1
|
Madonna R, Biondi F. Sotatercept: New drug on the horizon of pulmonary hypertension. Vascul Pharmacol 2024; 157:107442. [PMID: 39571875 DOI: 10.1016/j.vph.2024.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Sotatercept (brand name WINREVAIR, developed by Merck) is an activin receptor type IIA-Fc (ActRIIA-Fc), working by sequestering free activins. Sotatercept restores the balance between the activin proliferative pathway and the bone morphogenic protein (BMP) antiproliferative pathway in the pulmonary arterial cirulation. Sotatercept recently received approval in the USA and in Europe for the treatment of adults with pulmonary arterial hypertension (PAH) Group 1, on top of background PAH therapy to increase exercise capacity, improve WHO functional class and reduce the risk of clinical worsening events. Nevertheless, several studies are ongoing to investigate the potential adverse reactions of the drug especially at the haematological level. We provide an overview of the clinical and preclinical evidence of the targeting the activing pathway through sotatercept on the treatment of PAH. We also discuss what other possibilities there are for the application of sotatercept in the setting of pulmonary hypertension other than PAH Group 1.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Surgical, Medical and Molecular Pathology and Critical Area, Cardiology Division, University of Pisa, Pisa, Italy.
| | - Filippo Biondi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, Cardiology Division, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Shen H, Gao Y, Ge D, Tan M, Yin Q, Wei TYW, He F, Lee TY, Li Z, Chen Y, Yang Q, Liu Z, Li X, Chen Z, Yang Y, Zhang Z, Thistlethwaite PA, Wang J, Malhotra A, Yuan JXJ, Shyy JYJ, Gong K. BRCC3 Regulation of ALK2 in Vascular Smooth Muscle Cells: Implication in Pulmonary Hypertension. Circulation 2024; 150:132-150. [PMID: 38557054 PMCID: PMC11230848 DOI: 10.1161/circulationaha.123.066430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-β (transforming growth factor-β) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-β family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-βR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-β-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-β signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-β signaling by downregulating TGF-β expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-β signaling in PASMCs. Such rebalance of BMP/TGF-β pathways is translationally important for PAH alleviation.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Activin Receptors, Type II/metabolism
- Activin Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
- Ubiquitination
- Vascular Remodeling
Collapse
Affiliation(s)
- Hui Shen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Ya Gao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Dedong Ge
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Meng Tan
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Qing Yin
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Tong-You Wade Wei
- Division of Cardiology (T.-Y.W.W., J.Y.-J.S.), University of California, San Diego, La Jolla
| | - Fangzhou He
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, China (F.H.)
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, School of Medicine, Chinese University of Hong Kong, Shenzhen, China (T.-Y.L., Z.L.)
| | - Zhongyan Li
- Warshel Institute for Computational Biology, School of Medicine, Chinese University of Hong Kong, Shenzhen, China (T.-Y.L., Z.L.)
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China (Y.C., Q. Yang, J.W.)
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China (Y.C., Q. Yang, J.W.)
| | - Zhangyu Liu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Xinxin Li
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Zixuan Chen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Zhengang Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| | - Patricia A Thistlethwaite
- Department of Medicine, Division of Cardiothoracic Surgery (P.A.T.), University of California, San Diego, La Jolla
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China (Y.C., Q. Yang, J.W.)
- Guangzhou National Laboratory, Guangzhou International Bio Island, China (J.W.)
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine (A.M.), University of California, San Diego, La Jolla
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine (J.X.-J.Y.), University of California, San Diego, La Jolla
| | - John Y-J Shyy
- Division of Cardiology (T.-Y.W.W., J.Y.-J.S.), University of California, San Diego, La Jolla
| | - Kaizheng Gong
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, China (H.S., Y.G., D.G., M.T., Q. Yin, Z.L., X.L., Z.C., Y.Y., Z.Z., K.G.)
| |
Collapse
|
3
|
Andre P, Joshi SR, Briscoe SD, Alexander MJ, Li G, Kumar R. Therapeutic Approaches for Treating Pulmonary Arterial Hypertension by Correcting Imbalanced TGF-β Superfamily Signaling. Front Med (Lausanne) 2022; 8:814222. [PMID: 35141256 PMCID: PMC8818880 DOI: 10.3389/fmed.2021.814222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease—the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.
Collapse
|
4
|
Gene Mutation Annotation and Pedigree for Pulmonary Arterial Hypertension Patients in Han Chinese Patients. Glob Heart 2021; 16:70. [PMID: 34900561 PMCID: PMC8533654 DOI: 10.5334/gh.1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background: The etiology of pulmonary arterial hypertension (PAH) in the Han Chinese population is poorly understood. Objectives: The aim of this study was to assess gene variants and associated functional annotations for PAH in Han Chinese patients. Methods: This is an ethnicity-based multi-centre study. Blood samples were collected from 20 PAH patients who volunteered for the study, and genetic tests were performed. The DAVID database was used to functionally annotate the genes BMPR2, ALK1, KCNK3, CAV1, and ENG. Associated diseases, functional categories, gene ontology, and protein interactions were analysed using the Functional Annotation Tool in the DAVID database. GEO and ClinVar databases were also used for further comparison with gene mutations in our study. Results: PAH patient with gene mutations were female predominant except for a single male with a BMPR2 mutation. Locus variants in our study included ‘G410DfsX1’ in BMPR2, ‘ex7 L300P,’ ‘ex4 S110PfsX40,’ and ‘ex7 E295Afs96X’ in ALK1, ‘c.-2C>A (IVS1–2 C>A)’ in CAV1, and ‘ex8 D366Q’ in ENG were not found in the ClinVar database associated with PAH. In addition to BMP and TGF-β pathways, gene ontology of input genes in the DAVID database also included pathways associated with nitric oxide signaling and regulation. Conclusions: This Multi-centre study indicated that ‘G410DfsX1’ in BMPR2, ‘ex7 L300P,’ ‘ex4 S110PfsX40,’ ‘ex7 E295Afs96X’ in ALK1, ‘c.-2C>A (IVS1–2 C>A)’ in CAV1, and ‘ex8 D366Q’ in ENG were identified in Han Chinese patients with PAH. Females were more susceptible to PAH, and a relatively young age distribution was observed for patients with BMPR2 mutations.
Collapse
|
5
|
Sim C, Lamanna E, Cirnigliaro F, Lam M. Beyond TGFβ1 - novel treatment strategies targeting lung fibrosis. Int J Biochem Cell Biol 2021; 141:106090. [PMID: 34601088 DOI: 10.1016/j.biocel.2021.106090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Fibrosis is a key feature of chronic lung diseases and occurs as a consequence of aberrant wound healing. TGFβ1 plays a major role in promoting fibrosis and is the primary target of current treatments that slow, but do not halt or reverse the progression of disease. Accumulating evidence suggests that additional mechanisms, including excessive airway contraction, inflammation and infections including COVID-19, can contribute to fibrosis. This review summarises experimental and clinical studies assessing the potential beneficial effects of novel drugs that possess a unique suite of complementary actions to oppose contraction, inflammation and remodelling, along with evidence that they also limit fibrosis. Translation of these promising findings is critical for the repurposing and development of improved therapeutics for fibrotic lung diseases.
Collapse
Affiliation(s)
- Claudia Sim
- Monash University, Clayton, Melbourne, Australia
| | - Emma Lamanna
- Monash University, Clayton, Melbourne, Australia
| | | | - Maggie Lam
- Monash University, Clayton, Melbourne, Australia.
| |
Collapse
|
6
|
Tielemans B, Stoian L, Gijsbers R, Michiels A, Wagenaar A, Farre Marti R, Belge C, Delcroix M, Quarck R. Cytokines trigger disruption of endothelium barrier function and p38 MAP kinase activation in BMPR2-silenced human lung microvascular endothelial cells. Pulm Circ 2019; 9:2045894019883607. [PMID: 31692724 PMCID: PMC6811766 DOI: 10.1177/2045894019883607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
The bone morphogenetic protein receptor II (BMPRII) signaling pathway is impaired
in pulmonary arterial hypertension and mutations in the BMPR2
gene have been observed in both heritable and idiopathic pulmonary arterial
hypertension. However, all BMPR2 mutation carriers do not
develop pulmonary arterial hypertension, and inflammation could trigger the
development of the disease in BMPR2 mutation carriers.
Circulating levels and/or lung tissue expression of cytokines such as tumor
necrosis factor-α or interleukin-18 are elevated in patients with pulmonary
arterial hypertension and could be involved in the pathogenesis of pulmonary
arterial hypertension. We consequently hypothesized that cytokines could trigger
endothelial dysfunction in addition to impaired BMPRII signaling. Our aim was to
determine whether impairment of BMPRII signaling might affect endothelium
barrier function and adhesiveness to monocytes, in response to cytokines.
BMPR2 was silenced in human lung microvascular endothelial
cells (HLMVECs) using lentiviral vectors encoding microRNA-based hairpins.
Effects of tumor necrosis factor-α and interleukin-18 on HLMVEC adhesiveness to
the human monocyte cell line THP-1, adhesion molecule expression, endothelial
barrier function and activation of P38MAPK were investigated in vitro. Stable
BMPR2 silencing in HLMVECs resulted in impaired endothelial
barrier function and constitutive activation of P38MAPK. Adhesiveness of
BMPR2-silenced HLMVECs to THP-1 cells was enhanced by tumor
necrosis factor-α and interleukin-18 through ICAM-1 adhesion molecule.
Interestingly, tumor necrosis factor-α induced activation of P38MAPK and
disrupted endothelial barrier function in BMPR2-silenced
HLMVECs. Altogether, our findings showed that stable BMPR2
silencing resulted in impaired endothelial barrier function and activation of
P38MAPK in HLMVECs. In BMPR2-silenced HLMVECs, cytokines
enhanced adhesiveness capacities, activation of P38MAPK and impaired endothelial
barrier function suggesting that cytokines could trigger the development of
pulmonary arterial hypertension in a context of impaired BMPRII signaling
pathway.
Collapse
Affiliation(s)
- Birger Tielemans
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Leanda Stoian
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Annelies Michiels
- Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven - University of Leuven, Leuven, Belgium
| | - Allard Wagenaar
- Division of Respiratory Diseases, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Ricard Farre Marti
- Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Catharina Belge
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Marion Delcroix
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Rozenn Quarck
- Division of Respiratory Diseases, University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Veteskova J, Kmecova Z, Malikova E, Doka G, Radik M, Vavrinec P, Krenek P, Klimas J. Opposite alterations of endothelin-1 in lung and pulmonary artery mirror gene expression of bone morphogenetic protein receptor 2 in experimental pulmonary hypertension. Exp Lung Res 2019; 45:30-41. [PMID: 31012341 DOI: 10.1080/01902148.2019.1605426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim of the Study: Endothelin-1 (ET-1) overexpression was suggested to play a role in pulmonary hypertension (PH). However, the roles of ET-1 in early stages of PH remain unexplored. We examined the expression of ET-1 and relevant disease progression markers in the pulmonary artery and the lungs during the development of PH induced by monocrotaline (MCT). Material and Methods: Male 12-weeks-old Wistar rats were administered with MCT (60 mg/kg, s.c.) or saline (CON). We measured right ventricular pressure (RVP) by catheterization under tribromoethanol anesthesia; hemoglobin oxygen saturation, breathing rate were measured by pulse oximetry in conscious animals. Rats were sacrificed 1, 2 or 4 weeks after MCT. mRNA levels of ET-1, its receptors, inflammatory markers IL-1beta, TNFalpha, IL-6 and genes related to VSMC proliferation or lung damage (Bmpr2, nestin, Pim1, PAI-1, TGFbeta-1) were analyzed by RT-qPCR. Results: RVP and breathing rate increased and hemoglobin oxygen saturation decreased after MCT only at week 4. Lung weight was increased at all time points. ET-1 was upregulated in the pulmonary artery at weeks 1 and 4, while being clearly suppressed in the lungs at all times. Bone morphogenetic protein receptor 2 followed a similar pattern to ET-1. PAI-1 markedly increased in the MCT lungs (but not pulmonary artery) from week 1 to 4. Nestin peaked at week 2 in both tissues. TGFbeta-1 increased in both tissues at week 4. ET-1 expression did not correlate with other genes, however, Bmpr2 tightly negatively correlated with PAI-1 in the lungs, but not pulmonary artery of MCT groups. Conclusions: ET-1 overexpression in the pulmonary artery preceded development of PH, but it was clearly and unexpectedly downregulated in the lungs of monocrotaline-treated rats and showed no correlation to disease progression markers. We speculate that endothelin-1 may play opposing roles in the lungs vs pulmonary artery in monocrotaline-induced PH.
Collapse
Affiliation(s)
- Jana Veteskova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Zuzana Kmecova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Eva Malikova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Gabriel Doka
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Michal Radik
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Vavrinec
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Krenek
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Klimas
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
8
|
Tu L, Desroches-Castan A, Mallet C, Guyon L, Cumont A, Phan C, Robert F, Thuillet R, Bordenave J, Sekine A, Huertas A, Ritvos O, Savale L, Feige JJ, Humbert M, Bailly S, Guignabert C. Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension. Circ Res 2019; 124:846-855. [DOI: 10.1161/circresaha.118.313356] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ly Tu
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Agnès Desroches-Castan
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Christine Mallet
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Laurent Guyon
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Amélie Cumont
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Carole Phan
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Florian Robert
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Raphaël Thuillet
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Jennifer Bordenave
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| | - Ayumi Sekine
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Alice Huertas
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Olli Ritvos
- Department of Bacteriology and Immunology and Department of Physiology, Faculty of Medicine, University of Helsinki, Finland (O.R.)
| | - Laurent Savale
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Jean-Jacques Feige
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Marc Humbert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (A.S., A.H., L.S., M.H.)
| | - Sabine Bailly
- Université Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France (A.D.-C., C.M., L.G., F.R., J.-J.F., S.B.)
| | - Christophe Guignabert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
- Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, Kremlin-Bicêtre, France (L.T., A.C., C.P., R.T., J.B., A.S., A.H., L.S., M.H., C.G.)
| |
Collapse
|
9
|
Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 2019; 24:703-716. [DOI: 10.1016/j.drudis.2018.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023]
|
10
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
11
|
Hudnall AM, Arthur JW, Lowery JW. Clinical Relevance and Mechanisms of Antagonism Between the BMP and Activin/TGF-β Signaling Pathways. J Osteopath Med 2017; 116:452-61. [PMID: 27367950 DOI: 10.7556/jaoa.2016.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transforming growth factor β (TGF-β) superfamily is a large group of signaling molecules that participate in embryogenesis, organogenesis, and tissue homeostasis. These molecules are present in all animal genomes. Dysfunction in the regulation or activity of this superfamily's components underlies numerous human diseases and developmental defects. There are 2 distinct arms downstream of the TGF-β superfamily ligands-the bone morphogenetic protein (BMP) and activin/TGF-β signaling pathways-and these 2 responses can oppose one another's effects, most notably in disease states. However, studies have commonly focused on a single arm of the TGF-β superfamily, and the antagonism between these pathways is unknown in most physiologic and pathologic contexts. In this review, the authors summarize the clinically relevant scenarios in which the BMP and activin/TGF-β pathways reportedly oppose one another and identify several molecular mechanisms proposed to mediate this interaction. Particular attention is paid to experimental findings that may be informative to human pathology to highlight potential therapeutic approaches for future investigation.
Collapse
|
12
|
Garcia-Rivas G, Jerjes-Sánchez C, Rodriguez D, Garcia-Pelaez J, Trevino V. A systematic review of genetic mutations in pulmonary arterial hypertension. BMC MEDICAL GENETICS 2017; 18:82. [PMID: 28768485 PMCID: PMC5541665 DOI: 10.1186/s12881-017-0440-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a group of vascular diseases that produce right ventricular dysfunction, heart failure syndrome, and death. Although the majority of patients appear idiopathic, accumulated research work combined with current sequencing technology show that many gene variants could be an important component of the disease. However, current guidelines, clinical practices, and available gene panels focus the diagnosis of PAH on a relatively low number of genes and variants associated with the bone morphogenic proteins and transforming Growth Factor-β pathways, such as the BMPR2, ACVRL1, CAV1, ENG, and SMAD9. Methods To provide an expanded view of the genes and variants associated with PAH, we performed a systematic literature review. Facilitated by a web tool, we classified, curated, and annotated most of the genes and PubMed abstracts related to PAH, in which many of the mutations and variants were not annotated in public databases such as ClinVar from NCBI. The gene list generated was compared with other available tests. Results Our results reveal that there is genetic evidence for at least 30 genes, of which 21 genes shown specific mutations. Most of the genes are not covered by current available genetic panels. Many of these variants were not annotated in the ClinVar database and a mapping of these mutations suggest that next generation sequencing is needed to cover all mutations found in PAH or related diseases. A pathway analysis of these genes indicated that, in addition to the BMP and TGFβ pathways, there was connections with the nitric oxide, prostaglandin, and calcium homeostasis signalling, which may be important components in PAH. Conclusion Our systematic review proposes an expanded gene panel for more accurate characterization of the genetic incidence and risk in PAH. Their usage would increase the knowledge of PAH in terms of genetic counseling, early diagnosis, and potential prognosis of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0440-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerardo Garcia-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tec Salud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| | - Carlos Jerjes-Sánchez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tec Salud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| | - David Rodriguez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - José Garcia-Pelaez
- Cátedra de Bioinformática, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av Morones Prieto No. 3000 Colonia Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - Victor Trevino
- Cátedra de Bioinformática, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av Morones Prieto No. 3000 Colonia Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
13
|
BMPRII influences the response of pulmonary microvascular endothelial cells to inflammatory mediators. Pflugers Arch 2016; 468:1969-1983. [PMID: 27816994 DOI: 10.1007/s00424-016-1899-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Mutations in the bone morphogenetic protein receptor (BMPR2) gene have been observed in 70 % of patients with heritable pulmonary arterial hypertension (HPAH) and in 11-40 % with idiopathic PAH (IPAH). However, carriers of a BMPR2 mutation have only 20 % risk of developing PAH. Since inflammatory mediators are increased and predict survival in PAH, they could act as a second hit inducing the development of pulmonary hypertension in BMPR2 mutation carriers. Our specific aim was to determine whether inflammatory mediators could contribute to pulmonary vascular cell dysfunction in PAH patients with and without a BMPR2 mutation. Pulmonary microvascular endothelial cells (PMEC) and arterial smooth muscle cells (PASMC) were isolated from lung parenchyma of transplanted PAH patients, carriers of a BMPR2 mutation or not, and from lobectomy patients or lung donors. The effects of CRP and TNFα on mitogenic activity, adhesiveness capacity, and expression of adhesion molecules were investigated in PMECs and PASMCs. PMECs from BMPR2 mutation carriers induced an increase in PASMC mitogenic activity; moreover, endothelin-1 secretion by PMECs from carriers was higher than by PMECs from non-carriers. Recruitment of monocytes by PMECs isolated from carriers was higher compared to PMECs from non-carriers and from controls, with an elevated ICAM-1 expression. CRP increased adhesion of monocytes to PMECs in carriers and non-carriers, and TNFα only in carriers. PMEC from BMPR2 mutation carriers have enhanced adhesiveness for monocytes in response to inflammatory mediators, suggesting that BMPR2 mutation could generate susceptibility to an inflammatory insult in PAH.
Collapse
|
14
|
Affiliation(s)
- Jianhua Xiong
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Wang H, Ji R, Meng J, Cui Q, Zou W, Li L, Wang G, Sun L, Li Z, Huo L, Fan Y, Penny DJ. Functional changes in pulmonary arterial endothelial cells associated with BMPR2 mutations. PLoS One 2014; 9:e106703. [PMID: 25187962 PMCID: PMC4154762 DOI: 10.1371/journal.pone.0106703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/01/2014] [Indexed: 12/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by abnormal remodeling of small, peripheral pulmonary arteries. Germline mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene are a major risk factor for developing PAH. At present, the correlation between the BMPR2 mutation and the patient's prognosis remains controversial despite several investigations. In this study, we explored the functional effects of four BMPR2 mutations to dissect the functional significance of the BMPR2 gene defect. Cellular immunofluorescence assay of four mutants (Tyr67Cys, Thr268fs, Ser863Asn, and Gln433X) revealed that the BMPR2 protein containing Thr268fs, Ser863Asn, or Gln433X exhibited abnormal subcellular localization. The BrdU incorporation and TUNEL assay suggested that any of the BMPR2 mutations Thr268fs, Ser863Asn, or Gln433X could improve endothelial cell apoptosis and decrease cell proliferation. All of the four mutants could inhibit nitric oxide (NO) synthesis in HLMVE cells, and ET-1 levels increased in the cells transfected with mutant Ser863Asn. Our results will improve the understanding of the genotype-phenotype correlations and mechanisms associated with BMPR2 mutations.
Collapse
Affiliation(s)
- Hu Wang
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruirui Ji
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Meng
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qiqiong Cui
- Cardiovascular Clinical Research Core, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wenxin Zou
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lei Li
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Guoliang Wang
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li Sun
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhaohui Li
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lei Huo
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yuxin Fan
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel J. Penny
- Section of Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
16
|
Liu D, Morrell NW. Genetics and the molecular pathogenesis of pulmonary arterial hypertension. Curr Hypertens Rep 2014; 15:632-7. [PMID: 24078385 DOI: 10.1007/s11906-013-0393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in the bone morphogenetic protein type II receptor (BMPR-II) gene (BMPR2) have been recognized to cause heritable PAH (HPAH). Recent studies focused on novel BMPR2 mutations in the Asian population and provided evidence for genotype-phenotype correlations. A candidate gene strategy has suggested additional mutations in SMAD, TBX4 and TSP1 in PAH. A genome-wide association study (GWAS) identified an association at the CBLN2 locus with PAH. Studies have addressed the role of additional factors required for disease penetrance. The unbalance between TGF β1 and BMPRII signaling may stimulate inflammatory cytokine expression and leukocyte extravasation. Epigenetics, including DNA methylation and microRNAs, appear to play a role in the development of PAH. Next-generation sequencing with advances in bioinformatics will provide further insights into the underlying genetic and epigenetic architecture underlying the pathobiology of PAH.
Collapse
|
17
|
Effects of vascular endothelial growth factor on endothelin-1 production by human lung microvascular endothelial cells in vitro. Life Sci 2014; 118:191-4. [PMID: 24607779 DOI: 10.1016/j.lfs.2014.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 11/23/2022]
Abstract
AIMS Increased endothelin-1 (ET-1) is a hallmark of pulmonary arterial hypertension (PAH), and contributes to its pathogenesis. The factors controlling ET-1 in PAH are poorly understood. Combined with other stimuli, vascular endothelial growth factor (VEGF) blockade results in PAH-like lesions in animal models, and has been associated with PAH in humans. The effects of VEGF on ET-1 production by human lung blood microvascular endothelial cells (HMVEC-LBl) are unknown. MAIN METHODS We exposed HMVEC-LBl in-vitro to human VEGF-121 (40 ng/mL) in serum-free medium for 7h, in the absence or presence of the VEGF receptor antagonist, SU5416 (3 and 10 μM). ET-1 production was measured in the supernatant. Phosphorylation of VEGF receptor 2 (VEGFR2) was measured by Western blotting after exposure to VEGF without or with SU5416 for 5 and 10 min. KEY FINDINGS VEGF effectively caused VEGFR2 phosphorylation, which was blocked by SU5416. VEGF decreased ET-1 production by at least 29%. In the absence of VEGF, SU5416 increased ET-1 production, by 16% at 10 μM, and SU5416 was able to completely abolish the VEGF effect on ET-1 production. SIGNIFICANCE VEGF may promote vascular health by decreasing ET-1 production in HVMEC-LBl. Blockade of VEGF signaling by SU5416 increases ET-1 levels. The role of VEGF in modulating endothelin production in PAH deserves further study.
Collapse
|
18
|
von Gise A, Archer SL, Maclean MR, Hansmann G. The first Keystone Symposia Conference on pulmonary vascular isease and right ventricular dysfunction: Current concepts and future therapies. Pulm Circ 2013; 3:275-7. [PMID: 24015328 PMCID: PMC3757822 DOI: 10.4103/2045-8932.114751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17:1291-9. [PMID: 23859708 PMCID: PMC4159013 DOI: 10.1111/jcmm.12105] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/21/2013] [Accepted: 06/08/2013] [Indexed: 01/09/2023] Open
Abstract
Germline mutations in the bone morphogenetic protein type II receptor (BMPRII) gene play an essential role in the pathogenesis of familial pulmonary arterial hypertension (FPAH). In view of the histological similarities between scleroderma (SSc) and FPAH arterial lesion, we examined the expression levels of BMPRII in SSc microvascular endothelial cells (MVEC). Oxidative stress and serum starvation were used to examine apoptotic responses of MVECs. BMPRII expression levels were determined by RT-PCR and by Western blot. Epigenetic regulation of BMPRII expression was examined by the addition of epigenetic inhibitors to MVECs cultures, by methylation-specific PCR, and by sequence analysis of DNA methylation pattern of the BMPRII promotor region. SSc-MVECs were more sensitive to apoptotic signals than were normal-MVECs. A significant decrease in BMPRII expression levels in SSc-MVECs was noted, whereas no significant differences in the expression levels of BMPRIA and BMPRIB were observed. Similar reduction in expression levels was noted in SSc skin biopsies. The expression level of BMPRII in SSc-MVECs was normalized by the addition of 2-deoxy-5-azacytidine and trichostatin A to cell cultures. Extensive CpG sites methylation in the BMPRII promoter region was noted in SSc-MVECs with no detectable site methylation in control-MVECs. SSc-MVECs are more sensitive to apoptotic triggers than are control-MVECs. The enhanced apoptosis may be related to epigenetic repression of BMPRII expression as apoptosis of control-MVECs can be augmented by knocking down BMPRII expression. The role of BMPRII underexpression in the pathogenesis of SSc vasculopathy is suggested and should be investigated further.
Collapse
Affiliation(s)
- Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
20
|
The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim Biophys Acta Mol Basis Dis 2013; 1832:1492-510. [PMID: 23707512 DOI: 10.1016/j.bbadis.2013.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
Activin receptor-like kinase-1 or ALK-1 is a type I cell surface receptor for the transforming growth factor-β (TGF-β) family of proteins. The role of ALK-1 in endothelial cells biology and in angiogenesis has been thoroughly studied by many authors. However, it has been recently suggested a possible role of ALK-1 in cardiovascular homeostasis. ALK-1 is not only expressed in endothelial cells but also in smooth muscle cells, myofibroblast, hepatic stellate cells, chondrocytes, monocytes, myoblasts, macrophages or fibroblasts, but its role in these cells have not been deeply analyzed. Due to the function of ALK-1 in these cells, this receptor plays a role in several cardiovascular diseases. Animals with ALK-1 haploinsufficiency and patients with mutations in Acvrl1 (the gene that codifies for ALK-1) develop type-2 Hereditary Hemorrhagic Telangiectasia. Moreover, ALK-1 heterozygous mice develop pulmonary hypertension. Higher levels of ALK-1 have been observed in atherosclerotic plaques, suggesting a possible protector role of this receptor. ALK-1 deficiency is also related to the development of arteriovenous malformations (AVMs). Besides, due to the ability of ALK-1 to regulate cell proliferation and migration, and to modulate extracellular matrix (ECM) protein expression in several cell types, ALK-1 has been now demonstrated to play an important role in cardiovascular remodeling. In this review, we would like to offer a complete vision of the role of ALK-1 in many process related to cardiovascular homeostasis, and the involvement of this protein in the development of cardiovascular diseases, suggesting the possibility of using the ALK-1/smad-1 pathway as a powerful therapeutic target.
Collapse
|
21
|
Malenfant S, Neyron AS, Paulin R, Potus F, Meloche J, Provencher S, Bonnet S. Signal transduction in the development of pulmonary arterial hypertension. Pulm Circ 2013; 3:278-93. [PMID: 24015329 PMCID: PMC3757823 DOI: 10.4103/2045-8932.114752] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a unique disease. Properly speaking, it is not a disease of the lung. It can be seen more as a microvascular disease occurring mainly in the lungs and affecting the heart. At the cellular level, the PAH paradigm is characterized by inflammation, vascular tone imbalance, pulmonary arterial smooth muscle cell proliferation and resistance to apoptosis and the presence of in situ thrombosis. At a clinical level, the aforementioned abnormal vascular properties alter physically the pulmonary circulation and ventilation, which greatly influence the right ventricle function as it highly correlates with disease severity. Consequently, right heart failure remains the principal cause of death within this cohort of patients. While current treatment modestly improve patients' conditions, none of them are curative and, as of today, new therapies are lacking. However, the future holds potential new therapies that might have positive influence on the quality of life of the patient. This article will first review the clinical presentation of the disease and the different molecular pathways implicated in the pathobiology of PAH. The second part will review tomorrow's future putative therapies for PAH.
Collapse
Affiliation(s)
- Simon Malenfant
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Anne-Sophie Neyron
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Roxane Paulin
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - François Potus
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Jolyane Meloche
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group of the Institut universitaire de cardiologie et de pneumologie de Quebec Research Center, Laval University, Quebec City, Canada
| |
Collapse
|