1
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
2
|
Khoury W, Trus R, Chen X, Baghaie L, Clark M, Szewczuk MR, El-Diasty M. Parsimonious Effect of Pentoxifylline on Angiogenesis: A Novel Pentoxifylline-Biased Adenosine G Protein-Coupled Receptor Signaling Platform. Cells 2023; 12:cells12081199. [PMID: 37190108 DOI: 10.3390/cells12081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.
Collapse
Affiliation(s)
- William Khoury
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Ryan Trus
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- School of Medicine, The Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Xingyu Chen
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mira Clark
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Myron R Szewczuk
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mohammad El-Diasty
- Division of Cardiac Surgery, Queen's University, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
3
|
Ethiraj P, Sasi B, Holder KN, Lin AP, Qiu Z, Jaafar C, Elkhalili A, Desai P, Saksena A, Ritter JP, Aguiar RCT. Cyclic-AMP signalling, MYC and hypoxia-inducible factor 1α intersect to regulate angiogenesis in B-cell lymphoma. Br J Haematol 2022; 198:349-359. [PMID: 35411936 DOI: 10.1111/bjh.18196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Angiogenesis and MYC expression associate with poor outcome in diffuse large B-cell lymphoma (DLBCL). MYC promotes neo-vasculature development but whether its deregulation in DLBCL contributes to angiogenesis is unclear. Examination of this relationship may uncover novel pathogenic regulatory circuitry as well as anti-angiogenic strategies in DLBCL. Here, we show that MYC expression positively correlates with vascular endothelial growth factor (VEGF) expression and angiogenesis in primary DLBCL biopsies, independently of dual expressor status or cell-of-origin classification. We found that MYC promotes VEGFA expression, a correlation that was validated in large datasets of mature B-cell tumours. Using DLBCL cell lines and patient-derived xenograft models, we identified the second messenger cyclic-AMP (cAMP) as a potent suppressor of MYC expression, VEGFA secretion and angiogenesis in DLBCL in normoxia. In hypoxia, cAMP switched targets and suppressed hypoxia-inducible factor 1α, a master regulator of VEGFA/angiogenesis in low oxygen environments. Lastly, we used the phosphodiesterase 4b (Pde4b) knockout mouse to demonstrate that the cAMP/PDE4 axis exercises additional anti-angiogenesis by directly targeting the lymphoma microenvironment. In conclusion, MYC could play a direct role in DLBCL angiogenesis, and modulation of cAMP levels, which can be achieved with clinical grade PDE4 inhibitors, has cell and non-cell autonomous anti-angiogenic activity in DLBCL.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Binu Sasi
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Kenneth N Holder
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - An-Ping Lin
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Zhijun Qiu
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Carine Jaafar
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Alia Elkhalili
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Parth Desai
- Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Annapurna Saksena
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Jacob P Ritter
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Ricardo C T Aguiar
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, Texas, USA
| |
Collapse
|
4
|
Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:838449. [PMID: 35517783 PMCID: PMC9065678 DOI: 10.3389/fphar.2022.838449] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
The anti-inflammatory and immunomodulatory abilities of oral selective phosphodiesterase 4 (PDE4) inhibitors enabled the approval of roflumilast and apremilast for use in chronic obstructive pulmonary disease and psoriasis/psoriatic arthritis, respectively. However, the antifibrotic potential of PDE4 inhibitors has not yet been explored clinically. BI 1015550 is a novel PDE4 inhibitor showing a preferential enzymatic inhibition of PDE4B. In vitro, BI 1015550 inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) and phytohemagglutinin-induced interleukin-2 synthesis in human peripheral blood mononuclear cells, as well as LPS-induced TNF-α synthesis in human and rat whole blood. In vivo, oral BI 1015550 shows potent anti-inflammatory activity in mice by inhibiting LPS-induced TNF-α synthesis ex vivo and in Suncus murinus by inhibiting neutrophil influx into bronchoalveolar lavage fluid stimulated by nebulized LPS. In Suncus murinus, PDE4 inhibitors induce emesis, a well-known gastrointestinal side effect limiting the use of PDE4 inhibitors in humans, and the therapeutic ratio of BI 1015550 appeared to be substantially improved compared with roflumilast. Oral BI 1015550 was also tested in two well-known mouse models of lung fibrosis (induced by either bleomycin or silica) under therapeutic conditions, and appeared to be effective by modulating various model-specific parameters. To better understand the antifibrotic potential of BI 1015550 in vivo, its direct effect on human fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) was investigated in vitro. BI 1015550 inhibited transforming growth factor-β-stimulated myofibroblast transformation and the mRNA expression of various extracellular matrix proteins, as well as basic fibroblast growth factor plus interleukin-1β-induced cell proliferation. Nintedanib overall was unremarkable in these assays, but interestingly, the inhibition of proliferation was synergistic when it was combined with BI 1015550, leading to a roughly 10-fold shift of the concentration–response curve to the left. In summary, the unique preferential inhibition of PDE4B by BI 1015550 and its anticipated improved tolerability in humans, plus its anti-inflammatory and antifibrotic potential, suggest BI 1015550 to be a promising oral clinical candidate for the treatment of IPF and other fibro-proliferative diseases.
Collapse
Affiliation(s)
| | | | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
5
|
Najdahmadi A, Smink AM, de Vos P, Lakey JR, Botvinick E. Non-Invasive Monitoring of Oxygen Tension and Oxygen Transport Inside Subcutaneous Devices After H 2S Treatment. Cell Transplant 2020; 29:963689719893936. [PMID: 32024377 PMCID: PMC7444232 DOI: 10.1177/0963689719893936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Medical devices for cell therapy can be improved through prevascularization. In this work we study the vascularization of a porous polymer device, previously used by our group for pancreatic islet transplantation with results indicating improved glycemic control. Oxygen partial pressure within such devices was monitored non-invasively using an optical technique. Oxygen-sensitive tubes were fabricated and placed inside devices prior to subcutaneous implantation in nude mice. We tested the hypothesis that vascularization will be enhanced by administration of the pro-angiogenic factor hydrogen sulfide (H2S). We found that oxygen dynamics were unique to each implant and that the administration of H2S does not result in significant changes in perfusion of the devices as compared with control. These observations suggest that vascular perfusion and density are not necessarily correlated, and that the rate of vascularization was not enhanced by the pro-angiogenic agent.
Collapse
Affiliation(s)
- Avid Najdahmadi
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jonathan R.T. Lakey
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| | - Elliot Botvinick
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| |
Collapse
|
6
|
Wang H, Gaur U, Xiao J, Xu B, Xu J, Zheng W. Targeting phosphodiesterase 4 as a potential therapeutic strategy for enhancing neuroplasticity following ischemic stroke. Int J Biol Sci 2018; 14:1745-1754. [PMID: 30416389 PMCID: PMC6216030 DOI: 10.7150/ijbs.26230] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Sensorimotor recovery following ischemic stroke is highly related with structural modification and functional reorganization of residual brain tissues. Manipulations, such as treatment with small molecules, have been shown to enhance the synaptic plasticity and contribute to the recovery. Activation of the cAMP/CREB pathway is one of the pivotal approaches stimulating neuroplasticity. Phosphodiesterase 4 (PDE4) is a major enzyme controlling the hydrolysis of cAMP in the brain. Accumulating evidences have shown that inhibition of PDE4 is beneficial for the functional recovery after cerebral ischemia; i. subtype D of PDE4 (PDE4D) is viewed as a risk factor for ischemic stroke; ii. inhibition of PDE4 enhances neurological behaviors, such as learning and memory, after stroke in rodents; iii.PDE4 inhibition increases dendritic density, synaptic plasticity and neurogenesis; iv. activation of cAMP/CREB signaling by PDE4 inhibition causes an endogenous increase of BDNF, which is a potent modulator of neuroplasticity; v. PDE4 inhibition is believed to restrict neuroinflammation during ischemic stroke. Cumulatively, these findings provide a link between PDE4 inhibition and neuroplasticity after cerebral ischemia. Here, we summarized the possible roles of PDE4 inhibition in the recovery of cerebral stroke with an emphasis on neuroplasticity. We also made some recommendations for future research.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
7
|
Melo NDOR, Juanes CDC, Alves MFDA, Silva ETM, Jamacaru FVF, Lemos TLGD, Dornelas CA. Effect of red propolis on hamster cheek pouch angiogenesis in a new sponge implant model. Acta Cir Bras 2018; 33:420-430. [DOI: 10.1590/s0102-865020180050000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
|
8
|
de Lazari MGT, Pereira LX, Viana CTR, Orellano LAA, de Almeida SA, Vasconcelos AC, Ribeiro GB, Couto LC, Andrade SP, Campos PP. Induction of liver proliferation using a polymeric platform in mice. Life Sci 2018; 193:226-233. [PMID: 29097158 DOI: 10.1016/j.lfs.2017.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022]
Abstract
AIMS Currently, animal models of liver regeneration are based on extensive lesions of the native organ and on cellular approaches using biomaterials to host growth factors and extracellular components to create artificial liver systems. We report a polymeric biological platform, minimally invasive, that induced sequential proliferation of liver parenchyma inside the scaffold in mice. MAIN METHODS Porous discs of polyether-polyurethane were surgically placed under the left liver lobe and removed at days 4, 8, 12 and 25 after implantation. No exogenous growth factors or extracellular matrix components were added to the scaffold. Histological analysis of the implants was performed to identify hepatocytes, liver vascular structures and bile ducts in the newly formed tissue. In addition, systemic markers for hepatic function were determined. KEY FINDINGS This biohybrid device provided a scaffold that was gradually filled with parenchymal and non-parenchymal liver tissue as detected by histological analysis. At day 4, the pores of the scaffold were filled with inflammatory cells and spindled-shaped like fibroblasts, and extracellular matrix components. At day 8, hepatocytes clusters, central lobular hepatic veins, portal space containing arteries, veins and biliary ducts were detected. By days 12 and 25 a liver-like structure filled 2/3 of the scaffold. Its organization resembled that of a mature liver. Serum concentration of ALT increased three-fold initially after implantation, returning gradually to control levels. SIGNIFICANCE The plain synthetic scaffold (without addition of exogenous molecules) placed under the intact left liver lobe exhibits the potential to investigate physiological mechanisms that regulate liver parenchyma proliferation.
Collapse
Affiliation(s)
| | - Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida de Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giani Barbosa Ribeiro
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leticia Chinait Couto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Abstract
The host response observed after the application of an appropriate stimulus, such as mechanical injury or injection of neoplastic or normal tissue implants, has allowed the cataloging of a number of molecules and cells involved in the vascularization of normal repair or neoplastic tissue. Implantation of sponge matrices has been adopted as a model for the accurate quantification of angiogenic and fibrogenic responses, as they may occur during wound healing, in vivo. Such implants are particularly useful because they offer scope for modulating the environment within which angiogenesis occurs. Sponge implantation model has been optimized and adapted to characterize essential components and their roles in blood vessels formation in a variety of physiological and pathological conditions. As a direct consequence of advances in genetic manipulation, mouse models (i.e., knockouts, SCID, nude) have provided resources to delineate the mechanisms regulating the healing associated with implants. Here we outline the usefulness of the sponge implant model of angiogenesis and detailed description of the methodology.
Collapse
Affiliation(s)
- Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Cx. Post. 486, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Mônica Alves Neves Diniz Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Cx. Post. 486, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. Biomed Pharmacother 2017; 86:715-724. [PMID: 28063402 DOI: 10.1016/j.biopha.2016.11.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
|
11
|
PLGA nanofibers improves the antitumoral effect of daunorubicin. Colloids Surf B Biointerfaces 2015; 136:248-55. [DOI: 10.1016/j.colsurfb.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
|
12
|
A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma. Leukemia 2015; 30:617-626. [PMID: 26503641 PMCID: PMC4775385 DOI: 10.1038/leu.2015.302] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL.
Collapse
|
13
|
Gontijo SML, Guimarães PPG, Viana CTR, Denadai ÂML, Gomes ADM, Campos PP, Andrade SP, Sinisterra RD, Cortés ME. Erlotinib/hydroxypropyl-β-cyclodextrin inclusion complex: characterization and in vitro and in vivo evaluation. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0562-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Marques SM, Castro PR, Campos PP, Viana CTR, Parreiras PM, Ferreira MAN, Andrade SP. Genetic strain differences in the development of peritoneal fibroproliferative processes in mice. Wound Repair Regen 2015; 22:381-9. [PMID: 24844337 DOI: 10.1111/wrr.12177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
Fibroproliferative processes are regulated by a wide variety of tissue components and genetic factors. However, whether there are genetic differences in peritoneal fibroproliferative tissue formation, with consequent differences in response to drug treatment, is unclear. We characterize the influence of the genetic background on peritoneal fibroproliferative tissue induced by sponge implants in DBA/1, Swiss, C57BL/6, and BALB/c mouse strains. In addition, responses to dipyridamole in the implants were evaluated. Angiogenesis, assessed by intra-implant hemoglobin content, was highest in Swiss mice, whereas levels of vascular endothelial growth factor were highest in C57BL/6 mice. The levels of pro-inflammatory cytokines and of inflammatory enzymes (myeloperoxidase- and N-acetyl-β-D-glucosaminidase) were also strain-related. The pro-fibrogenic markers transforming growth factor beta-1 and collagen were lowest in implants placed in DBA/1 mice, whereas those in C57BL/6 mice had the highest levels. Differential sensitivity to dipyridamole was also observed, with this compound being pro-angiogenic in implants placed in DBA/1 mice but antiangiogenic in implants placed in Swiss. An overall anti-inflammatory response was observed in the inbred strains. Antifibrogenic effects were observed only in implants placed in C57BL/6 mice. These important strain-related differences in the development of peritoneal fibrosis and in response to dipyridamole must be considered in the design and analysis of studies on fibrogenesis in mice.
Collapse
Affiliation(s)
- Suzane M Marques
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Sahbaz A, Aynioglu O, Isik H, Ozmen U, Cengil O, Gun BD, Gungorduk K. Bromelain: A natural proteolytic for intra-abdominal adhesion prevention. Int J Surg 2015; 14:7-11. [DOI: 10.1016/j.ijsu.2014.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
16
|
Socarrás TO, Vasconcelos AC, Campos PP, Pereira NB, Souza JPC, Andrade SP. Foreign body response to subcutaneous implants in diabetic rats. PLoS One 2014; 9:e110945. [PMID: 25372281 PMCID: PMC4220951 DOI: 10.1371/journal.pone.0110945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/22/2014] [Indexed: 12/26/2022] Open
Abstract
Implantation of synthetic matrices and biomedical devices in diabetic individuals has become a common procedure to repair and/or replace biological tissues. However, an adverse foreign body reaction that invariably occurs adjacent to implant devices impairing their function is poorly characterized in the diabetic environment. We investigated the influence of this condition on the abnormal tissue healing response in implants placed subcutaneously in normoglycemic and streptozotocin-induced diabetes in rats. In polyether-polyurethane sponge discs removed 10 days after implantation, the components of the fibrovascular tissue (angiogenesis, inflammation, fibrogenesis, and apoptosis) were assessed. Intra-implant levels of hemoglobin and vascular endothelial growth factor were not different after diabetes when compared with normoglycemic counterparts. However, there were a lower number of vessels in the fibrovascular tissue from diabetic rats when compared with vessel numbers in implants from non-diabetic animals. Overall, the inflammatory parameters (neutrophil accumulation - myeloperoxidase activity, tumor necrosis factor alpha, and monocyte chemotactic protein-1 levels and mast cell counting) increased in subcutaneous implants after diabetes induction. However, macrophage activation (N-acetyl-β-D-glucosaminidase activity) was lower in implants from diabetic rats when compared with those from normoglycemic animals. All fibrogenic markers (transforming growth factor beta 1 levels, collagen deposition, fibrous capsule thickness, and foreign body giant cells) decreased after diabetes, whereas apoptosis (TUNEL) increased. Our results showing that hyperglycemia down regulates the main features of the foreign body reaction induced by subcutaneous implants in rats may be relevant in understanding biomaterial integration and performance in diabetes.
Collapse
Affiliation(s)
- Teresa Oviedo Socarrás
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Livestock Sciences, University of Córdoba, Montería, Córdoba, Colombia
| | - Anilton C. Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula P. Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Nubia B. Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jessica P. C. Souza
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia P. Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
17
|
Castro PR, Marques SM, Viana CT, Campos PP, Ferreira MA, Barcelos LS, Andrade SP. Deletion of the chemokine receptor CCR2 attenuates foreign body reaction to implants in mice. Microvasc Res 2014; 95:37-45. [DOI: 10.1016/j.mvr.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/08/2023]
|
18
|
Lima LDC, Andrade SP, Campos PP, Barcelos LS, Soriani FM, AL Moura S, Ferreira MAND. Brazilian green propolis modulates inflammation, angiogenesis and fibrogenesis in intraperitoneal implant in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:177. [PMID: 24886376 PMCID: PMC4061536 DOI: 10.1186/1472-6882-14-177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/08/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic inflammatory processes in the peritoneal cavity develop as a result of ischemia, foreign body reaction, and trauma. Brazilian green propolis, a beeswax product, has been shown to exhibit multiple actions on inflammation and tissue repair. Our aim was to investigate the effects of this natural product on the inflammatory, angiogenic, and fibrogenic components of the peritoneal fibroproliferative tissue induced by a synthetic matrix. METHODS Chronic inflammation was induced by placing polyether-polyurethane sponge discs in the abdominal cavity of anesthetized Swiss mice. Oral administration of propolis (500/mg/kg/day) by gavage started 24 hours after injury for four days. The effect of propolis on peritoneal permeability was evaluated through fluorescein diffusion rate 4 days post implantation. The effects of propolis on the inflammatory (myeloperoxidase and n-acetyl-β-D-glucosaminidase activities and TNF-α levels), angiogenic (hemoglobin content-Hb), and fibrogenic (TGF-β1 and collagen deposition) components of the fibrovascular tissue in the implants were determined 5 days after the injury. RESULTS Propolis was able to decrease intraperitoneal permeability. The time taken for fluorescence to peak in the systemic circulation was 20±1 min in the treated group in contrast with 15±1 min in the control group. In addition, the treatment was shown to down-regulate angiogenesis (Hb content) and fibrosis by decreasing TGF-β1 levels and collagen deposition in fibroproliferative tissue induced by the synthetic implants. Conversely, the treatment up-regulated inflammatory enzyme activities, TNF-α levels and gene expression of NOS2 and IFN-γ (23 and 7 fold, respectively), and of FIZZ1 and YM1 (8 and 2 fold) when compared with the untreated group. CONCLUSIONS These observations show for the first time the effects of propolis modulating intraperitoneal inflammatory angiogenesis in mice and disclose important action mechanisms of the compound (downregulation of angiogenic components and activation of murine macrophage pathways).
Collapse
Affiliation(s)
- Luiza DC Lima
- Department General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Antônio Carlos 6627- Pampulha, Belo Horizonte, Minas Gerais CEP 31.270-901, Brazil
| | - Silvia P Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Antônio Carlos 6627- Pampulha, Belo Horizonte, Minas Gerais CEP 31.270-901, Brazil
| | - Paula P Campos
- Department General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Antônio Carlos 6627- Pampulha, Belo Horizonte, Minas Gerais CEP 31.270-901, Brazil
| | - Lucíola S Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Antônio Carlos 6627- Pampulha, Belo Horizonte, Minas Gerais CEP 31.270-901, Brazil
| | - Frederico M Soriani
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Antônio Carlos 6627- Pampulha, Belo Horizonte, Minas Gerais CEP 31.270-901, Brazil
| | - Sandra AL Moura
- Center of Research in Biological Science, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Mônica AND Ferreira
- Department General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Antônio Carlos 6627- Pampulha, Belo Horizonte, Minas Gerais CEP 31.270-901, Brazil
| |
Collapse
|
19
|
Oviedo-Socarrás T, Vasconcelos AC, Barbosa IX, Pereira NB, Campos PP, Andrade SP. Diabetes alters inflammation, angiogenesis, and fibrogenesis in intraperitoneal implants in rats. Microvasc Res 2014; 93:23-9. [PMID: 24594441 DOI: 10.1016/j.mvr.2014.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/23/2014] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
The increased prevalence of diabetes worldwide is associated with increasing numbers of diabetic individuals receiving synthetic matrices and biomedical implants to repair and/or replace biological tissues. This therapeutic procedure invariably leads to adverse tissue healing (foreign body reaction), thus impairing the biomedical device function of subcutaneous implants. However, the influence of diabetes on abnormal tissue healing in intraperitoneal implants is unclear. We investigated key components of foreign body reactions in diabetic rats. Polyether-polyurethane sponge discs were placed intraperitoneally in rats previously injected with streptozotocin for induction of diabetes and in non-diabetic rats. Implants removed 10 days after implantation were assessed by determining the components of the fibrovascular tissue (angiogenesis, inflammation, and fibrogenesis). In implants from diabetic rats, fibrous capsule thickness and fibrovascular tissue infiltration (hematoxylin & eosin and picrosirius staining) were reduced in comparison with implants from non-diabetic rats. Hemoglobin (Hb) content (vascular index) and VEGF levels (pro-angiogenic cytokine) were increased after diabetes. However, the number of vessels (H&E and CD31-immunostaining) in the fibrovascular tissue from diabetic rats was decreased when compared with vessel numbers in implants from non-diabetic animals. Overall, all inflammatory parameters (macrophage accumulation-NAG activity; TNF-α and MCP-1 levels) increased in intraperitoneal implants after diabetes induction. The pro-fibrogenic cytokine (TGFβ-1) increased after diabetes, but collagen deposition remained unaltered in the implants from diabetic rats. These important diabetes-related changes (increased levels of pro-inflammatory and angiogenic and fibrogenic cytokines) in peritoneal implant healing provide an insight into the mechanisms of the foreign body response in the diabetic environment in rats.
Collapse
Affiliation(s)
- Teresa Oviedo-Socarrás
- Department of General Pathology - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; University of Córdoba, Montería, Córdoba, Colombia
| | - Anilton C Vasconcelos
- Department of General Pathology - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Irma X Barbosa
- Department of General Pathology - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; University of Tolima, Ibagué, Tolima, Colombia
| | - Nubia B Pereira
- Department of General Pathology - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Paula P Campos
- Department of General Pathology - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Silvia P Andrade
- Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, CEP 31270-901, Brazil.
| |
Collapse
|
20
|
Nogueira-Paiva NC, Fonseca KDS, Vieira PMDA, Diniz LF, Caldas IS, Moura SALD, Veloso VM, Guedes PMDM, Tafuri WL, Bahia MT, Carneiro CM. Myenteric plexus is differentially affected by infection with distinct Trypanosoma cruzi strains in Beagle dogs. Mem Inst Oswaldo Cruz 2014; 109:51-60. [PMID: 24271001 PMCID: PMC4005521 DOI: 10.1590/0074-0276130216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/21/2013] [Indexed: 11/22/2022] Open
Abstract
Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model.
Collapse
Affiliation(s)
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Lívia Figueiredo Diniz
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Ivo Santana Caldas
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | | | - Vanja Maria Veloso
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto
| | | | - Washington Luiz Tafuri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Maria Terezinha Bahia
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto
| |
Collapse
|
21
|
Camel urine inhibits inflammatory angiogenesis in murine sponge implant angiogenesis model. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Alhaider AA, Abdel Gader AGM, Almeshaal N, Saraswati S. Camel milk inhibits inflammatory angiogenesis via downregulation of proangiogenic and proinflammatory cytokines in mice. APMIS 2013; 122:599-607. [PMID: 24320686 DOI: 10.1111/apm.12199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/26/2013] [Indexed: 11/27/2022]
Abstract
Camel milk has traditionally been used to treat cancer, but this practice awaits scientific scrutiny, in particular its role in tumor angiogenesis, the key step involved in tumor growth and metastasis. We aimed to investigate the effects of camel milk on key components of inflammatory angiogenesis in sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and camel milk (25, 50 and 100 mg/kg/day) was administered for 14 days through installed cannula. The implants collected at day 14 post-implantation were processed for the assessment of hemoglobin (Hb), myeloperoxidase (MPO), N-acetylglucosaminidase (NAG), and collagen, which were used as indices for angiogenesis, neutrophil, and macrophage accumulation and extracellular matrix deposition, respectively. Relevant inflammatory, angiogenic, and fibrogenic cytokines were also determined. Camel milk treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor-α, and transforming growth factor-β. A regulatory function of camel milk on multiple parameters of the main components of inflammatory angiogenesis has been revealed, giving insight into the potential therapeutic benefit underlying the anti-cancer actions of camel milk.
Collapse
Affiliation(s)
- Abdulqader A Alhaider
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
23
|
Syed YA, Baer A, Hofer MP, González GA, Rundle J, Myrta S, Huang JK, Zhao C, Rossner MJ, Trotter MWB, Lubec G, Franklin RJM, Kotter MR. Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Mol Med 2013; 5:1918-34. [PMID: 24293318 PMCID: PMC3914530 DOI: 10.1002/emmm.201303123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023] Open
Abstract
The increasing effectiveness of new disease-modifying drugs that suppress disease activity in multiple sclerosis has opened up opportunities for regenerative medicines that enhance remyelination and potentially slow disease progression. Although several new targets for therapeutic enhancement of remyelination have emerged, few lend themselves readily to conventional drug development. Here, we used transcription profiling to identify mitogen-activated protein kinase (Mapk) signalling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signalling by elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolysing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination. These data reveal a novel approach to therapeutic enhancement of remyelination amenable to pharmacological intervention and hence with significant potential for translation.
Collapse
Affiliation(s)
- Yasir A Syed
- Wellcome Trust and MRC Cambridge Stem Cell Institute, and Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, UK; Department of Neurosurgery, Medical University Vienna, Vienna, Austria; Max-Planck Institute for Experimental Medicine, Department of Neurogenetics, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood–brain-barrier damage, inflammation and thrombosis. Exp Neurol 2013; 247:80-90. [DOI: 10.1016/j.expneurol.2013.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/06/2023]
|
25
|
Saraswati S, Agarwal SS. Strychnine inhibits inflammatory angiogenesis in mice via down regulation of VEGF, TNF-α and TGF-β. Microvasc Res 2013; 87:7-13. [PMID: 23395890 DOI: 10.1016/j.mvr.2013.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/06/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023]
Abstract
Strychnine is known to possess anti-inflammatory and antitumour activity, but its roles in tumour angiogenesis, the key step involved in tumour growth and metastasis, and the involved molecular mechanism are still unknown. We aimed to investigate the effects of strychnine on key components of inflammatory angiogenesis in the murine cannulated sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and strychnine (0.25, and 0.5 mg/kg/day) was given through installed cannulas for 9 days. The implants collected at day 9 postimplantation were processed for the assessment of haemoglobin (Hb), myeloperoxidase (MPO), N-acetylglucosaminidase (NAG) and collagen used as indexes for angiogenesis, neutrophil and macrophage accumulation and extracellular matrix deposition, respectively. Relevant inflammatory, angiogenic and fibrogenic cytokines were also determined. Strychnine treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of vascular endothelial growth factor (VEGF), tumour necrosis factor (TNF)-α and transforming growth factor (TGF-β). A regulatory function of strychnine on multiple parameters of main components of inflammatory angiogenesis has been revealed giving insight into the potential therapeutic underlying the actions of strychnine.
Collapse
Affiliation(s)
- Sarita Saraswati
- Genome Research Laboratory, Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India.
| | | |
Collapse
|
26
|
Sampaio FP, Castro PR, Marques SM, Campos PP, Ferreira MAND, Andrade SP. Genetic background determines inflammatory angiogenesis response to dipyridamole in mice. Exp Biol Med (Maywood) 2012; 237:1084-92. [DOI: 10.1258/ebm.2012.012066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation and angiogenesis, key components of fibrovascular tissue growth, exhibit considerable variability among species and strains. We investigated whether the response of inbred and outbred mice strains to dipyridamole (DP) on these processes would present similar variability. The effects of the drug on blood vessel formation, inflammatory cell recruitment, collagen deposition and cytokine production were determined on the fibroproliferative tissue induced by sponge implants in Swiss and Balb/c mice. Angiogenesis as assessed by hemoglobin (Hb) and vascular endothelial growth factor (VEGF) concentrations differed between the strains. Swiss implants had the highest Hb content but the lowest VEGF concentrations. Systemic DP treatment exerted an antiangiogenic effect on Balb/c implants but an proangiogenic effect on Swiss implants. The inflammatory enzyme activities myeloperoxidase (six-fold higher in Balb/c implants) and N-acetyl- β-d-glucosaminidase were reduced by the treatment in Balb/c implants only. Nitrite concentrations were also higher in Balb/c implants by 40% after DP treatment. Tumor necrosis factor-alpha levels were similar in the implants of both strains and were not reduced by DP. Transforming growth factor β-1 levels and collagen deposition also varied between the strains. The inbred strain had similar levels of the cytokine but implants of Swiss mice presented more collagen. DP treatment reduced collagen deposition in Balb/c implants only. Our data showing the influence of the genetic background on marked heterogeneity of inflammatory angiogenesis components and differential sensitivity to DP may provide some answers to clinical evidence for resistance to angiogenic therapy.
Collapse
Affiliation(s)
| | | | | | - Paula Peixoto Campos
- General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627-Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte/MG, Brazil
| | - Mônica Alves Neves Diniz Ferreira
- General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627-Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte/MG, Brazil
| | | |
Collapse
|
27
|
Castro PR, Marques SM, Campos PP, Cardoso CC, Sampaio FP, Ferreira MA, Andrade SP. Kinetics of implant-induced inflammatory angiogenesis in abdominal muscle wall in mice. Microvasc Res 2012; 84:9-15. [DOI: 10.1016/j.mvr.2012.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/27/2022]
|
28
|
Intra-abdominal use of phosphodiesterase type 4 inhibitor in postoperative adhesion prevention: an experimental study on mice. Dis Colon Rectum 2012; 55:345-50. [PMID: 22469803 DOI: 10.1097/dcr.0b013e31824202f3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The study was designed to assess the value of intraperitoneal use of rolipram for adhesion prevention and to compare the results with placebo and a sodium hyaluronate/carboxymethylcellulose absorbable barrier (Seprafilm), in a murine cecal abrasion model. DESIGNS Twenty-four Balb/c mice were subjects of this study. Intra-abdominal adhesions were created with a multiple-abrasion model consisting of meticulous abrasion of the cecum and small-bowel segments with strokes of a dental toothbrush. Animals in groups R (n = 8) received 1 mL of rolipram intraperitoneally. Seprafilm was placed over the viscera under the incision in group S animals (n = 8). Group C animals (n = 8) were reserved as control and received nothing. Animals were killed on day 22. MAIN OUTCOME MEASURES The adhesions were evaluated with 2 different observational scoring systems, the Majuzi System and the Linsky Scale. After completion of observational evaluation, the cecum and small bowel of the animals were excised and sent to the pathology laboratory for histopathologic examination. The extent of inflammatory response, the extent of the fibrotic reaction, the extent of the necrosis and abscess formation, and the extent of foreign body reaction were histologically evaluated. RESULTS The mean Majuzi System scores of groups R and S were similar to each other and significantly less than control group. Also, all scores of the Linsky Scale in group R were similar to those in group S, and significantly less than those in the control group. Histologically, the mean score of inflammatory response in group R was less than both those in group C and group S. The mean score of fibrotic reaction in group R was significantly less than those in the control group. CONCLUSION These results indicate that rolipram may be an effective material in prevention of postoperative intra-abdominal adhesions, but it is obvious that further studies are needed to validate the results of this limited initial study.
Collapse
|
29
|
Marques SM, Campos PP, Castro PR, Cardoso CC, Ferreira MA, Andrade SP. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res 2011; 82:246-52. [DOI: 10.1016/j.mvr.2011.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 08/05/2011] [Accepted: 08/25/2011] [Indexed: 11/27/2022]
|
30
|
Saraswati S, Pandey M, Mathur R, Agrawal SS. Boswellic acid inhibits inflammatory angiogenesis in a murine sponge model. Microvasc Res 2011; 82:263-8. [PMID: 21864545 DOI: 10.1016/j.mvr.2011.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/18/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to investigate the effects of boswellic acid (BA) on key components of inflammatory angiogenesis in the murine cannulated sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and BA (12.5 or 25mg/kg/day) was given through installed cannulas for nine days. The implants collected at day 9 post-implantation were processed for the assessment of hemoglobin (Hb). Relevant levels of inflammatory, angiogenic and fibrogenic cytokines were also determined. BA treatment resulted in significant decrease in sponge vascularization (Hb content) and in vascular endothelial growth factor (VEGF) and transforming growth factor (TGF-β1) at both doses. Further, BA decreased expression of VEGF and CD31 and reduced % microvessel density (MVD) in sponge implants. A regulatory function of BA on multiple parameters of the main components of inflammatory angiogenesis has been revealed giving an insight into the potential therapeutic use underlying the actions of BA.
Collapse
Affiliation(s)
- Sarita Saraswati
- Genome Research Laboratory, Delhi Institute of Pharmaceutical Sciences and Research, Pushp Vihar Sec-3, M B Road, New Delhi-110017, India.
| | | | | | | |
Collapse
|
31
|
Coordination of lapachol to bismuth(III) improves its anti-inflammatory and anti-angiogenic activities. Biometals 2011; 25:55-62. [DOI: 10.1007/s10534-011-9481-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/15/2011] [Indexed: 01/27/2023]
|
32
|
Araújo FA, Rocha MA, Ferreira MA, Campos PP, Capettini LSA, Lemos VS, Andrade SP. Implant-induced intraperitoneal inflammatory angiogenesis is attenuated by fluvastatin. Clin Exp Pharmacol Physiol 2011; 38:262-8. [PMID: 21309808 DOI: 10.1111/j.1440-1681.2011.05496.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) inhibitors, exert anti-inflammatory, anti-oxidant and anti-angiogenic effects. These effects are associated with downregulation of pro-inflammatory/pro-angiogenic molecules and upregulation of endothelial nitric oxide synthase (e-NOS) expression/nitric oxide (NO) production. 2. Using the murine sponge model to induce chronic intraperitoneal inflammatory response, we evaluated the inflammatory components, angiogenic and NO production of the fibrovascular tissue, and their modulation by fluvastatin. 3. Our results showed that fluvastatin (0.6 and 6 mg/kg per day) inhibited haemoglobin (Hb) content 4.9±0.4 (n=15; control) vs 2.2±0.2 (n=6; fluvastatin 0.6) and 1.8±0.2 (n=6; fluvastatin 6.0) and the number of vessels in the treated group when compared with the control group. The inflammatory component, as assessed by myeloperoxidase and N-acetyl-β-d-glucosaminidase activities and by the pro-inflammatory cytokines, tumour necrosis factor-α (TNF-α) and Monocyte chemotactic protein-1 (MCP-1)/CCL2/JE levels, was also decreased by the compound. In the treated group, inhibition of both enzyme activities was 54% and 57%, respectively. The levels of the cytokines (TNF-α and CCL2/JE) intra-implant were decreased relative to the control. In these implants, fluvastatin was also able to increase NO production, as detected with an NO-sensitive electrode. 4. The inhibitory function of fluvastatin on key components of intraperitoneal inflammatory angiogenesis shown in the present study is clearly associated with the modulatory effects of this statin on vascular endothelial growth factor, TNF-α and NO production.
Collapse
Affiliation(s)
- Fernanda A Araújo
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Moura SA, Lima LDC, Andrade SP, Silva-Cunha Junior AD, Órefice RL, Ayres E, Da Silva GR. Local Drug Delivery System: Inhibition of Inflammatory Angiogenesis in a Murine Sponge Model by Dexamethasone-Loaded Polyurethane Implants. J Pharm Sci 2011; 100:2886-95. [DOI: 10.1002/jps.22497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/25/2010] [Accepted: 01/03/2011] [Indexed: 11/07/2022]
|