1
|
Romanowska-Kocejko M, Braczko A, Jędrzejewska A, Żarczyńska-Buchowiecka M, Kocejko T, Kutryb-Zając B, Hellmann M. Follow-up assessment of the microvascular function in patients with long COVID. Microvasc Res 2024; 157:104748. [PMID: 39293561 DOI: 10.1016/j.mvr.2024.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Long COVID is a complex pathophysiological condition. However, accumulating data suggests that COVID-19 is a systemic microvascular endothelial dysfunction with different clinical manifestations. In this study, a microvascular function was assessed in long COVID patients (n = 33) and healthy controls (n = 30) using flow-mediated skin fluorescence technique (FMSF), based on measurements of nicotinamide adenine dinucleotide fluorescence intensity during brachial artery occlusion (ischemic response, IR) and immediately after occlusion (hyperemic response, HR). Microcirculatory function readings were taken twice, 3 months apart. In addition, we quantified biochemical markers such as the serum L-arginine derivatives and hypoxia-inducible factor 1α (HIF1α) to assess their relation with microvascular parameters evaluated in vivo. In patients with long COVID, serum HIF1α was significantly correlated to IRindex (r = -0.375, p < 0.05). Similarly, there was a significant inverse correlation of serum asymmetric dimethyl-L-arginine levels to both HRmax (r = -0.343, p < 0.05) and HRindex (r = -0.335, p < 0.05). The IR parameters were found lower or negative in long COVID patients and recovered in three-month follow-up. Hypoxia sensitivity value was significantly higher in long COVID patients examined after three months of treatment based on the combination of ACE-inhibitors and beta-adrenolytic compared to baseline condition (85.2 ± 73.8 vs. 39.9 ± 51.7 respectively, p = 0.009). This study provides evidence that FMSF is a sensitive, non-invasive technique to track changes in microvascular function that was impaired in long COVID and recovered after 3 months, especially in patients receiving a cardioprotective therapy.
Collapse
Affiliation(s)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Poland
| | | | | | - Tomasz Kocejko
- Department of Biomedical Engineering, Technical University of Gdansk, Poland
| | | | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, Poland.
| |
Collapse
|
2
|
Pastor-Villaescusa B, Meier J, Ruske F, Prell C, Gruenzner J, Koenig M, Jakob A, Koletzko B, Nussbaum C. Association between Inflammation, Glycocalyx Biomarkers, and Endothelial Function in Children with Hypercholesterolemia. ANNALS OF NUTRITION & METABOLISM 2024; 80:260-267. [PMID: 38316115 DOI: 10.1159/000536042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Hypercholesterolemia is a risk factor for premature arteriosclerosis. Inflammation and oxidative stress are thought to contribute to endothelial dysfunction preceding vasculopathy. We investigated the association between inflammation, glycocalyx biomarkers, endothelial function, and vascular parameters in children with hypercholesterolemia. METHODS In 22 patients (LDL-cholesterol >130 mg/dL; median age [IQR]: 13 [2.3] years) and 22 controls (13 [2.5] years), tumor necrosis factor-alpha (TNF-α), oxidized cholesterol (oxLDL), and glycocalyx biomarkers (Syndecan-1, Hyaluronan) were measured using immunoassays. Endothelial function was assessed by peripheral arterial tonometry, sublingual glycocalyx and microcirculation by videomicroscopy and carotid intima-media thickness by ultrasound. RESULTS OxLDL was significantly higher in patients (78.9 [38.2] vs. 50.3 [16.6] U/L, p = 0.002), whereas all other experimental parameters were comparable between groups. Multivariate analysis revealed a significant association of Syndecan-1 with TNF-α (β = 0.75, p < 0.001) and with hypercholesterolemia (β = 0.31, p = 0.030). The interaction term combining TNF-α and hypercholesterolemia showed a significant effect (p = 0.034). Sex was an independent predictor of endothelial function. CONCLUSION The combined effect of hypercholesterolemia and inflammation on glycocalyx perturbation and the impact of sex in the premature development of arteriosclerosis deserve further evaluation. Therapeutic approaches tackling low-grade systemic inflammation may offer potential to prevent or delay progression of cardiovascular disease and cardiovascular complications.
Collapse
Affiliation(s)
- Belén Pastor-Villaescusa
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimonides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Julia Meier
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Fabienne Ruske
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christine Prell
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Juliane Gruenzner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Miriam Koenig
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - André Jakob
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Nussbaum
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Zakharova IS, Shevchenko AI, Arssan MA, Sleptcov AA, Nazarenko MS, Zarubin AA, Zheltysheva NV, Shevchenko VA, Tmoyan NA, Saaya SB, Ezhov MV, Kukharchuk VV, Parfyonova YV, Zakian SM. iPSC-Derived Endothelial Cells Reveal LDLR Dysfunction and Dysregulated Gene Expression Profiles in Familial Hypercholesterolemia. Int J Mol Sci 2024; 25:689. [PMID: 38255763 PMCID: PMC10815294 DOI: 10.3390/ijms25020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood. In this study, we obtained and examined endothelial derivatives of induced pluripotent stem cells (iPSCs) generated previously from conditionally healthy donors and compound heterozygous FH patients carrying pathogenic LDLR alleles. In normal iPSC-derived endothelial cells (iPSC-ECs), we detected the LDLR protein predominantly in its mature form, whereas iPSC-ECs from FH patients have reduced levels of mature LDLR and show abolished low-density lipoprotein uptake. RNA-seq of mutant LDLR iPSC-ECs revealed a unique transcriptome profile with downregulated genes related to monocarboxylic acid transport, exocytosis, and cell adhesion, whereas upregulated signaling pathways were involved in cell secretion and leukocyte activation. Overall, these findings suggest that LDLR defects increase the susceptibility of endothelial cells to inflammation and oxidative stress. In combination with elevated extrinsic cholesterol levels, this may result in accelerated endothelial dysfunction, contributing to early progression of atherosclerosis and other cardiovascular pathologies associated with FH.
Collapse
Affiliation(s)
- Irina S. Zakharova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Alexander I. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Mhd Amin Arssan
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Nina V. Zheltysheva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Vlada A. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Narek A. Tmoyan
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Shoraan B. Saaya
- E.N. Meshalkin National Medical Research Centre, Ministry of Health Care of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Marat V. Ezhov
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Valery V. Kukharchuk
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Yelena V. Parfyonova
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| |
Collapse
|
4
|
Oh EY, Haam CE, Choi S, Byeon S, Choi SK, Lee YH. Ezetimibe Induces Vasodilation in Rat Mesenteric Resistance Arteries through Inhibition of Extracellular Ca 2+ Influx. Int J Mol Sci 2023; 24:13992. [PMID: 37762296 PMCID: PMC10531054 DOI: 10.3390/ijms241813992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Ezetimibe is a lipid-lowering agent that selectively inhibits cholesterol absorption by binding to the Niemann-Pick C1-like 1 (NPC1L1) protein. Although it is well known that administration of ezetimibe in hypercholesterolemia patients reduces the risk of cardiovascular events through attenuation of atherosclerosis, studies on the direct effect of ezetimibe on vascular function are not sufficient. The aim of the present study was to investigate the vascular effects of ezetimibe in rat mesenteric arteries. In the present study, 12-week-old male Sprague Dawley rats were used. After the rats were sacrificed, the second branches of the mesenteric arteries were isolated and cut into 2-3 mm segments and mounted in a multi-wire myography system to measure isometric tension. Ezetimibe reduced vasoconstriction induced by U46619 (500 nM) in endothelium-intact and endothelium-denuded arteries. Ezetimibe-induced vasodilation was not affected by the endothelial nitric oxide synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 300 μM) or the non-selective potassium channel blocker, tetraethylammonium (TEA, 10 mM). Moreover, ezetimibe also completely blocked the contraction induced by an increase in external calcium concentration. Ezetimibe significantly reduced vascular contraction induced by L-type Ca2+ channel activator (Bay K 8644, 30 nM). Treatment with ezetimibe decreased the phosphorylation level of 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that ezetimibe has a significant vasodilatory effect in rat mesenteric resistance arteries. These results suggest that ezetimibe may have beneficial cardiovascular effects beyond its cholesterol-lowering properties.
Collapse
Affiliation(s)
| | | | | | | | - Soo-Kyoung Choi
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea; (E.Y.O.); (C.E.H.); (S.C.); (S.B.)
| | - Young-Ho Lee
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea; (E.Y.O.); (C.E.H.); (S.C.); (S.B.)
| |
Collapse
|
5
|
Dąbrowska E, Narkiewicz K. Hypertension and Dyslipidemia: the Two Partners in Endothelium-Related Crime. Curr Atheroscler Rep 2023; 25:605-612. [PMID: 37594602 PMCID: PMC10471742 DOI: 10.1007/s11883-023-01132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The goal of this article is to characterize the endothelium's role in the development of hypertension and dyslipidemia and to point out promising therapeutic directions. RECENT FINDINGS Dyslipidemia may facilitate the development of hypertension, whereas the collaboration of these two silent killers potentiates the risk of atherosclerosis. The common pathophysiological denominator for hypertension and dyslipidemia is endothelial cell dysfunction, which manifests as dysregulation of homeostasis, redox balance, vascular tone, inflammation, and thrombosis. Treatment focused on mediators acting in these processes might be groundbreaking. Metabolomic research on hypertension and dyslipidemia has revealed new therapeutic targets. State-of-the-art solutions integrating interview, clinical examination, innovative imaging, and omics profiles along with artificial intelligence have been already shown to improve patients' risk stratification and treatment. Pathomechanisms underlying hypertension and dyslipidemia take place in the endothelium. Novel approaches involving endothelial biomarkers and bioinformatics advances could open new perspectives in patient management.
Collapse
Affiliation(s)
- Edyta Dąbrowska
- Center of Translational Medicine, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Center of Translational Medicine, Medical University of Gdańsk, Dębinki 7, 80-952 Gdańsk, Poland
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| |
Collapse
|
6
|
Jedrzejewska A, Kawecka A, Braczko A, Romanowska-Kocejko M, Stawarska K, Deptuła M, Zawrzykraj M, Franczak M, Krol O, Harasim G, Walczak I, Pikuła M, Hellmann M, Kutryb-Zając B. Changes in Adenosine Deaminase Activity and Endothelial Dysfunction after Mild Coronavirus Disease-2019. Int J Mol Sci 2023; 24:13140. [PMID: 37685949 PMCID: PMC10487738 DOI: 10.3390/ijms241713140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial cells are a preferential target for SARS-CoV-2 infection. Previously, we have reported that vascular adenosine deaminase 1 (ADA1) may serve as a biomarker of endothelial activation and vascular inflammation, while ADA2 plays a critical role in monocyte and macrophage function. In this study, we investigated the activities of circulating ADA isoenzymes in patients 8 weeks after mild COVID-19 and related them to the parameters of inflammation and microvascular/endothelial function. Post-COVID patients revealed microvascular dysfunction associated with the changes in circulating parameters of endothelial dysfunction and inflammatory activation. Interestingly, serum total ADA and ADA2 activities were diminished in post-COVID patients, while ADA1 remained unchanged in comparison to healthy controls without a prior diagnosis of SARS-CoV-2 infection. While serum ADA1 activity tended to positively correspond with the parameters of endothelial activation and inflammation, sICAM-1 and TNFα, serum ADA2 activity correlated with IL-10. Simultaneously, post-COVID patients had lower circulating levels of ADA1-anchoring protein, CD26, that may serve as an alternative receptor for virus binding. This suggests that after the infection CD26 is rather maintained in cell-attached form, enabling ADA1 complexing. This study points to the possible role of ADA isoenzymes in cardiovascular complications after mild COVID-19.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Marzena Romanowska-Kocejko
- Department of Cardiac Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.R.-K.); (M.H.)
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (M.P.)
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (M.P.)
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.R.-K.); (M.H.)
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| |
Collapse
|
7
|
Munkhsaikhan U, Kwon YI, Sahyoun AM, Galán M, Gonzalez AA, Ait-Aissa K, Abidi AH, Kassan A, Kassan M. The Beneficial Effect of Lomitapide on the Cardiovascular System in LDLr -/- Mice with Obesity. Antioxidants (Basel) 2023; 12:1287. [PMID: 37372017 PMCID: PMC10295391 DOI: 10.3390/antiox12061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES Homozygous familial hypercholesteremia (HoFH) is a rare, life-threatening metabolic disease, mainly caused by a mutation in the LDL receptor. If untreated, HoFH causes premature death from acute coronary syndrome. Lomitapide is approved by the FDA as a therapy to lower lipid levels in adult patients with HoFH. Nevertheless, the beneficial effect of lomitapide in HoFH models remains to be defined. In this study, we investigated the effect of lomitapide on cardiovascular function using LDL receptor-knockout mice (LDLr-/-). METHODS Six-week-old LDLr-/- mice were fed a standard diet (SD) or a high-fat diet (HFD) for 12 weeks. Lomitapide (1 mg/Kg/Day) was given by oral gavage for the last 2 weeks in the HFD group. Body weight and composition, lipid profile, blood glucose, and atherosclerotic plaques were measured. Vascular reactivity and markers for endothelial function were determined in conductance arteries (thoracic aorta) and resistance arteries (mesenteric resistance arteries (MRA)). Cytokine levels were measured by using the Mesoscale discovery V-Plex assays. RESULTS Body weight (47.5 ± 1.5 vs. 40.3 ± 1.8 g), % of fat mass (41.6 ± 1.9% vs. 31.8 ± 1.7%), blood glucose (215.5 ± 21.9 vs. 142.3 ± 7.7 mg/dL), and lipid levels (cholesterol: 600.9 ± 23.6 vs. 451.7 ± 33.4 mg/dL; LDL/VLDL: 250.6 ± 28.9 vs. 161.1 ± 12.24 mg/dL; TG: 299.5 ± 24.1 vs. 194.1 ± 28.1 mg/dL) were significantly decreased, and the % of lean mass (56.5 ± 1.8% vs. 65.2 ± 2.1%) was significantly increased in the HFD group after lomitapide treatment. The atherosclerotic plaque area also decreased in the thoracic aorta (7.9 ± 0.5% vs. 5.7 ± 0.1%). After treatment with lomitapide, the endothelium function of the thoracic aorta (47.7 ± 6.3% vs. 80.7 ± 3.1%) and mesenteric resistance artery (66.4 ± 4.3% vs. 79.5 ± 4.6%) was improved in the group of LDLr-/- mice on HFD. This was correlated with diminished vascular endoplasmic (ER) reticulum stress, oxidative stress, and inflammation. CONCLUSIONS Treatment with lomitapide improves cardiovascular function and lipid profile and reduces body weight and inflammatory markers in LDLr-/- mice on HFD.
Collapse
Affiliation(s)
- Undral Munkhsaikhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Bioscience Research and General Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Young In Kwon
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Amal M. Sahyoun
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Food Science and Agriculture Chemistry, McGill University, Montreal, QC H9X 3V9, Canada
| | - María Galán
- Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, 28029 Madrid, Spain
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 300, Chile
| | - Karima Ait-Aissa
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Ammaar H. Abidi
- Department of Bioscience Research and General Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Adam Kassan
- Department of Pharmaceutical Sciences, School of Pharmacy, West Coast University, Los Angeles, CA 91606, USA
| | - Modar Kassan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| |
Collapse
|
8
|
Bechelli C, Macabrey D, Deglise S, Allagnat F. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci 2023; 24:9955. [PMID: 37373103 DOI: 10.3390/ijms24129955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD patients suffer from reduced quality of life and are at increased risk of vascular complications and all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to address the increasing incidence of PAD and its difficult long-term pharmacological and surgical management. The cysteine-derived gasotransmitter hydrogen sulfide (H2S) has interesting vasorelaxant, cytoprotective, antioxidant and anti-inflammatory properties. In this review, we describe the current understanding of PAD pathophysiology and the remarkable benefits of H2S against atherosclerosis, inflammation, vascular calcification, and other vasculo-protective effects.
Collapse
Affiliation(s)
- Clémence Bechelli
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Sebastien Deglise
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| |
Collapse
|