineSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Feng Wen
- Key Laboratory of Advanced Material of Tropical Island Resources of Educational MinistrySchool of Materials Science and EngineeringHainan UniversityHaikouHainan570228China
| | - Yongxiang Leng
- Institute of Biomedical EngineeringKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationCollege of MedicineSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
7
|
Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, Sun Y. Nanoscale Morphologies on the Surface of 3D-Printed Titanium Implants for Improved Osseointegration: A Systematic Review of the Literature. Int J Nanomedicine 2023; 18:4171-4191. [PMID: 37525692 PMCID: PMC10387278 DOI: 10.2147/ijn.s409033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Three-dimensional (3D) printing is serving as the most promising approach to fabricate personalized titanium (Ti) implants for the precise treatment of complex bone defects. However, the bio-inert nature of Ti material limits its capability for rapid osseointegration and thus influences the implant lifetime in vivo. Despite the macroscale porosity for promoting osseointegration, 3D-printed Ti implant surface morphologies at the nanoscale have gained considerable attention for their potential to improve specific outcomes. To evaluate the influence of nanoscale surface morphologies on osseointegration outcomes of 3D-printed Ti implants and discuss the available strategies, we systematically searched evidence according to the PRISMA on PubMed, Embase, Web of Science, and Cochrane (until June 2022). The inclusion criteria were in vivo (animal) studies reporting the osseointegration outcomes of nanoscale morphologies on the surface of 3D-printed Ti implants. The risk of bias (RoB) was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE's) tool. The quality of the studies was evaluated using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. (PROSPERO: CRD42022334222). Out of 119 retrieved articles, 9 studies met the inclusion criteria. The evidence suggests that irregular nano-texture, nanodots and nanotubes with a diameter of 40-105nm on the surface of porous/solid 3D-printed Ti implants result in better osseointegration and vertical bone ingrowth compared to the untreated/polished ones by significantly promoting cell adhesion, matrix mineralization, and osteogenic differentiation through increasing integrin expression. The RoB was low in 41.1% of items, unclear in 53.3%, and high in 5.6%. The quality of the studies achieved a mean score of 17.67. Our study demonstrates that nanostructures with specific controlled properties on the surface of 3D-printed Ti implants improve their osseointegration. However, given the small number of studies, the variability in experimental designs, and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Weibo Jiang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Xiao Ma
- Department of Orthopedics, the China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin, 130000, People's Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| |
Collapse
|
8
|
Birkett M, Zia AW, Devarajan DK, Panayiotidis MI, Joyce TJ, Tambuwala MM, Serrano-Aroca A. Multi-functional bioactive silver- and copper-doped diamond-like carbon coatings for medical implants. Acta Biomater 2023:S1742-7061(23)00363-X. [PMID: 37392935 DOI: 10.1016/j.actbio.2023.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Diamond-like carbon (DLC) coatings doped with bioactive elements of silver (Ag) and copper (Cu) have been receiving increasing attention in the last decade, particularly in the last 5 years, due to their potential to offer a combination of enhanced antimicrobial and mechanical performance. These multi-functional bioactive DLC coatings offer great potential to impart the next generation of load-bearing medical implants with improved wear resistance and strong potency against microbial infections. This review begins with an overview of the status and issues with current total joint implant materials and the state-of-the art in DLC coatings and their application to medical implants. A detailed discussion of recent advances in wear resistant bioactive DLC coatings is then presented with a focus on doping the DLC matrix with controlled quantities of Ag and Cu elements. It is shown that both Ag and Cu doping can impart strong antimicrobial potency against a range of Gram-positive and Gram-negative bacteria, but this is always accompanied so far by a reduction in mechanical performance of the DLC coating matrix. The article concludes with discussion of potential synthesis methods to accurately control bioactive element doping without jeopardising mechanical properties and gives an outlook to the potential long-term impact of developing a superior multifunctional bioactive DLC coating on implant device performance and patient health and wellbeing. STATEMENT OF SIGNIFICANCE: Multi-functional diamond-like carbon (DLC) coatings doped with bioactive elements of silver (Ag) and copper (Cu) offer great potential to impart the next generation of load-bearing medical implants with improved wear resistance and strong potency against microbial infections. This article provides a critical review of the state-of-the-art in Ag and Cu doped DLC coatings, beginning with an overview of the current applications of DLC coatings in implant technology followed by a detailed discussion of Ag/Cu doped DLC coatings with particular focus on the relationship between their mechanical and antimicrobial performance. Finally, it ends with a discussion on the potential long-term impact of developing a truly multifunctional ultra-hard wearing bioactive DLC coating to extend the lifetime of total joint implants.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Abdul Wasy Zia
- Institute of Mechanical, Process, and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Dinesh Kumar Devarajan
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Thomas J Joyce
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Angel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| |
Collapse
|
9
|
Echeverri E, Skjöldebrand C, O'Callaghan P, Palmquist A, Kreuger J, Hulsart-Billström G, Persson C. Fe and C additions decrease the dissolution rate of silicon nitride coatings and are compatible with microglial viability in 3D collagen hydrogels. Biomater Sci 2023; 11:3144-3158. [PMID: 36919682 DOI: 10.1039/d2bm02074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Silicon nitride (SiN) coatings may reduce unwanted release of metal ions from metallic implants. However, as SiN slowly dissolves in aqueous solutions, additives that reduce this dissolution rate would likely increase the lifetime and functionality of implants. Adding iron (Fe) and carbon (C) permits tuning of the SiN coatings' mechanical properties, but their effect on SiN dissolution rates, and their capacity to reduce metal ion release from metallic implant substrates, have yet to be investigated. Such coatings have recently been proposed for use in spinal implants; therefore, it is relevant to assess their impact on the viability of cells expected at the implant site, such as microglia, the resident macrophages of the central nervous system (CNS). To study the effects of Fe and C on the dissolution rate of SiN coatings, compositional gradients of Si, Fe and C in combination with N were generated by physical vapor deposition onto CoCrMo discs. Differences in composition did not affect the surface roughness or the release of Si, Fe or Co ions (the latter from the CoCrMo substrate). Adding Fe and C reduced ion release compared to a SiN reference coating, which was attributed to altered reactivity due to an increase in the fraction of stabilizing Si-C or Fe-C bonds. Extracts from the SiN coatings containing Fe and C were compatible with microglial viability in 2D cultures and 3D collagen hydrogels, to a similar degree as CoCrMo and SiN coated CoCrMo reference extracts. As Fe and C reduced the dissolution rate of SiN-coatings and did not compromise microglial viability, the capacity of these additives to extend the lifetime and functionality of SiN-coated metallic implants warrants further investigation.
Collapse
Affiliation(s)
- Estefanía Echeverri
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden.
| | - Charlotte Skjöldebrand
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden.
| | - Paul O'Callaghan
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Sweden
| | | | - Johan Kreuger
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Sweden
| | - Gry Hulsart-Billström
- Translational PET Imaging, Department of Medicinal Chemistry, Uppsala University, Sweden
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden.
| |
Collapse
|
10
|
Pera F, Menini M, Alovisi M, Crupi A, Ambrogio G, Asero S, Marchetti C, Canepa C, Merlini L, Pesce P, Carossa M. Can Abutment with Novel Superlattice CrN/NbN Coatings Influence Peri-Implant Tissue Health and Implant Survival Rate Compared to Machined Abutment? 6-Month Results from a Multi-Center Split-Mouth Randomized Control Trial. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010246. [PMID: 36614586 PMCID: PMC9821948 DOI: 10.3390/ma16010246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 05/12/2023]
Abstract
Background: The aim of the present multi-center split-mouth randomized control trial was to investigate the effect on peri-implant tissue of abutment with chromium nitride/ niobium nitride (CrN/NbN) coatings (superlattice) compared to traditional machined surface. Methods: Two adjacent posterior implants were inserted in 20 patients. A machined abutment was randomly screwed on either the mesial or distal implant, while a superlattice abutment was screwed on the other one. Implant survival rate, peri-implant probing depth (PPD), plaque index (PI), and bleeding index (BI) were collected 6 months after surgery, while marginal bone loss (MBL) was evaluated at T0 and T6.; Results: Implant survival rate was 97.7%. A total MBL of 0.77 ± 0.50 mm was recorded for superlattice abutments, while a mean MBL of 0.79 ± 0.40 mm was recorded for the abutment with machined surface. A mean PPD of 1.3 ± 0.23 mm was recorded for the superlattice Group, and a mean PPD of 1.31 ± 0.3 was recorded for the machined surface Group. PI was of 0.55 ± 0.51 for superlattice Group and 0.57 ± 0.50 for machined Group, while BI was of 0.47 ± 0.49 for superlattice Group and of 0.46 ± 0.40 for the machined one. No statistically significant difference was highlighted between the two Groups (p > 0.05). Conclusions: After a 6-month observational period, no statistically significant differences were highlighted between superlattice abutment and traditional machined abutment. Further in vitro studies as well as clinical research with longer follow-ups are required to better investigate the surface properties of the novel abutments’ superlattice coating and its effect on the oral tissues.
Collapse
Affiliation(s)
- Francesco Pera
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Maria Menini
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Mario Alovisi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Armando Crupi
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Giulia Ambrogio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Sofia Asero
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
| | - Carlotta Marchetti
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Camilla Canepa
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Laura Merlini
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| | - Massimo Carossa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, 10126 Turin, Italy
- Correspondence:
| |
Collapse
|
11
|
Chang YY, Huang KC. Improvement of Tribological Performance of TiAlNbN Hard Coatings by Adding AlCrN. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7750. [PMID: 36363342 PMCID: PMC9654231 DOI: 10.3390/ma15217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In tribological applications, the degradation of alloy nitride coatings is an issue of increasing concern. The drawbacks of monolayer hard coatings can be overcome using a multilayer coating system. In this study, single-layer TiAlNbN and multilayer TiAlNbN/AlCrN coatings with AlCrN layer addition into TiAlNbN were prepared by cathodic arc evaporation (CAE). The multilayer TiAlNbN/AlCrN showed B1 NaCl structure, and the columnar structure continued from the bottom interlayer of CrN to the top multilayers without interruption. After AlCrN addition, the TiAlNbN/AlCrN coating consisted of TiAlNbN and AlCrN multilayers with a periodic thickness of 13.2 nm. The layer thicknesses of the TiAlNbN and AlCrN were 7 nm and 6.2 nm, respectively. The template growth of the TiAlNbN and AlCrN sublayers stabilized the cubic phases. The introduction of bottom CrN and the TiAlNbN/CrN transition layers possessed com-position-gradient that improved the adhesion strength of the coatings. The hardness of the deposited TiAlNbN was 30.2 ± 1.3 GPa. The TiAlNbN/AlCrN had higher hardness of 31.7 ± 3.5 GPa and improved tribological performance (wear rate = 8.2 ± 0.6 × 10-7 mm3/Nm) than those of TiAlNbN, which were because the multilayer architecture with AlCrN addition effectively resisted abrasion wear.
Collapse
Affiliation(s)
- Yin-Yu Chang
- Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 63201, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kai-Chun Huang
- Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 63201, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|