1
|
Liu W, Zhao K, Chen F, Cai C, Jiang T, Zhu L, Yu C, Liu F, Yu M. Supermolecular poly-N-acryloyl glycinamide/polyglutamic acid/Fe 3+ hydrogel incorporated with bioactive small extracellular vesicles promote diabetic wound healing by suppressing ferroptosis. Int J Biol Macromol 2025; 308:142313. [PMID: 40147651 DOI: 10.1016/j.ijbiomac.2025.142313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Poorly-controlled blood glucose frequently develop in diabetic wounds and hydrogel has been reported of great performance for diabetic wound healing. Consequently, we prepared poly-N-acryloyl glycinamide (PNAGA) and introduced polyglutamic acid (γ-PGA), Fe3+, small extracellular vesicles (sEVs) into PNAGA to form a dual physical cross-linking supramolecular hydrogel system (PFF) for diabetic wound healing. In this study, we successfully synthesized the PFF hydrogel and extracted the sEVs that were incorporated into PPF as PPF/sEVs. In our research, we find that PFF hydrogel possessed continuous porous structure and, exceptional resilience, excellent extensibility and flexibility, closely mimicking the mechanical performance of human skin. Moreover, the PFF/sEVs hydrogel could release sEVs, playing a critical role in wound healing. Our results showed PFF/sEVs hydrogel improved the wound healing characterized by shorter wound closure time and enhanced blood vessel density in vivo. Also, sEVs counteracted the inhibitory effects of high glucose on proliferation, migration, tube differentiation, malondialdehyde (MDA) and glutathione (GSH) levels, which may attribute to the inhibition of ferroptosis by influencing free fatty acids (FFA) metabolism in vitro. Our findings indicated that the low-cost, biocompatible, and multifunctional bioactive PFF supramolecular hydrogel loaded with sEVs hold tremendous application potential as a clinical platform for diabetic wound healing.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kangcheng Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Feng Chen
- College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenkai Cai
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tianyuan Jiang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liying Zhu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyang Yu
- College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Muyu Yu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
de Freitas ALP, Han SW, Martin PKM, Ferreira LM. Effect of adipose-derived mesenchymal stem cells on the viability of the transverse rectus abdominis myocutaneous flap in rats. Clinics (Sao Paulo) 2025; 80:100590. [PMID: 39908748 PMCID: PMC11847128 DOI: 10.1016/j.clinsp.2025.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION The Transverse Rectus Abdominis Myocutaneous (TRAM) flap is used for breast reconstruction, but involves the risk of necrosis. Adipose tissue-derived mesenchymal Stem Cells (ADSCs) can be used to stimulate neovascularization and reduce the risk of TRAM flap necrosis. AIM Determine the effect of ADSCs on TRAM flap viability in rats. METHODS Twenty-four Wistar-EPM rats were distributed into three groups (n = 8). A right caudal pedicled TRAM flap was performed in all the animals and was the only procedure performed in Group TRAM. The additional procedures of intradermal injection of α-MEM culture medium and intradermal injection of α-MEM containing ADSCs labeled with a fluorescent marker were performed in Groups α-MEM and α-MEM-SC, respectively. The percentage of flap necrosis was determined, and the level of neovascularization and distribution of stem cells in the TRAM flap was assessed using immunohistochemical analysis and fluorescence microscopy, respectively. RESULTS The percentage of necrosis observed in Group α-MEM-SC was lower than that observed in Groups TRAM and α-MEM, namely 23.36 % vs. 50.42 % and 53.57 %, respectively (p < 0.05). In Zone IV of the flap, the number of vessels was greater in Group α-MEM-SC than in the other groups (p < 0.05). Multiple stem cells were observed in the four zones of the flap in Group α-MEM-SC. No stem cells were observed in Groups TRAM or α-MEM. CONCLUSION ADSCs increased TRAM flap viability and the number of vessels in Zone IV of the flap in rats.
Collapse
Affiliation(s)
| | - Sang Won Han
- MSc Interdisciplinary Center for Gene Therapy (CINTERGEN), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Lydia Masako Ferreira
- Division of Plastic Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Lee Y, Lim KM, Bong H, Lee SB, Jeon TI, Lee SY, Park HS, Kim JY, Song K, Kang GH, Kim SJ, Song M, Cho SG. The Immobilization of an FGF2-Derived Peptide on Culture Plates Improves the Production and Therapeutic Potential of Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:10709. [PMID: 39409038 PMCID: PMC11477336 DOI: 10.3390/ijms251910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The skin is an essential organ that protects the body from external aggressions; therefore, damage from various wounds can significantly impair its function, and effective methods for regenerating and restoring its barrier function are crucial. This study aimed to mass-produce wound-healing exosomes using a fragment of the fibroblast growth factor 2 (FGF2)-derived peptide (FP2) to enhance cell proliferation and exosome production. Our experiments demonstrated increased cell proliferation when Wharton's jelly mesenchymal stem cells (WJ MSCs) were coated with FP2. Exosomes from FP2-coated WJ MSCs were analyzed using nanoparticle-tracking analysis, transmission electron microscopy, and Western blotting. Subsequently, fibroblasts were treated with these exosomes, and their viability and migration effects were compared. Anti-inflammatory effects were also evaluated by inducing pro-inflammatory factors in RAW264.7 cells. The treatment of fibroblasts with FP2-coated WJ MSC-derived exosomes (FP2-exo) increased the expression of FGF2, confirming their wound-healing effect in vivo. Overall, the results of this study highlight the significant impact of FP2 on the proliferation of WJ MSCs and the anti-inflammatory and wound-healing effects of exosomes, suggesting potential applications beyond wound healing.
Collapse
Affiliation(s)
- Youngseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Kyung-Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hanbit Bong
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Soo-Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Tak-Il Jeon
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Su-Yeon Lee
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Hee-Sung Park
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Ji-Young Kim
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Se-Jong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Myeongjin Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
5
|
He YC, Yuan GD, Li N, Ren MF, Qian-Zhang, Deng KN, Wang LC, Xiao WL, Ma N, Stamm C, Felthaus O, Prantl L, Nie J, Wang G. Recent advances in mesenchymal stem cell therapy for myocardial infarction. Clin Hemorheol Microcirc 2024; 87:383-398. [PMID: 38578884 DOI: 10.3233/ch-249101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Myocardial infarction refers to the ischemic necrosis of myocardium, characterized by a sharp reduction or interruption of blood flow in the coronary arteries due to the coronary artery occlusion, resulting in severe and prolonged ischemia in the corresponding myocardium and ultimately leading to ischemic necrosis of the myocardium. Given its high risk, it is considered as one of the most serious health threats today. In current clinical practice, multiple approaches have been explored to diminish myocardial oxygen consumption and alleviate symptoms, but notable success remains elusive. Accumulated clinical evidence has showed that the implantation of mesenchymal stem cell for treating myocardial infarction is both effective and safe. Nevertheless, there persists controversy and variability regarding the standardizing MSC transplantation protocols, optimizing dosage, and determining the most effective routes of administration. Addressing these remaining issues will pave the way of integration of MSCs as a feasible mainstream cardiac treatment.
Collapse
Affiliation(s)
- Yu-Chuan He
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guo-Dong Yuan
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Nan Li
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei, China
| | - Mei-Fang Ren
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qian-Zhang
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Kai-Ning Deng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Le-Chuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wei-Ling Xiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Nan Ma
- Helmholtz-Zentrum Hereon, Institute of Active Polymers, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jia Nie
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Gang Wang
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Sharqawi A, Mansour MF, Elatrash GA, Ismail EA, Ralph D, El-Sakka AI. Role of adipose-derived stem cells in healing surgically induced trauma of the rat's tunica albuginea. Sex Med 2023; 11:qfad058. [PMID: 38028732 PMCID: PMC10661659 DOI: 10.1093/sexmed/qfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Injection of adipose-derived stem cells (ADSCs) into the injured tunica albuginea (TA) may prevent fibrosis, restore the balance between pro- and antifibrotic pathways, and potentially mitigate erectile dysfunction caused by abnormal TA healing. Aim To assess the potential role of ADSC injection on structural, ultrastructural, functional, and molecular changes in surgically induced trauma of the rat's TA. Methods Forty adult male albino Wistar rats were divided into 5 groups of 8 rats each: group 1, sham; group 2, injury to TA without treatment; group 3, injury to TA and suture repair; group 4, injury to TA and injection of ADSCs without suture repair; group 5, injury to TA followed by injection of ADSCs and suture repair. Outcomes After 6 weeks, all groups were subjected to functional, histologic, and ultrastructural examination and molecular expression of healing growth factors. Results The intracavernous pressure (ICP; mean ± SD) was 114 ± 2, 32 ± 2, 65 ± 2, 68 ± 2, and 111 ± 2 mm Hg in groups 1 to 5, respectively. There were significant differences in ICP between each of groups 3 to 5 and group 2 (P < .05), and groups 3 and 4 each had significant differences with group 1 (P < .05). No significant difference in ICP occurred between groups 3 and 4 (P > .05). There were significant histologic and ultrastructural alterations in tunical tissues from group 2; however, these changes were markedly less in group 5 in terms of lower levels of fibrotic changes, elastosis, and superior overall neuroendothelial expression. Groups 3 and 4 showed improved structural and ultrastructural parameters when compared with group 2. Group 5 demonstrated lower levels of transforming growth factor β1 and basic fibroblast growth factor expression. Clinical Implications This experimental model may encourage administration of ADSCs to prevent the deleterious effects of trauma to the TA. Strengths and Limitations Injecting ADSCs can improve the healing process and erectile dysfunction in a rat model following TA injury, and combining ADSC injection with surgical suturing resulted in superior outcomes. The main limitation was the absence of long-term ICP measurements and a longer follow-up period that may provide further insight into the chronic phase of the healing process. Conclusion ADSC injection may prevent structural, ultrastructural, functional, and molecular alterations in surgically induced trauma of the rat's TA and enhance the effect of tunical suturing after trauma.
Collapse
Affiliation(s)
| | - Mona F Mansour
- Department of Physiology, Suez Canal University, Ismailia 4111, Egypt
| | - Gamal A Elatrash
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| | - Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| | - David Ralph
- Institute of Urology, University College of London Hospital, London W1G 8PH, United Kingdom
| | - Ahmed I El-Sakka
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| |
Collapse
|
7
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
8
|
Helissey C, Cavallero S, Guitard N, Théry H, Chargari C, François S. Revolutionizing Radiotoxicity Management with Mesenchymal Stem Cells and Their Derivatives: A Focus on Radiation-Induced Cystitis. Int J Mol Sci 2023; 24:ijms24109068. [PMID: 37240415 DOI: 10.3390/ijms24109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Although radiation therapy plays a crucial role in cancer treatment, and techniques have improved continuously, irradiation induces side effects in healthy tissue. Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers and negatively impacts patients' quality of life (QoL). To date, no effective treatment is available, and this toxicity remains a therapeutic challenge. In recent times, stem cell-based therapy, particularly the use of mesenchymal stem cells (MSC), has gained attention in tissue repair and regeneration due to their easy accessibility and their ability to differentiate into several tissue types, modulate the immune system and secrete substances that help nearby cells grow and heal. In this review, we will summarize the pathophysiological mechanisms of radiation-induced injury to normal tissues, including radiation cystitis (RC). We will then discuss the therapeutic potential and limitations of MSCs and their derivatives, including packaged conditioned media and extracellular vesicles, in the management of radiotoxicity and RC.
Collapse
Affiliation(s)
- Carole Helissey
- Clinical Unit Research, HIA Bégin, 69 Avenu de Paris, 94160 Saint-Mandé, France
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Hélène Théry
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, 47-83 Bd de l'Hôpital, 75013 Paris, France
| | - Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
9
|
Hosseini M, Shafiee A. Vascularization of cutaneous wounds by stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:327-350. [PMID: 37678977 DOI: 10.1016/bs.pmbts.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Differentiated skin cells have limited self-renewal capacity; thus, the application of stem/progenitor cells, adult or induced stem cells, has attracted much attention for wound healing applications. Upon skin injury, vascularization, known as a highly dynamic process, occurs with the contribution of cells, the extracellular matrix, and relevant growth factors. Considering the importance of this process in tissue regeneration, several strategies have been proposed to enhance angiogenesis and accelerate wound healing. Previous studies report the effectiveness of stem/progenitor cells in skin wound healing by facilitating the vascularization process. This chapter reviews and highlights some of the key and recent investigations on application of stem/progenitor cells to induce skin revascularization after trauma.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia; ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
12
|
Liu Z, Yang S, Li X, Wang S, Zhang T, Huo N, Duan R, Shi Q, Zhang J, Xu J. Local transplantation of GMSC-derived exosomes to promote vascularized diabetic wound healing by regulating the Wnt/β-catenin pathways. NANOSCALE ADVANCES 2023; 5:916-926. [PMID: 36756513 PMCID: PMC9890890 DOI: 10.1039/d2na00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
With the increasing number of diabetic patients, chronic wound healing remains a great challenge in clinical medicine. As one of the main components secreted by stem cells, the exosome is considered to be a promising candidate for promoting chronic wound healing. Here, gingival mesenchymal stem cell (GMSC)-derived exosomes (GMSC-Exo) were isolated and demonstrated to promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) by regulating the Wnt/β-catenin signaling pathway in a diabetic-mimicking high glucose environment. In order to deliver GMSCs-Exo to the target site and prolong their local retention, porous microspheres consisting of poly-lactic-co-glycolic acid (PLGA), amphiphilic block copolymer (PLLA-PEG-PLLA), nano-hydroxyapatite (nHAP), and poly-ε-l-lysine (EPL) coating were fabricated through a double emulsion method and following surface treatment, hereafter referred to as PHE microspheres. PHE microspheres loaded with GMSCs-Exo were implanted into the full-thickness skin wound of a diabetic mouse model, resulting in significant vascularized wound healing when compared to a control group only injected with GMSCs-Exo suspension or filled with PHE microspheres. These findings indicated that the GMSCs-Exo-loaded porous microspheres could efficiently treat diabetic wounds and have promising potential for future clinical translations.
Collapse
Affiliation(s)
- Ziwei Liu
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
- Orthopedic Laboratory of PLA General Hospital Beijing 100853 China
| | - Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Xiaoming Li
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Situo Wang
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
- Orthopedic Laboratory of PLA General Hospital Beijing 100853 China
| | - Tong Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Ruixin Duan
- Department of Stomatology, The People's Hospital of Anyang City Henan 455000 China
| | - Quan Shi
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| |
Collapse
|
13
|
Xu ZH, Ma MH, Li YQ, Li LL, Liu GH. Progress and expectation of stem cell therapy for diabetic wound healing. World J Clin Cases 2023; 11:506-513. [PMID: 36793646 PMCID: PMC9923865 DOI: 10.12998/wjcc.v11.i3.506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Impaired wound healing presents great health risks to diabetics. Encouragingly, the current clinical successfully found out meaningful method to repair wound tissue, and stem cell therapy could be an effective method for diabetic wound healing with its ability to accelerate wound closure and avoid amputation. This minireview aims at introducing stem cell therapy for facilitating tissue repair in diabetic wounds, discussing the possible therapeutic mechanism and clinical application status and problems.
Collapse
Affiliation(s)
- Zhen-Han Xu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Meng-Hui Ma
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Yan-Qing Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Li-Lin Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510610, Guangdong Province, China
| |
Collapse
|
14
|
Hu L, Zhou J, He Z, Zhang L, Du F, Nie M, Zhou Y, Hao H, Zhang L, Yu S, Zhang J, Chen Y. In Situ-Formed Fibrin Hydrogel Scaffold Loaded With Human Umbilical Cord Mesenchymal Stem Cells Promotes Skin Wound Healing. Cell Transplant 2023; 32:9636897231156215. [PMID: 36840468 PMCID: PMC9969468 DOI: 10.1177/09636897231156215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/26/2023] Open
Abstract
Healing of full-thickness skin wounds remains a major challenge. Recently, human umbilical cord mesenchymal stem cells (hUC-MSCs) were shown to possess an extraordinary potential to promote skin repair in clinical settings. However, their low survival rate after transplantation limits their therapeutic efficiency in treating full-thickness skin wounds. Hydrogels are considered an ideal cell transplantation vector owing to their three-dimensional mesh structure, good biosafety, and biodegradation. The objective of this study was to investigate the skin wound healing effect of a fibrin hydrogel scaffold loaded with hUC-MSCs. We found that the fibrin hydrogel had a three-dimensional mesh structure and low cytotoxicity and could prolong the time of cell survival in the peri-wound area. The number of green fluorescent protein (GFP)-labeled hUC-MSCs was higher in the full-thickness skin wound of mice treated with hydrogel-hUC-MSCs than those of mice treated with cell monotherapy. In addition, the combination therapy between the hydrogel and hUC-MSCs speed up wound closure, its wound healing rate was significantly higher than those of phosphate-buffered saline (PBS) therapy, hydrogel monotherapy, and hUC-MSCs monotherapy. Furthermore, the results showed that the combination therapy between hydrogel and hUC-MSCs increased keratin 10 and keratin 14 immunofluorescence staining, and upregulated the relative gene expressions of epidermal growth factor (EGF), transforming growth factor-β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA), promoting epithelial regeneration and angiogenesis. In conclusion, the fibrin hydrogel scaffold provides a relatively stable sterile environment for cell adhesion, proliferation, and migration, and prolongs cell survival at the wound site. The hydrogel-hUC-MSCs combination therapy promotes wound closure, re-epithelialization, and neovascularization. It exhibits a remarkable therapeutic effect, being more effective than the monotherapy with hUC-MSCs or hydrogel.
Collapse
Affiliation(s)
- Lvzhong Hu
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhisong He
- Department of Cardiovascular Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mengting Nie
- Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Life Science and Technology,
Changchun University of Science and Technology, Changchun, China
| | - Yao Zhou
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hang Hao
- Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Lixing Zhang
- Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shuang Yu
- Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Engineering and
Technology Affiliated to SIBET, Zhengzhou, China
- Xuzhou Medical University, Xuzhou,
China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Engineering and
Technology Affiliated to SIBET, Zhengzhou, China
- Xuzhou Medical University, Xuzhou,
China
| | - Youguo Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Hagen A, Niebert S, Brandt VP, Holland H, Melzer M, Wehrend A, Burk J. Functional properties of equine adipose-derived mesenchymal stromal cells cultured with equine platelet lysate. Front Vet Sci 2022; 9:890302. [PMID: 36016806 PMCID: PMC9395693 DOI: 10.3389/fvets.2022.890302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Successful translation of multipotent mesenchymal stromal cell (MSC)-based therapies into clinical reality relies on adequate cell production procedures. These should be available not only for human MSC, but also for MSC from animal species relevant to preclinical research and veterinary medicine. The cell culture medium supplementation is one of the critical aspects in MSC production. Therefore, we previously established a scalable protocol for the production of buffy-coat based equine platelet lysate (ePL). This ePL proved to be a suitable alternative to fetal bovine serum (FBS) for equine adipose-derived (AD-) MSC culture so far, as it supported AD-MSC proliferation and basic characteristics. The aim of the current study was to further analyze the functional properties of equine AD-MSC cultured with the same ePL, focusing on cell fitness, genetic stability and pro-angiogenic potency. All experiments were performed with AD-MSC from n = 5 horses, which were cultured either in medium supplemented with 10% FBS, 10% ePL or 2.5% ePL. AD-MSC cultured with 2.5% ePL, which previously showed decreased proliferation potential, displayed higher apoptosis but lower senescence levels as compared to 10% ePL medium (p < 0.05). Non-clonal chromosomal aberrations occurred in 8% of equine AD-MSC cultivated with FBS and only in 4.8% of equine AD-MSC cultivated with 10% ePL. Clonal aberrations in the AD-MSC were neither observed in FBS nor in 10% ePL medium. Analysis of AD-MSC and endothelial cells in an indirect co-culture revealed that the ePL supported the pro-angiogenic effects of AD-MSC. In the 10% ePL group, more vascular endothelial growth factor (VEGF-A) was released and highest VEGF-A concentrations were reached in the presence of ePL and co-cultured cells (p < 0.05). Correspondingly, AD-MSC expressed the VEGF receptor-2 at higher levels in the presence of ePL (p < 0.05). Finally, AD-MSC and 10% ePL together promoted the growth of endothelial cells and induced the formation of vessel-like structures in two of the samples. These data further substantiate that buffy-coat-based ePL is a valuable supplement for equine AD-MSC culture media. The ePL does not only support stable equine AD-MSC characteristics as demonstrated before, but it also enhances their functional properties.
Collapse
Affiliation(s)
- Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Vivian-Pascal Brandt
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Heidrun Holland
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Janina Burk
| |
Collapse
|
16
|
Cherng JH, Chang SJ, Chiu YK, Chiu YH, Fang TJ, Chen HC. Low Molecular Weight Sericin Enhances the In Vitro of Immunological Modulation and Cell Migration. Front Bioeng Biotechnol 2022; 10:925197. [PMID: 35928949 PMCID: PMC9343859 DOI: 10.3389/fbioe.2022.925197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Sericin, a waste product of the silk textile industry, has favorable physicochemical and biological properties. In this study, we extracted a low molecular weight (MW) sericin (LMW-sericin; below 10 kDa) by a performing high-temperature and high-pressure method and confirmed the MW using matrix-assisted laser desorption ionization-time of flight and liquid chromatography–mass spectrometry. Furthermore, we determined its biological effects on macrophages and human adipose stem cells (hASCs) as cell models to investigate the biocompatibility, immunomodulation behavior, and potential signaling pathway-related wound healing via analyses of gene expression of focal adhesion and human cytokines and chemokines using quantitative real-time polymerase chain reaction and cytokine assay. LMW-sericin showed good biocompatibility both in macrophages and hASCs. Macrophages cultured with 0.1 mg/ml LMW-sericin displayed an improved inflammatory response shown by the upregulation of CXCL9, IL12A, BMP7, and IL10, which developed Th1 and Th2 balance. LMW-sericin also improved the differentiation of macrophages toward the M2 phenotype by significantly enhancing the expression of Arg-1, which is conducive to the repair of the inflammatory environment. Moreover, the gene expression of hASCs showed that LMW-sericin promoted the secretion of beneficial adhesion molecules that potentially activate the gene transcription of differentiation and migration in hASCs, as well as significantly enhanced the levels of PKCβ1, RhoA, and RasGFR1 as fruitful molecules in wound healing. These findings provide insights into LMW-sericin application as a potential biomaterial for wound management.
Collapse
Affiliation(s)
- Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yaw-Kwan Chiu
- Department of Pediatrics Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsiang Chiu
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tong-Jing Fang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Cheng Chen
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Hsiang-Cheng Chen,
| |
Collapse
|
17
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
19
|
Guo X, Schaudinn C, Blume-Peytavi U, Vogt A, Rancan F. Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells 2022; 11:cells11071198. [PMID: 35406762 PMCID: PMC8998073 DOI: 10.3390/cells11071198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells have been extensively investigated for tissue repair therapies. Adipose-derived stem cells (ASCs) were shown to improve wound healing by promoting re-epithelialization and vascularization as well as modulating the inflammatory immune response. In this study, we used ex vivo human skin cultured in a six-well plate with trans-well inserts as a model for superficial wounds. Standardized wounds were created and treated with allogeneic ASCs, ASCs conditioned medium (ASC-CM), or cell culture medium (DMEM) supplemented with fetal calf serum (FCS). Skin viability (XTT test), histology (hematoxylin and eosin, H and E), β-catenin expression as well as inflammatory mediators and growth factors were monitored over 12 days of skin culture. We observed only a moderate time-dependent decrease in skin metabolic activity while skin morphology was preserved, and re-epithelialization occurred at the wound edges. An increase in β-catenin expression was observed in the newly formed epithelia, especially in the samples treated with ASC-CM. In general, increased growth factors and inflammatory mediators, e.g., hepatocytes growth factor (HGF), platelet-derived growth factor subunit AA (PDGF-AA), IL-1α, IL-7, TNF-α, and IL-10, were observed over the incubation time. Interestingly, different expression profiles were observed for the different treatments. Samples treated with ASC-CM significantly increased the levels of inflammatory cytokines and PDGF-AA with respect to control, whereas the treatment with ASCs in DMEM with 10% FCS resulted in significantly increased levels of fibroblast growth factor-basic (FGF-basic) and moderate increases of immunomodulatory cytokines. These results confirm that the wound microenvironment can influence the type of mediators secreted by ASCs and the mode as to how they improve the wound healing process. Comparative investigations with pre-activated ASCs will elucidate further aspects of the wound healing mechanism and improve the protocols of ACS application.
Collapse
Affiliation(s)
- Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Zentrum für Biologische Gefahren und Spezielle Pathogene 4 (ZBS4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
- Correspondence: ; Tel.: +49-30-450518347
| |
Collapse
|
20
|
Zhang C, Zhang W, Zhu D, Li Z, Wang Z, Li J, Mei X, Xu W, Cheng K, Zhong B. Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy. J Nanobiotechnology 2022; 20:35. [PMID: 35033095 PMCID: PMC8760699 DOI: 10.1186/s12951-021-01231-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Background Osteoporosis is a chronic condition affecting patients’ morbidity and mortality and represents a big socioeconomic burden. Because stem cells can proliferate and differentiate into bone-forming cells, stem cell therapy for osteoporosis has been widely studied. However, cells as a live drug face multiple challenges because of their instability during preservation and transportation. In addition, cell therapy has potential adverse effects such as embolism, tumorigenicity, and immunogenicity. Results Herein, we sought to use cell-mimicking and targeted therapeutic nanoparticles to replace stem cells. We fabricated nanoparticles (NPs) using polylactic-co-glycolic acid (PLGA) loaded with the secretome (Sec) from mesenchymal stem cells (MSCs) to form MSC-Sec NPs. Furthermore, we cloaked the nanoparticles with the membranes from C–X–C chemokine receptor type 4 (CXCR4)-expressing human microvascular endothelial cells (HMECs) to generate MSC-Sec/CXCR4 NP. CXCR4 can target the nanoparticles to the bone microenvironment under osteoporosis based on the CXCR4/SDF-1 axis. Conclusions In a rat model of osteoporosis, MSC-Sec/CXCR4 NP were found to accumulate in bone, and such treatment inhibited osteoclast differentiation while promoting osteogenic proliferation. In addition, our results showed that MSC-Sec/CXCR4 NPs reduce OVX-induced bone mass attenuation in OVX rats. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01231-6.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Wei Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Dashuai Zhu
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Zhenhua Li
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Zhenzhen Wang
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Junlang Li
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Xuan Mei
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| | - Ke Cheng
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| | - Biao Zhong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
21
|
Ormazabal V, Nova-Lampeti E, Rojas D, Zúñiga FA, Escudero C, Lagos P, Moreno A, Pavez Y, Reyes C, Yáñez M, Vidal M, Cabrera-Vives G, Oporto K, Aguayo C. Secretome from Human Mesenchymal Stem Cells-Derived Endothelial Cells Promotes Wound Healing in a Type-2 Diabetes Mouse Model. Int J Mol Sci 2022; 23:ijms23020941. [PMID: 35055129 PMCID: PMC8779848 DOI: 10.3390/ijms23020941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration is often impaired in patients with metabolic disorders such as diabetes mellitus and obesity, exhibiting reduced wound repair and limited regeneration capacity. We and others have demonstrated that wound healing under normal metabolic conditions is potentiated by the secretome of human endothelial cell-differentiated mesenchymal stem cells (hMSC-EC). However, it is unknown whether this effect is sustained under hyperglycemic conditions. In this study, the wound healing effect of secretomes from undifferentiated human mesenchymal stem cells (hMSC) and hMSC-EC in a type-2 diabetes mouse model was analyzed. hMSC were isolated from human Wharton’s jelly and differentiated into hMSC-EC. hMSC and hMSC-EC secretomes were analyzed and their wound healing capacity in C57Bl/6J mice fed with control (CD) or high fat diet (HFD) was evaluated. Our results showed that hMSC-EC secretome enhanced endothelial cell proliferation and wound healing in vivo when compared with hMSC secretome. Five soluble proteins (angiopoietin-1, angiopoietin-2, Factor de crecimiento fibroblástico, Matrix metallopeptidase 9, and Vascular Endothelial Growth Factor) were enriched in hMSC-EC secretome in comparison to hMSC secretome. Thus, the five recombinant proteins were mixed, and their pro-healing property was evaluated in vitro and in vivo. Functional analysis demonstrated that a cocktail of these proteins enhanced the wound healing process similar to hMSC-EC secretome in HFD mice. Overall, our results show that hMSC-EC secretome or a combination of specific proteins enriched in the hMSC-EC secretome enhanced wound healing process under hyperglycemic conditions.
Collapse
Affiliation(s)
- Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (V.O.); (P.L.)
| | - Estefanía Nova-Lampeti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
| | - Daniela Rojas
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3787000, Chile;
| | - Felipe A. Zúñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bio-Bio, Chillan 3787000, Chile;
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan 3787000, Chile
| | - Paola Lagos
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (V.O.); (P.L.)
| | - Alexa Moreno
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
| | - Yanara Pavez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
| | - Camila Reyes
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
| | - Milly Yáñez
- Department of Pathological Anatomy, Las Higueras Hospital, Talcahuano 4030000, Chile;
| | - Mabel Vidal
- Department of Computer Science, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (M.V.); (G.C.-V.)
| | - Guillermo Cabrera-Vives
- Department of Computer Science, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (M.V.); (G.C.-V.)
| | - Katherine Oporto
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile; (E.N.-L.); (F.A.Z.); (A.M.); (Y.P.); (C.R.); (K.O.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan 3787000, Chile
- Correspondence: ; Tel.: +56-41-2207196
| |
Collapse
|
22
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
23
|
Xuan X, Tian C, Zhao M, Sun Y, Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int 2021; 21:595. [PMID: 34736460 PMCID: PMC8570012 DOI: 10.1186/s12935-021-02300-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chunxia Tian
- Department of Cardiology, Hubei Provincial Hospital of TCM, Wuhan, 430022, Hubei, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, 430022, Hubei, China.
| | - Yanhong Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
24
|
Ehsani A, Jodaei A, Barzegar-Jalali M, Fathi E, Farahzadi R, Adibkia K. Nanomaterials and Stem Cell Differentiation Potential: An Overview of Biological Aspects and Biomedical Efficacy. Curr Med Chem 2021; 29:1804-1823. [PMID: 34254903 DOI: 10.2174/0929867328666210712193113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs) due to their medical applications are widely used. Accordingly, the use of mesenchymal stem cells is one of the most important alternatives in tissue engineering field. NPs play effective roles in stem cells proliferation and differentiation. The combination of NPs and tissue regeneration by stem cells has created new therapeutic approach towards humanity. Of note, the physicochemical properties of NPs determine their biological function. Interestingly, various mechanisms such as modulation of signaling pathways and generation of reactive oxygen species, are involved in NPs-induced cellular proliferation and differentiation. This review summarized the types of nanomaterials effective on stem cell differentiation, the physicochemical features, biomedical application of these materials and relationship between nanomaterials and environment.
Collapse
Affiliation(s)
- Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Jodaei
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Saeedi M, Nezhad MS, Mehranfar F, Golpour M, Esakandari MA, Rashmeie Z, Ghorbani M, Nasimi F, Hoseinian SN. Biological Aspects and Clinical Applications of Mesenchymal Stem Cells: Key Features You Need to be Aware of. Curr Pharm Biotechnol 2021; 22:200-215. [PMID: 32895040 DOI: 10.2174/1389201021666200907121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
Mesenchymal Stem Cells (MSCs), a form of adult stem cells, are known to have a selfrenewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and the high capacity of immune modulation have attracted tremendous attention for exerting them in clinical purposes, as they contribute to the tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a stateof- the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs' physiological interaction, such as migration, homing, and tissue repairing mechanisms in different healthy and inflamed tissues.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Laboratory Science, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Muhammad S Nezhad
- Stem Cells and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdieh Golpour
- School of Paramedical Sciences, Semnan University of Medical Sciences, Sorkheh, Semnan, Iran
| | - Mohammad A Esakandari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Rashmeie
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Ghorbani
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nasimi
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed N Hoseinian
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
26
|
Cao J, Zhong L, Feng Y, Qian K, Xiao Y, Wang G, Tu W, Yue L, Zhang Q, Yang H, Jiao Y, Zhu W, Cao J. Activated Beta-Catenin Signaling Ameliorates Radiation-Induced Skin Injury by Suppressing Marvel D3 Expression. Radiat Res 2021; 195:173-190. [PMID: 33045079 DOI: 10.1667/rade-20-00050.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/04/2020] [Indexed: 11/03/2022]
Abstract
Radiation-induced skin injury remains a serious concern for cancer radiotherapy, radiation accidents and occupational exposure, and the damage mainly occurs due to apoptosis and reactive oxygen species (ROS) generation. There is currently no effective treatment for this disorder. The β-catenin signaling pathway is involved in the repair and regeneration of injured tissues. However, the role of the β-catenin signaling pathway in radiation-induced skin injury has not been reported. In this study, we demonstrated that the β-catenin signaling pathway was activated in response to radiation and that its activation by Wnt3a, a ligand-protein involved in the β-catenin signaling pathway, inhibited apoptosis and the production of ROS in irradiated human keratinocyte HaCaT cells and skin fibroblast WS1 cells. Additionally, Wnt3a promoted cell migration after irradiation. In a mouse model of full-thickness skin wounds combined with total-body irradiation, Wnt3a was shown to facilitate skin wound healing. The results from RNA-Seq revealed that 24 genes were upregulated and 154 were downregulated in Wnt3a-treated irradiated skin cells, and these dysregulated genes were mainly enriched in the tight junction pathway. Among them, Marvel D3 showed the most obvious difference. We further found that the activated β-catenin signaling pathway stimulated the phosphorylation of JNK by silencing Marvel D3. Treatment of irradiated cells with SP600125, a JNK inhibitor, augmented ROS production and impeded cell migration. Furthermore, treatment with Wnt3a or transfection with Marvel D3-specific siRNAs could reverse the above effects. Taken together, these findings illustrate that activated β-catenin signaling stimulates the activation of JNK by negatively regulating Marvel D3 to ameliorate radiation-induced skin injury.
Collapse
Affiliation(s)
- Jinming Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Kun Qian
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Gaoren Wang
- Nantong Tumor Hospital, Nantong University, Nantong 226000 China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051 China
| | - Ling Yue
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Qi Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| |
Collapse
|
27
|
Xie J, Li X, Zhang Y, Tang T, Chen G, Mao H, Gu Z, Yang J. VE-cadherin-based matrix promoting the self-reconstruction of pro-vascularization microenvironments and endothelial differentiation of human mesenchymal stem cells. J Mater Chem B 2021; 9:3357-3370. [PMID: 33881442 DOI: 10.1039/d1tb00017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulating the secretion and endothelial differentiation of human mesenchymal stem cells (hMSCs) plays an important role in the vascularization in tissue engineering and regenerative medicine. In this study, a recombinant cadherin fusion protein consisting of a human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) was developed as a bioartificial matrix for modulating hMSCs. The hVE-cad-Fc matrix significantly enhanced the secretion of angiogenic factors, activated the VE-cadherin-VEGFR2/FAK-AKT/PI3K signaling pathway in hMSCs, and promoted the endothelial differentiation of hMSCs even without extra VEGF. Furthermore, the hVE-cad-Fc matrix was applied for the surface modification of a poly (lactic-co-glycolic acid) (PLGA) porous scaffold, which significantly improved the hemocompatibility and vascularization of the PLGA scaffold in vivo. These results revealed that the hVE-cad-Fc matrix should be a superior bioartificial ECM for remodeling the pro-vascularization extracellular microenvironment by regulating the secretion of hMSCs, and showed great potential for the vascularization in tissue engineering.
Collapse
Affiliation(s)
- Jinghui Xie
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Effect of Systemic Adipose-derived Stem Cell Therapy on Functional Nerve Regeneration in a Rodent Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2953. [PMID: 32802651 PMCID: PMC7413771 DOI: 10.1097/gox.0000000000002953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Regardless of etiology, peripheral nerve injuries (PNI) result in disruption/loss of neuromuscular junctions, target muscle denervation, and poor sensorimotor outcomes with associated pain and disability. Adipose-derived stem cells (ASCs) have shown promise in neuroregeneration. However, there is a paucity of objective assessments reflective of functional neuroregeneration in experimental PNI. Here, we use a multimodal, static, and dynamic approach to evaluate functional outcomes after ASC therapy in a rodent PNI model.
Collapse
|
29
|
Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int J Nanomedicine 2020; 15:5911-5926. [PMID: 32848396 PMCID: PMC7429232 DOI: 10.2147/ijn.s249129] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Chronic refractory wounds are a multifactorial comorbidity of diabetes mellitus with the characteristic of impaired vascular networks. Currently, there is a lack of effective treatments for such wounds. Various types of mesenchymal stem cell-derived exosomes (MSC-exos) have been shown to exert multiple therapeutic effects on skin regeneration. We aimed to determine whether a constructed combination of human umbilical cord MSC (hUCMSC)-derived exosomes (hUCMSC-exos) and Pluronic F-127 (PF-127) hydrogel could improve wound healing. Materials and Methods We topically applied human umbilical cord-derived MSC (hUCMSC)-derived exosomes (hUCMSC-exos) encapsulated in a thermosensitive PF-127 hydrogel to a full-thickness cutaneous wound in a streptozotocin-induced diabetic rat model. The material properties and wound healing ability of the hydrogel and cellular responses were analyzed. Results Compared with hUCMSC-exos, PF-127-only or control treatment, the combination of PF-127 and hUCMSC-exos resulted in a significantly accelerated wound closure rate, increased expression of CD31 and Ki67, enhanced regeneration of granulation tissue and upregulated expression of vascular endothelial growth factor (VEGF) and factor transforming growth factor beta-1 (TGFβ-1). Conclusion The efficient delivery of hUCMSC-exos in PF-127 gel and improved exosome ability could promote diabetic wound healing. Thus, this biomaterial-based exosome therapy may represent a new therapeutic approach for cutaneous regeneration of chronic wounds.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Daoyan Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Huaizhi Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Shunde Hospital of Southern Medical University, Shunde, People's Republic of China
| |
Collapse
|
30
|
Daviran M, Catalano J, Schultz KM. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness. Biomacromolecules 2020; 21:3056-3068. [PMID: 32559386 PMCID: PMC7429327 DOI: 10.1021/acs.biomac.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During the wound healing process, human mesenchymal stem cells (hMSCs) are recruited to the injury where they regulate inflammation and initiate healing and tissue regeneration. To aid in healing, synthetic cell-laden hydrogel scaffolds are being designed to deliver additional hMSCs to wounds to enhance or restart the healing process. These scaffolds are being designed to mimic native tissue environments, which include physical cues, such as scaffold stiffness. In this work, we focus on how the initial scaffold stiffness hMSCs are encapsulated in changes cell-mediated remodeling and degradation and motility. To do this, we encapsulate hMSCs in a well-defined synthetic hydrogel scaffold that recapitulates aspects of the native extracellular matrix (ECM). We then characterize cell-mediated degradation in the pericellular region as a function of initial microenvironmental stiffness. Our hydrogel consists of a 4-arm poly(ethylene glycol) (PEG) end-functionalized with norbornene which is chemically cross-linked with a matrix metalloproteinase (MMP) degradable peptide sequence. This peptide sequence is cleaved by hMSC-secreted MMPs. The hydrogel elastic modulus is varied from 80 to 2400 Pa by changing the concentration of the peptide cross-linker. We use multiple particle tracking microrheology (MPT) to characterize the spatiotemporal cell-mediated degradation in the pericellular region. In MPT, fluorescently labeled particles are embedded in the material, and their Brownian motion is measured. We measure an increase in cell-mediated degradation and remodeling as the post-encapsulation time increases. MPT also measures changes in the degradation profile in the pericellular region as hydrogel stiffness is increased. We hypothesize that the change in the degradation profile is due to a change in the amount and type of molecules secreted by hMSCs. We also measure a significant decrease in cell speed as hydrogel stiffness increases due to the increased physical barrier that needs to be degraded to enable motility. These measurements increase our understanding of the rheological changes in the pericellular region in different physical microenvironments which could lead to better design of implantable biomaterials for cell delivery to wounded areas.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jenna Catalano
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
31
|
Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, Plock JA, Calcagni M, Buschmann J. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy 2020; 22:400-411. [PMID: 32507607 DOI: 10.1016/j.jcyt.2020.03.433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Tissue defects in the human body after trauma and injury require precise reconstruction to regain function. Hence, there is a great demand for clinically translatable approaches with materials that are both biocompatible and biodegradable. They should also be able to adequately integrate within the tissue through sufficient vascularization. Adipose tissue is abundant and easily accessible. It is a valuable tissue source in regenerative medicine and tissue engineering, especially with regard to its angiogenic potential. Derivatives of adipose tissue, such as microfat, nanofat, microvascular fragments, stromal vascular fraction and stem cells, are commonly used in research, but also clinically to enhance the vascularization of implants and grafts at defect sites. In plastic surgery, adipose tissue is harvested via liposuction and can be manipulated in three ways (macro-, micro- and nanofat) in the operating room, depending on its ultimate use. Whereas macro- and microfat are used as a filling material for soft tissue injuries, nanofat is an injectable viscous extract that primarily induces tissue remodeling because it is rich in growth factors and stem cells. In contrast to microfat that adds volume to a defect site, nanofat has the potential to be easily combined with scaffold materials due to its liquid and homogenous consistency and is particularly attractive for blood vessel formation. The same is true for microvascular fragments that are easily isolated from adipose tissue through collagenase digestion. In preclinical animal models, it has been convincingly shown that these vascular fragments inosculate with host vessels and subsequently accelerate scaffold perfusion and host tissue integration. Adipose tissue is also an ideal source of stem cells. It yields larger quantities of cells than any other source and is easier to access for both the patient and doctor compared with other sources such as bone marrow. They are often used for tissue regeneration in combination with biomaterials. Adipose-derived stem cells can be applied unmodified or as single cell suspensions. However, certain pretreatments, such as cultivation under hypoxic conditions or three-dimensional spheroids production, may provide substantial benefit with regard to subsequent vascularization in vivo due to induced growth factor production. In this narrative review, derivatives of adipose tissue and the vascularization of biomaterials are addressed in a comprehensive approach, including several sizes of derivatives, such as whole fat flaps for soft tissue engineering, nanofat or stem cells, their secretome and exosomes. Taken together, it can be concluded that adipose tissue and its fractions down to the molecular level promote, enhance and support vascularization of biomaterials. Therefore, there is a high potential of the individual fat component to be used in regenerative medicine.
Collapse
Affiliation(s)
- Pranitha Kamat
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michelle McLuckie
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nadia Sanchez-Macedo
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Petra Wolint
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Effect of bone marrow mesenchymal stem cells on perforator skin flap survival area in rats. Br J Oral Maxillofac Surg 2020; 58:669-674. [PMID: 32446592 DOI: 10.1016/j.bjoms.2020.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Trans-territory perforator flaps are commonly used to reconstruct large defects of the soft tissues. The distal portion of the flap often becomes necrotic, however, as a result of the jeopardised vasculature of choke zone II. The trophic and vascular regenerative properties of bone marrow mesenchymal stem cells (BMSC) seemed to be a promising approach to prevent flaps becoming ischaemic. The purpose of our study is to evaluate the effects of BMSC on the survival of the three-territory perforator flap. The flap model was created based on the deep circumflex iliac vessel in rats. Eighteen rats were distributed, at random, into three groups. Immediately after the flaps were placed, groups were respectively given a single panniculus carnosus injection at choke zone II of either 1×105 (BMSCslow), 1×106 (BMSCshig) BMSC, or phosphate-buffered saline (PBS). On postoperative day seven, we assessed the gross view of the flap and survival. We also evaluated microvessels by histological examination and angiogenesis-related gene expression by quantitative real-time polymerase chain reaction. After high dosage of BMSC, the flap survival rate, diameter and density of microvessels, vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) levels were significantly higher in the BMSC treatment group than the control group. We therefore confirmed the positive effects of BMSC on the survival of multi-territory perforator flaps.
Collapse
|
33
|
Fan M, Bai J, Ding T, Yang X, Si Q, Nie D. Adipose-Derived Stem Cell Transplantation Inhibits Vascular Inflammatory Responses and Endothelial Dysfunction in Rats with Atherosclerosis. Yonsei Med J 2019; 60:1036-1044. [PMID: 31637885 PMCID: PMC6813142 DOI: 10.3349/ymj.2019.60.11.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE This study aimed to investigate the effect of adipose-derived stem cell (ADSC) transplantation on atherosclerosis (AS) and its underlying mechanisms. MATERIALS AND METHODS In our study, rat AS model was established, and ADSCs were isolated and cultured. Atherosclerotic plaque and pathological symptoms of thoracic aorta were measured by Oil Red O staining and Hematoxylin-Eosin staining, respectively. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured by an automatic biochemical analyzer. Expressions of vascular endothelial growth factor (VEGF), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), aortic endothelin-1 (ET-1), interleukin-6 (IL-6), c-reactive protein (CRP), and tumor necrosis factor α (TNF-α) were measured by enzyme linked immunosorbent assay, VEGF, VCAM-1, ICAM-1, ET-1, respectively, and NF-κB p65 mRNA expressions were detected by quantitative real-time polymerase chain reaction. Protein expressions of VEGF, VCAM-1, ICAM-1, ET-1, NF-κB p65, p-NF-κB p65, and IκBα were measured by western blot. Moreover, NF-κB p65 expression was measured by immunofluorescence staining. RESULTS ADSC transplantation alleviated the pathological symptoms of aortic AS. ADSC transplantation decreased the levels of TC, TG, and LDL-C and increased serum HDL-C level. Meanwhile, ADSC transplantation decreased the levels of IL-6, CRP, and TNF-α in AS rats. Moreover, the expressions of VEGF, ET-1, VCAM-1, and ICAM-1 were decreased by ADSC transplantation. ADSC transplantation inhibited phosphorylation of NF-κB p65 and promoted IκBα expression in AS rats. CONCLUSION Our study demonstrated that ADSC transplantation could inhibit vascular inflammatory responses and endothelial dysfunction by suppressing NF-κB pathway in AS rats.
Collapse
Affiliation(s)
- Mingqiang Fan
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Jing Bai
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Tao Ding
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Xiangxiang Yang
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Qiaoke Si
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Dengmei Nie
- Department of Pathology, Second Provincial People's Hospital, Lanzhou, China.
| |
Collapse
|
34
|
Dhingra GA, Kaur M, Singh M, Aggarwal G, Nagpal M. Lock Stock and Barrel of Wound Healing. Curr Pharm Des 2019; 25:4090-4107. [PMID: 31556852 DOI: 10.2174/1381612825666190926163431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Any kind of injury may lead to wound formation. As per World Health Organization Report, "more than 5 million people die each year due to injuries. This accounts for 9% of the world's population death, nearly 1.7 times the number of fatalities that result from HIV/AIDS, tuberculosis and malaria combined. In addition, ten million people suffer from non-fatal injuries which require treatment". This scenario leads to increased health and economic burden worldwide. Rapid wound healing is exigent subject-field in the health care system. It is imperative to be updated on wound care strategies as impaired wound healing may lead to chronic, non-healing wounds and thus further contributes to the national burden. This article is a comprehensive review of wound care strategies. The first and second part of this review article focuses on the understanding of wound, its types and human body's healing mechanism. Wound healing is natural, highly coordinated process that starts on its own, immediately after the injury. However, individual health condition influences the healing process. Discussion of factors affecting wound healing has also been included. Next part includes the detailed review of diverse wound healing strategies that have already been developed for different types of wound. A detailed description of various polymers that may be used has been discussed. Amongst drug delivery systems, oligomers, dendrimers, films, gels, different nano-formulations, like nanocomposites, nanofibers, nanoemulsions and nanoparticles are discussed. Emphasis on bandages has been made in this article.
Collapse
Affiliation(s)
- Gitika A Dhingra
- NCRD's Sterling Institute of Pharmacy, Nerul, Navi Mumbai-400706, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
35
|
Kletukhina S, Neustroeva O, James V, Rizvanov A, Gomzikova M. Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Epithelial-Mesenchymal Transition. Int J Mol Sci 2019; 20:E4813. [PMID: 31569731 PMCID: PMC6801704 DOI: 10.3390/ijms20194813] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process that takes place during embryonic development, wound healing, and under some pathological processes, including fibrosis and tumor progression. The molecular changes occurring within epithelial cells during transformation to a mesenchymal phenotype have been well studied. However, to date, the mechanism of EMT induction remains to be fully elucidated. Recent findings in the field of intercellular communication have shed new light on this process and indicate the need for further studies into this important mechanism. New evidence supports the hypothesis that intercellular communication between mesenchymal stroma/stem cells (MSCs) and resident epithelial cells plays an important role in EMT induction. Besides direct interactions between cells, indirect paracrine interactions by soluble factors and extracellular vesicles also occur. Extracellular vesicles (EVs) are important mediators of intercellular communication, through the transfer of biologically active molecules, genetic material (mRNA, microRNA, siRNA, DNA), and EMT inducers to the target cells, which are capable of reprogramming recipient cells. In this review, we discuss the role of intercellular communication by EVs to induce EMT and the acquisition of stemness properties by normal and tumor epithelial cells.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Olga Neustroeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Albert Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK.
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - Marina Gomzikova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
36
|
Reparative and Regenerative Effects of Mesenchymal Stromal Cells-Promising Potential for Kidney Transplantation? Int J Mol Sci 2019; 20:ijms20184614. [PMID: 31540361 PMCID: PMC6770554 DOI: 10.3390/ijms20184614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) possess reparative, regenerative and immunomodulatory properties. The current literature suggests that MSCs could improve kidney transplant outcome via immunomodulation. In many clinical domains, research has also focussed on the regenerative and reparative effects of therapies with MSCs. However, in the field of transplantation, data on this subject remain scarce. This review provides an overview of what is known about the regenerative and reparative effects of MSCs in various fields ranging from wound care to fracture healing and also examines the potential of these promising MSC properties to improve the outcome of kidney transplantations.
Collapse
|
37
|
Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146:209-239. [PMID: 30605737 DOI: 10.1016/j.addr.2018.12.014] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous injuries, especially chronic wounds, burns, and skin wound infection, require painstakingly long-term treatment with an immense financial burden to healthcare systems worldwide. However, clinical management of chronic wounds remains unsatisfactory in many cases. Various strategies including growth factor and gene delivery as well as cell therapy have been used to enhance the healing of non-healing wounds. Drug delivery systems across the nano, micro, and macroscales can extend half-life, improve bioavailability, optimize pharmacokinetics, and decrease dosing frequency of drugs and genes. Replacement of the damaged skin tissue with substitutes comprising cell-laden scaffold can also restore the barrier and regulatory functions of skin at the wound site. This review covers comprehensively the advanced treatment strategies to improve the quality of wound healing.
Collapse
|
38
|
Fang B, Liu Y, Zheng D, Shan S, Wang C, Gao Y, Wang J, Xie Y, Zhang Y, Li Q. The effects of mechanical stretch on the biological characteristics of human adipose-derived stem cells. J Cell Mol Med 2019; 23:4244-4255. [PMID: 31020802 PMCID: PMC6533502 DOI: 10.1111/jcmm.14314] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023] Open
Abstract
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs), which have promised a vast therapeutic potential in tissue regeneration. Recent studies have demonstrated that combining stem cells with mechanical stretch may strengthen the efficacy of regenerative therapies. However, the exact influences of mechanical stretch on MSCs still remain inconclusive. In this study, human ADSCs (hADSCs) were applied cyclic stretch stimulation under an in vitro stretching model for designated duration. We found that mechanical stretch significantly promoted the proliferation, adhesion and migration of hADSCs, suppressing cellular apoptosis and increasing the production of pro‐healing cytokines. For differentiation of hADSCs, mechanical stretch inhibited adipogenesis, but enhanced osteogenesis. Long‐term stretch could promote ageing of hADSCs, but did not alter the cell size and typical immunophenotypic characteristics. Furthermore, we revealed that PI3K/AKT and MAPK pathways might participate in the effects of mechanical stretch on the biological characteristics of hADSCs. Taken together, mechanical stretch is an effective strategy for enhancing stem cell behaviour and regulating stem cell fate. The synergy between hADSCs and mechanical stretch would most likely facilitate tissue regeneration and promote the development of stem cell therapy.
Collapse
Affiliation(s)
- Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjun Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10:111. [PMID: 30922387 PMCID: PMC6440165 DOI: 10.1186/s13287-019-1212-2] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Normal wound healing is a dynamic and complex multiple phase process involving coordinated interactions between growth factors, cytokines, chemokines, and various cells. Any failure in these phases may lead wounds to become chronic and have abnormal scar formation. Chronic wounds affect patients' quality of life, since they require repetitive treatments and incur considerable medical costs. Thus, much effort has been focused on developing novel therapeutic approaches for wound treatment. Stem-cell-based therapeutic strategies have been proposed to treat these wounds. They have shown considerable potential for improving the rate and quality of wound healing and regenerating the skin. However, there are many challenges for using stem cells in skin regeneration. In this review, we present some sets of the data published on using embryonic stem cells, induced pluripotent stem cells, and adult stem cells in healing wounds. Additionally, we will discuss the different angles whereby these cells can contribute to their unique features and show the current drawbacks.
Collapse
Affiliation(s)
- Azar Nourian Dehkordi
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Mirahmadi Babaheydari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | |
Collapse
|
40
|
Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med 2019; 13:555-568. [PMID: 30656863 DOI: 10.1002/term.2799] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/20/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Wound healing is a complicated process that contains a number of overlapping and consecutive phases, disruption in each of which can cause chronic nonhealing wounds. In the current study, we investigated the effects of exosomes as paracrine factors released from menstrual blood-derived mesenchymal stem cells (MenSCs) on wound-healing process in diabetic mice. The exosomes were isolated from MenSCs conditioned media using ultracentrifugation and were characterized by scanning electron microscope and western blotting assay. A full thickness excisional wound was created on the dorsal skin of each streptozotocin-induced diabetic mouse. The mice were divided into three groups as follows: phosphate buffered saline, exosomes, and MenSC groups. We found that MenSC-derived exosomes can resolve inflammation via induced M1-M2 macrophage polarization. It was observed that exosomes enhance neoangiogenesis through vascular endothelial growth factor A upregulation. Re-epithelialization accelerated in the exosome-treated mice, most likely through NF-κB p65 subunit upregulation and activation of the NF-κB signaling pathway. The results demonstrated that exosomes possibly cause less scar formation through decreased Col1:Col3 ratio. These notable results showed that the MenSC-derived exosomes effectively ameliorated cutaneous nonhealing wounds. We suggest that exosomes can be employed in regenerative medicine for skin repair in difficult-to-heal conditions such as diabetic foot ulcer.
Collapse
Affiliation(s)
- Razieh Dalirfardouei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Ma JX, Yang QM, Xia YC, Zhang WG, Nie FF. Effect of 810 nm Near-Infrared Laser on Revascularization of Ischemic Flaps in Rats. Photomed Laser Surg 2019; 36:290-297. [PMID: 29882737 DOI: 10.1089/pho.2017.4360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the effect of 810 nm near-infrared (NIR) laser on the revascularization of ischemic flaps. BACKGROUND It has long been proved that photobiomodulation therapy (PBMT) improves the blood supply of flaps. NIR laser improves the treatment of hypodermis-located lesions and of flap survival, but basic research on the use of 810 nm NIR laser for ischemic flap revascularization is still lacking. MATERIALS AND METHODS We prepared two symmetrical long random-pattern flaps on the backs of 60 rats. Each flap was 6 cm long, 1 cm wide, and 1 cm to the middle line. The flaps were divided into an irradiated flap group and an internal control group. The irradiated flaps underwent postoperative 810 nm laser therapy with the energy density of 11.30 J/cm2 daily. The control flaps were covered by stainless steel to avoid laser irradiation. We observed the viability of the flaps. The flaps underwent Hematoxylin and Eosin (H&E) staining for the observation of histomorphology, immunohistochemical staining of factor VIII for the capillary count, α-smooth muscle actin for the small arterial count, and vascular endothelial growth factor for the integrated optical density (OD) of the positive stained color. RESULTS The irradiated flaps showed significantly better flap survival than the control flaps. H&E staining showed that the irradiated flaps had clear tissue structure and little inflammatory cell infiltration. The control flaps demonstrated comparatively worse results. Vascular endothelial growth factor staining showed that the difference in integrated OD between the irradiated flaps and the control flaps was not statistically significant. α-smooth muscle actin and factor VIII staining showed significantly greater numbers of arterioles and capillaries in the irradiated flaps than the control flaps after 4 days of irradiation. CONCLUSIONS PBMT with 810 nm NIR laser could enhance ischemic flap revascularization and increase flap viability.
Collapse
Affiliation(s)
- Jian-Xun Ma
- 1 Department of Plastic Surgery, Peking University Third Hospital , Beijing, China
| | - Qing-Mo Yang
- 2 Department of Breast Surgery, First Affiliated Hospital of Xiamen University , Xiamen, China
| | - You-Chen Xia
- 1 Department of Plastic Surgery, Peking University Third Hospital , Beijing, China
| | - Wei-Guang Zhang
- 3 Department of Anatomy, Basic Medical Science, Peking University Health Science Center , Beijing, China
| | - Fang-Fei Nie
- 1 Department of Plastic Surgery, Peking University Third Hospital , Beijing, China
| |
Collapse
|
42
|
Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol Ther (Seoul) 2019; 27:25-33. [PMID: 29902862 PMCID: PMC6319543 DOI: 10.4062/biomolther.2017.260] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells are classified as multipotent stem cells, due to their capability to transdifferentiate into various lineages that develop from mesoderm. Their popular appeal as cell-based therapy was initially based on the idea of their ability to restore tissue because of their differentiation potential in vitro; however, the lack of evidence of their differentiation to target cells in vivo led researchers to focus on their secreted trophic factors and their role as potential powerhouses on regulation of factors under different immunological environments and recover homeostasis. To date there are more than 800 clinical trials on humans related to MSCs as therapy, not to mention that in animals is actively being applied as therapeutic resource, though it has not been officially approved as one. But just as how results from clinical trials are important, so is to reveal the biological mechanisms involved on how these cells exert their healing properties to further enhance the application of MSCs on potential patients. In this review, we describe characteristics of MSCs, evaluate their benefits as tissue regenerative therapy and combination therapy, as well as their immunological properties, activation of MSCs that dictate their secreted factors, interactions with other immune cells, such as T cells and possible mechanisms and pathways involved in these interactions.
Collapse
Affiliation(s)
| | - Ji-Houn Kang
- Laboratory of Internal Medicine, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Republic of Korea.,Institute of Life Science and Bio-Engineering, TheraCell Bio & Science, Cheongju 28644, Republic of Korea
| |
Collapse
|
43
|
Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini‐Khah Z, Peymanfar Y, Ghalamkari S, Su Y, Xian CJ. Adipose‐derived stem cells for wound healing. J Cell Physiol 2018; 234:7903-7914. [DOI: 10.1002/jcp.27922] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hassanshahi
- Department of Genetics Faculty of Basic Sciences, Islamic Azad University Shahrekord Iran
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Zahra Hosseini‐Khah
- Department of Immunology School of Medicine, Mazandaran University of Medical Sciences Sari Iran
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | | | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|
44
|
Pinzur L, Akyuez L, Levdansky L, Blumenfeld M, Volinsky E, Aberman Z, Reinke P, Ofir R, Volk HD, Gorodetsky R. Rescue from lethal acute radiation syndrome (ARS) with severe weight loss by secretome of intramuscularly injected human placental stromal cells. J Cachexia Sarcopenia Muscle 2018; 9:1079-1092. [PMID: 30334381 PMCID: PMC6240751 DOI: 10.1002/jcsm.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most current cell-based regenerative therapies are based on the indirect induction of the affected tissues repair. Xenogeneic cell-based treatment with expanded human placenta stromal cells, predominantly from fetal origin (PLX-RAD cells), were shown to mitigate significantly acute radiation syndrome (ARS) following high dose irradiation in mice, with expedited regain of weight loss and haematopoietic function. The current mechanistic study explores the indirect effect of the secretome of PLX-RAD cells in the rescue of the irradiated mice. METHODS The mitigation of the ARS was investigated following two intramuscularly (IM) injected 2 × 106 PLX-RAD cells, 1 and 5 days following 7.7 Gy irradiation. The mice survival rate and their blood or bone marrow (BM) cell counts were followed up and correlated with multiplex immunoassay of a panel of related human proteins of PLX-RAD derived secretome, as well as endogenous secretion of related mouse proteins. PLX-RAD secretome was also tested in vitro for its effect on the induction of the migration of BM progenitors. RESULTS A 7.7 Gy whole body mice irradiation resulted in ~25% survival by 21 days. Treatment with two IM injections of 2 × 106 PLX-RAD cells on days 1 and 5 after irradiation mitigated highly significantly the subsequent lethal ARS, with survival rate increase to nearly 100% and fast regain of the initial weight loss (P < 0,0001). This was associated with a significant faster haematopoiesis recovery from day 9 onwards (P < 0.01). Nine out of the 65 human proteins tested were highly significantly elevated in the mouse circulation, peaking on days 6-9 after irradiation, relative to negligible levels in non-irradiated PLX-RAD injected mice (P < 0.01). The highly elevated proteins included human G-CSF, GRO, MCP-1, IL-6 and lL-8, reaching >500 pg/mL, while MCP-3, ENA, Eotaxin and fractalkine levels ranged between ~60-160pg/mL. The detected radiation-induced PLX-RAD secretome correlated well with the timing of the fast haematopoiesis regeneration. The radiation-induced PLX-RAD secretome seemed to reinforce the delayed high levels secretion of related mouse endogenous cytokines, including GCSF, KC, MCP-1 and IL-6. Additional supportive in vitro studies also confirmed the ability of cultured PLX-RAD secretome to induce accelerated migration of BM progenitors. CONCLUSIONS A well-regulated and orchestrated secretion of major pro-regenerative BM supporting secretome in high dose irradiated mice, treated with xenogeneic IM injected PLX-RAD cells, can explain the observed mitigation of ARS. This seemed to coincide with faster haematopoiesis regeneration, regain of severe weight loss and the increased survival rate. The ARS-related stress signals activating the IM injected PLX-RAD cells for the remote secretion of the relevant human proteins deserve further investigation.
Collapse
Affiliation(s)
- Lena Pinzur
- Pluristem LTD, Haifa, Israel.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | - Levent Akyuez
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | - Lilia Levdansky
- Laboratory of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Evgenia Volinsky
- Laboratory of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | - Raphael Gorodetsky
- Laboratory of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
45
|
Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine Growth Factor Rev 2018; 44:69-79. [PMID: 30470511 DOI: 10.1016/j.cytogfr.2018.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
With chronic wounds remaining a substantial healthcare issue, new therapies are sought to improve patient outcomes. Various studies have explored the benefits of promoting angiogenesis in wounds by targeting proangiogenic factors such as Vascular Endothelial Growth Factor (VEGF) family members to improve wound healing. Along similar lines, Mesenchymal Stem Cell (MSC) secretions, usually containing VEGF, have been used to improve angiogenesis in wound healing via a paracrine mechanism. Recent evidence for keratinocyte VEGF receptor expression, as well as proliferative and chemotactic responses by keratinocytes to exogenous VEGFA in vitro implies distinct non-angiogenic actions for VEGF during wound healing. In this review, we discuss the expression of VEGF family members and their receptors in keratinocytes in relation to the potential for wound healing treatments. We also explore recent findings of MSC secreted paracrine wound healing activity on keratinocytes. We report here the concept of keratinocyte wound healing responses driven by MSC-derived VEGF that is supported in the literature, providing a new mechanism for cell-free therapy of chronic wounds.
Collapse
|
46
|
Chehelcheraghi F, Bayat M, Chien S. Effect of Mesenchymal Stem Cells and Chicken Embryo Extract on Flap Viability and Mast Cells in Rat Skin Flaps. J INVEST SURG 2018; 33:123-133. [DOI: 10.1080/08941939.2018.1479006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Farzaneh Chehelcheraghi
- Anatomical Sciences Department, School of Medicine, Lorestan University Medical of Sciences, Khoramabad, IR Iran
| | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA; Supported in part by NIH grant DK105692
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA; Supported in part by NIH grant DK105692
| |
Collapse
|
47
|
Oh EJ, Lee HW, Kalimuthu S, Kim TJ, Kim HM, Baek SH, Zhu L, Oh JM, Son SH, Chung HY, Ahn BC. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J Control Release 2018; 279:79-88. [PMID: 29655989 DOI: 10.1016/j.jconrel.2018.04.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for tissue regeneration and repair. In this study, we non-invasively monitored the tracking of MSCs toward burn injury sites using MSCs expressing firefly luciferase (Fluc) gene in living mice, and evaluated the effects of the MSCs at the injury site. Murine MSCs co-expressing Fluc and green fluorescent protein (GFP) were established using a retroviral system (referred to as MSC/Fluc). To evaluate the ability of MSC migration toward burn injury sites, cutaneous burn injury was induced in the dorsal skin of mice. MSC/Fluc was intravenously administrated into the mice model and bioluminescence imaging (BLI) was performed to monitor MSC tracking at designated time points. BLI signals of MSC/Fluc appeared in burn injury lesions at 4 days after the cell injection and then gradually decreased. Immunoblotting analysis was conducted to determine the expression of neovascularization-related genes such as TGF-β1 and VEGF in burnt skin. The levels of TGF-β1 and VEGF were higher in the MSC/Fluc-treated group than in the burn injury group. Our observations suggested that MSCs might assist burn wound healing and that MSCs expressing Fluc could be a useful tool for optimizing MSC-based therapeutic strategies for burn wound healing.
Collapse
Affiliation(s)
- Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Plastic and Reconstructive Surgery, Kyungpook National University Hospital, Daegu, South Korea; Cell & Matrix Research Institute, Kyungpook National University, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Tae Jung Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Plastic and Reconstructive Surgery, Kyungpook National University Hospital, Daegu, South Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Plastic and Reconstructive Surgery, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Seung Hyun Son
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Plastic and Reconstructive Surgery, Kyungpook National University Hospital, Daegu, South Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
48
|
Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds. Placenta 2018; 65:37-46. [PMID: 29908640 DOI: 10.1016/j.placenta.2018.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mesenchymal stem/stromal cells derived from human term placentas (PMSCs) are novel therapeutic agents and more topical than ever. Here we evaluated the effects of three types of PMSCs on wound healing in an in vivo mouse model: Amnion-derived MSCs (AMSCs), blood vessel-derived MSCs (BV-MSCs) from the chorionic plate and Wharton's jelly-derived MSCs (WJ-MSCs) from the umbilical cord. METHODS We topically applied PMSCs onto skin wounds in mice using the dermal substitute Matriderm® as carrier and evaluated wound healing parameters. In addition, we investigated the effects of all PMSC types under co-application with placental endothelial cells (PLECs). After 8 days, we compared the percent of wound closure and the angiogenic potential between all groups. RESULTS AMSCs, BV-MSCs and WJ-MSCs significantly induced a faster healing and a higher number of blood vessels in the wound when compared to controls (Matriderm®-alone). PLECs did not further improve the advantageous effects of PMSC-treatment. Quantitative data and 3D analysis by high resolution episcopic microscopy confirmed a lower density of vessels in Matriderm®/PMSCs/PLECs co-application compared to Matriderm®/PMSCs treatment. CONCLUSION Results indicate that all three PMSC types exert similar beneficial effects on wound closure and neovascularization in our mouse model. PRACTICE Using Matriderm® as carrier for PMSCs propagates rapid cell migration towards the wound area that allows a fast and clinically practicable method for stem cell application. IMPLICATIONS These promising effects warrant further investigation in clinical trials.
Collapse
|
49
|
Lipowsky HH, Bowers DT, Banik BL, Brown JL. Mesenchymal Stem Cell Deformability and Implications for Microvascular Sequestration. Ann Biomed Eng 2018; 46:640-654. [PMID: 29352448 PMCID: PMC5862759 DOI: 10.1007/s10439-018-1985-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have received considerable attention in regenerative medicine, particularly in light of prospects for targeted delivery by intra-arterial injection. However, little is known about the mechanics of MSC sequestration in the microvasculature and the yield pressure (PY), above which MSCs will pass through microvessels of a given diameter. The objectives of the current study were to delineate the dependency of PY on cell size and the heterogeneity of cell mechanical properties and diameters (DCELL) of cultured MSCs. To this end the transient filtration test was employed to elucidate the mean filtration pressure (〈PY〉) for an ensemble of pores of a given size (DPORE) similar to in vivo microvessels. Cultured MSCs had a log-normal distribution of cell diameters (DCELL) with a mean of 15.8 ± 0.73 SD μm. MSC clearance from track-etched polycarbonate filters was studied for pore diameters of 7.3-15.4 μm. The pressure required to clear cells from filters with 30-85 × 103 pores rose exponentially with the ratio λ = DCELL/DPORE for 1.1 ≤ λ ≤ 2.2. The clearance of cells from each filter was characterized by a log-normal distribution in PY, with a mean filtration pressure of 0.02 ≤ 〈PY〉 ≤ 6.7 cmH2O. For λ ≤ 1.56, the yield pressure (PY) was well represented by the cortical shell model of a cell with a viscous interior encapsulated by a shell under cortical tension τ0 = 0.99 ± 0.42 SD dyn/cm. For λ > 1.56, the 〈PY〉 characteristic of the cell population rose exponentially with λ. Analysis of the mean filtration pressure (〈PY〉) of each sample suggested that the larger diameter cells that skewed the distribution of DCELL contributed to about 20% of the mean filtration pressure. Further, if all cells had the same deformability (i.e., PY as a function of λ) as the average cell population, then 〈PY〉 would have risen an order of magnitude above the average from fivefold at λ = 1.56 to 200-fold at λ = 2.1. Comparison of 〈PY〉 to published microvascular pressures suggested that 〈PY〉 may exceed microvessel pressure drops for λ exceeding 2.1, and rise 14-fold above capillary pressure drop at λ = 3 leading to 100% sequestration. However, due to the large variance of in vivo microvascular pressures entrapment of MSCs may be mitigated. Thus it is suggested that selecting fractions of the MSC population according to cell deformability may permit optimization of entrapment at sites targeted for tissue regeneration.
Collapse
Affiliation(s)
- Herbert H Lipowsky
- Department of Biomedical Engineering, The Pennsylvania State University, 215 Hallowell Bldg, University Park, PA, 16802, USA.
| | - Daniel T Bowers
- Department of Biomedical Engineering, The Pennsylvania State University, 215 Hallowell Bldg, University Park, PA, 16802, USA
| | - Brittany L Banik
- Department of Biomedical Engineering, The Pennsylvania State University, 215 Hallowell Bldg, University Park, PA, 16802, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, 215 Hallowell Bldg, University Park, PA, 16802, USA
| |
Collapse
|
50
|
Vidor SB, Terraciano PB, Valente FS, Rolim VM, Kuhl CP, Ayres LS, Garcez TNA, Lemos NE, Kipper CE, Pizzato SB, Driemeier D, Cirne-Lima EO, Contesini EA. Adipose-derived stem cells improve full-thickness skin grafts in a rat model. Res Vet Sci 2018; 118:336-344. [PMID: 29621642 DOI: 10.1016/j.rvsc.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 03/08/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
To investigate the effects of heterologous adipose-derived stem cells (ADSCs) on autologous full-thickness skin grafts, we designed a first-intention healing model using Wistar rats. We harvested and sutured two full-thickness skin grafts in the dorsal recipient beds of 15 rats, randomized into three groups. In the treatment group, 1 × 106 ADSCs resuspended in saline solution (200 μL) were administered subcutaneously to the skin graft. The control group received only saline solution subcutaneously, whereas the negative control group did not receive any treatment. Compressive dressings were maintained until postoperative day 5. The grafts were assessed by two observers, who checked for the presence of epidermolysis on day 14. Planimetry showed the relative areas of normal skin, redness, ulceration, and contraction. Graft samples were obtained on day 14 and stained with hematoxylin and eosin and Masson's trichrome. Epidermal analysis evaluated thickening, keratosis, acanthosis, hydropic degeneration, and inflammatory infiltrate. Dermal evaluation investigated the absence of hair follicles, granulation tissue formation, presence of inflammatory infiltrate, and collagen deposition. Immunohistochemistry was performed for dermal anti-VEGF and epidermal anti-Ki-67 staining. The ADSC group presented better macroscopic aspects, lower incidence of epidermolysis, and less loss of hair follicles. In addition, the ADSC group presented the lowest frequency of histopathological changes in the dermis and epidermis, as well as the largest subcutaneous and granulation tissue VEGF averages and the weakest Ki-67 staining of the epidermal basal layer. Subcutaneous administration of ADSCs may improve the integration of skin grafts, reducing the deleterious effects of ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Silvana Bellini Vidor
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Soldatelli Valente
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Verônica Machado Rolim
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Laura Silveira Ayres
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Sabrina Beal Pizzato
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - David Driemeier
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson Antonio Contesini
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|