1
|
Andreasen CM, El-Masri BM, MacDonald B, Laursen KS, Nielsen MH, Thomsen JS, Delaisse JM, Andersen TL. Local coordination between intracortical bone remodeling and vascular development in human juvenile bone. Bone 2023; 173:116787. [PMID: 37150243 DOI: 10.1016/j.bone.2023.116787] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Although failure to establish a vascular network has been associated with many skeletal disorders, little is known about what drives development of vasculature in the intracortical bone compartments. Here, we show that intracortical bone resorption events are coordinated with development of the vasculature. We investigated the prevalence of vascular structures at different remodeling stages as well as their 3D organization using proximal femoral cortical bone from 5 girls and 6 boys (aged 6-15 years). A 2D analysis revealed that non-quiescent intracortical pores contained more vascular structures than quiescent pores (p < 0.0001). Type 2 pores, i.e., remodeling of existing pores, had a higher density of vascular structures than type 1 pores, i.e., de novo created pores (p < 0.05). Furthermore, pores at the eroded-formative remodeling stage, had more vascular structures than pores at any other remodeling stage (p < 0.05). A 3D reconstruction of an intracortical remodeling event showed that osteoclasts in the advancing tip of the cutting cone as well as preosteoclasts in the lumen expressed vascular endothelial growth factor-A (VEGFA), while VEGFA-receptors 1 and 2 mainly were expressed in endothelial cells in the adjacent vasculature. Consequently, we propose that the progression of the vascular network in intracortical remodeling events is driven by osteoclasts expressing VEGFA. Moreover, the vasculature is continuously reconfigured according to the demands of the remodeling events at the surrounding bone surfaces.
Collapse
Affiliation(s)
- Christina Møller Andreasen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark.
| | - Bilal Mohamad El-Masri
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark.
| | - Birgit MacDonald
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - Kaja Søndergaard Laursen
- Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark; Molecular Bone Histology lab, Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| | - Malene Hykkelbjerg Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark.
| | | | - Jean-Marie Delaisse
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark.
| | - Thomas Levin Andersen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Molecular Bone Histology lab, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Molecular Medicine, University of Southern Denmark, Denmark; Clinical Cell Biology, Vejle Hospital - Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark; Molecular Bone Histology lab, Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Hart DA. Are secondary effects of bisphosphonates on the vascular system of bone contributing to increased risk for atypical femoral fractures in osteoporosis? Bioessays 2023; 45:e2200206. [PMID: 36807308 DOI: 10.1002/bies.202200206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis (OP) is a bone disease which affects a number of post-menopausal females and puts many at risk for fractures. A large number of patients are taking bisphosphonates (BPs) to treat their OP and a rare complication is the development of atypical femoral fractures (AFF). No real explanations for the mechanisms underlying the basis for development of where AFF develop while on BPs has emerged. The present hypothesis will discuss the possibility that part of the risk for an AFF is a secondary effect of BPs on a subset of vascular cells in a genetically at-risk population, leading to localized deregulation of the endothelial cell (EC)-bone cell-matrix units in nutrient channels/canals of the femur and increased risk for AFF. This concept of targeting ECs is consistent with location of AFF in the femur, the bilateral risk for occurrence of AFF, and the requirement for long term exposure to the drugs.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Lee SH, Kim JN, Shin KJ, Koh KS, Song WC. Three-dimensional microstructures of the intracortical canals in the animal model of osteoporosis. Anat Cell Biol 2020; 53:162-168. [PMID: 32647084 PMCID: PMC7343558 DOI: 10.5115/acb.19.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a major disease in aged women, increasing the risk for fractures accompanied by changes in the microarchitecture. The aim of this study was to investigate the three-dimensional (3D) histomorphology of femur diaphysis in the animal model for postmenopausal osteoporosis. The cortical bone of femur diaphysis of the rat was serially sectioned at a thickness of 5 mm and evaluated age-associated changes of the intracortical (osteonal) canal networks three-dimensionally. Cortical microstructures of 10-month old rats were not affected by ovariectomy. Intracortical canal networks were radial toward endosteal aspect and frequently interconnected across the neighboring canals with short arciform and irregular canals reminiscent for resorption spaces in ovarectomized 16-month old rats, contrary to intact canals in 16-month old control rat. Increased proportion of the periosteal circumference lamella and deformed endosteal regions with rare cortical canals hampered reconstructive histomorphology in ovarectomized rats of 26 month age. We have shown that 3D reconstruction of rat femur of the aged model over 16-month old is suitable methods that evaluate and microstructural change of the intracortical canals and cortical bone porosity by estrogen depletion.
Collapse
Affiliation(s)
- Shin-Hyo Lee
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jeong-Nam Kim
- Department of Biomedical Laboratory Science, Kyungnam College of Information & Technology, Busan, Korea
| | - Kang-Jae Shin
- Department of Anatomy and Cell Biology, Dong-A University School of Medicine, Busan, Korea
| | - Ki-Seok Koh
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Wu-Chul Song
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Montoro R, Dickie R. Comparison of tissue processing methods for microvascular visualization in axolotls. MethodsX 2017; 4:265-273. [PMID: 28913170 PMCID: PMC5587881 DOI: 10.1016/j.mex.2017.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: Higher contrast of the vasculature within the 3D context of the surrounding tissue
Enhanced detection of microvasculature facilitating vascular quantification
Compatibility with other labeling techniques
Collapse
|
5
|
Karakoyun O, Sahin E, Erol MF, Karıksız M, Küçükkaya M. Effect of cable cerclage on regional blood circulation in rabbits: a scintigraphic study. J Orthop Surg (Hong Kong) 2016; 24:367-369. [PMID: 28031508 DOI: 10.1177/1602400319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To evaluate changes in blood circulation of the femoral cortex in rabbits using scintigraphy before and after cable cerclage alone or combined with an intramedullary Kirschner wire. METHOD Ten New Zealand rabbits were used. For the right femur, a 2-mm-thick cable was placed around the mid-diaphyseal region and squeezed with a 400-N force and locked with a clip. For the left femur, a 1.8-mm Kirschner wire was inserted retrogradely into the medullary canal, and a 2-mm-thick cable was applied using the same technique. The blood perfusion ratio of the region of interest (ROI) before and after surgery was evaluated using scintigraphy. RESULTS For the right femurs, the mean ROI perfusion ratio decreased by 45% from 2.51 to 1.37 after intervention (p=0.001). For the left femurs, the mean ROI perfusion ratio decreased by 56% from 2.12 to 0.92 after intervention (p<0.001). The mean ROI perfusion ratio post-intervention was higher in the right than left femurs (p=0.017). CONCLUSION Cable cerclage around the femoral cortex significantly decreased blood circulation in the area.
Collapse
Affiliation(s)
- Ozgur Karakoyun
- Department of Orthopedics and Traumatology, Namık Kemal University, Tekirdağ, Turkey
| | - Ertan Sahin
- Department of Nuclear Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Mehmet Fatih Erol
- Department of Orthopedics and Traumatology, Namık Kemal University, Tekirdağ, Turkey
| | - Mesut Karıksız
- Department of Orthopedics and Traumatology, Namık Kemal University, Tekirdağ, Turkey
| | - Metin Küçükkaya
- Department of Orthopedics and Traumatology, Istanbul Bilim University, Istanbul Turkey
| |
Collapse
|
6
|
Maggiano IS, Maggiano CM, Clement JG, Thomas CDL, Carter Y, Cooper DML. Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat 2016; 228:719-32. [PMID: 26749084 DOI: 10.1111/joa.12430] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/28/2022] Open
Abstract
This study uses synchrotron radiation-based micro-computed tomography (CT) scans to reconstruct three-dimensional networks of Haversian systems in human cortical bone in order to observe and analyse interconnectivity of Haversian systems and the development of total Haversian networks across different ages. A better knowledge of how Haversian systems interact with each other is essential to improve understanding of remodeling mechanisms and bone maintenance; however, previous methodological approaches (e.g. serial sections) did not reveal enough detail to follow the specific morphology of Haversian branching, for example. Accordingly, the aim of the present study was to identify the morphological diversity of branching patterns and transverse connections, and to understand how they change with age. Two types of branching morphologies were identified: lateral branching, resulting in small osteon branches bifurcating off of larger Haversian canals; and dichotomous branching, the formation of two new osteonal branches from one. The reconstructions in this study also suggest that Haversian systems frequently target previously existing systems as a path for their course, resulting in a cross-sectional morphology frequently referred to as 'type II osteons'. Transverse connections were diverse in their course from linear to oblique to curvy. Quantitative assessment of age-related trends indicates that while in younger human individuals transverse connections were most common, in older individuals more evidence of connections resulting from Haversian systems growing inside previously existing systems was found. Despite these changes in morphological characteristics, a relatively constant degree of overall interconnectivity is maintained throughout life. Altogether, the present study reveals important details about Haversian systems and their relation to each other that can be used towards a better understanding of cortical bone remodeling as well as a more accurate interpretation of morphological variants of osteons in cross-sectional microscopy. Permitting visibility of reversal lines, synchrotron radiation-based micro-CT is a valuable tool for the reconstruction of Haversian systems, and future analyses have the potential to further improve understanding of various important aspects of bone growth, maintenance and health.
Collapse
Affiliation(s)
- Isabel S Maggiano
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Anthropology, University of West Georgia, Carrollton, GA, USA
| | - Corey M Maggiano
- Department of Anthropology, University of West Georgia, Carrollton, GA, USA.,Department of Anthropology, University of Western Ontario, London, ON, Canada
| | - John G Clement
- Melbourne Dental School, University of Melbourne, Melbourne, Vic., Australia
| | - C David L Thomas
- Melbourne Dental School, University of Melbourne, Melbourne, Vic., Australia
| | - Yasmin Carter
- Department of Radiology, University of Massachusetts Medical School, Worchester, MA, USA
| | - David M L Cooper
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Pang H, Wu XH, Fu SL, Luo F, Zhang ZH, Hou TY, Li ZQ, Chang ZQ, Yu B, Xu JZ. Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction. INTERNATIONAL ORTHOPAEDICS 2013; 37:753-9. [PMID: 23288045 DOI: 10.1007/s00264-012-1751-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to examine whether the addition of endothelial progenitor cells (EPCs) contributes to restoring the architectural and functional properties of newly formed bone for reconstruction of bone defects. METHODS Bone marrow-derived EPCs and mesenchymal stem cells (MSCs) were co-seeded onto demineralized bone matrix (DBM) as a prevascularized tissue-engineered bone (TEB) for the repair of segmental bone defects to evaluate the effects of prevascularization of TEB on ameliorating morphological, haemodynamic and mechanical characteristics. RESULTS The restoration of the intraosseous vasculature and medullary cavity was improved markedly compared to the non-prevascularized groups. The blood supply, biomechanical strength, and bone mineral density of the prevascularized group were significantly higher than those of the non-prevascularized groups during bone reconstruction. CONCLUSIONS The present study indicates that EPC-dependent prevascularization contributes to bone healing with structural reconstruction and functional recovery and may improve the understanding of correlation between angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Hao Pang
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pazzaglia UE, Congiu T, Marchese M, Zarattini G, Dell'Orbo C. The canalicular system and the osteoblast domain in human secondary osteons. Anat Histol Embryol 2012; 41:410-8. [PMID: 22469429 DOI: 10.1111/j.1439-0264.2012.01150.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/01/2012] [Indexed: 11/30/2022]
Abstract
The lacunar-canalicular system in human secondary osteons was examined by two complementary techniques: light microscopy analysis of undecalcified thick sections and the SEM cortex-fractured surface technique. Unlike the earlier definitions of 'osteoblastic domain' presented as the matrix volume produced by osteoblasts in the process of osteon infilling, this study measured the domain by the length of osteoblast dendritic processes. The domain extension was defined along radial vectors advancing from the reversal line towards the central canal. According to their lengths, domains were divided into three classes: peripheral, intermediate and internal. The mean length of peripheral domains was significantly shorter than those of the intermediate and internal domains. This suggests that the infilling process is modulated by an initial preparatory phase characterised by osteoblast adhesion to the wall of the cutting cone, and a limited matrix synthesis, followed by a regular matrix volume apposition organised in concentric layers. In addition to the radial canaliculae arranged along converging vectors in planes perpendicular to the central canal, we distinguished a further class of canaliculae, the equatorial canaliculae originating from the major perimeter of the lacuna and spreading out radially in the plane of the same lacuna (therefore, perpendicularly to the radial canaliculae). The whole lacunar-canalicular network was structured as a closed system around the vascular axis of the central canal with very few canaliculae crossing the reversal line and connecting the neighbouring osteons. These anatomical observations contribute to our knowledge of lacunar-canalicular system development.
Collapse
Affiliation(s)
- U E Pazzaglia
- Clinica Ortopedica dell'Università di Brescia, Spedali Civili di Brescia, Italy.
| | | | | | | | | |
Collapse
|