1
|
Wang L, Xing H. Pityriasis versicolor on the scalp: An unusual distribution of a common disease. Pediatr Investig 2023; 7:216-217. [PMID: 37736363 PMCID: PMC10509390 DOI: 10.1002/ped4.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Lijuan Wang
- Department of DermatologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Huan Xing
- Department of DermatologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
2
|
Ugochukwu ICI, Rhimi W, Chebil W, Rizzo A, Tempesta M, Giusiano G, Tábora RFM, Otranto D, Cafarchia C. Part 1: Understanding the role of Malassezia spp. in skin disorders: Malassezia yeasts as commensal or pathogenic organisms of human and animal skin. Expert Rev Anti Infect Ther 2023; 21:1327-1338. [PMID: 37883074 DOI: 10.1080/14787210.2023.2276367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Malassezia spp. are a group of lipid-dependent basidiomycetes yeasts acting as commensal organisms of the human and animal skin. However, under some not well-defined circumstances, these yeasts may switch to opportunistic pathogens triggering a number of skin disorders with different clinical presentations. The genus comprises of 18 lipid-dependent species with a variable distribution in the hosts and pathologies thus suggesting a host- and microbe-specific interactions. AREA COVERED This review highlighted and discussed the most recent literature regarding the genus Malassezia as a commensal or pathogenic organisms highlighting Malassezia-associated skin disorders in humans and animals and their antifungal susceptibility profile. A literature search of Malassezia associated skin disorders was performed via PubMed and Google scholar (up to May 2023), using the different keywords mainly associated with Malassezia skin disorders and Malassezia antifungal resistance. EXPERT OPINION Malassezia yeasts are part of the skin mycobiota and their life cycle is strictly associated with the environment in which they live. The biochemical, physiological, or immunological condition of the host skin selects Malassezia spp. or genotypes able to survive in a specific environment by changing their metabolisms, thus producing virulence factors or metabolites which can cause skin disorders with different clinical presentations.
Collapse
Affiliation(s)
- Iniobong Chukwuebuka Ikenna Ugochukwu
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology, Department of Clinical Biology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Antonio Rizzo
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
3
|
Ugochukwu ICI, Rhimi W, Chebil W, Rizzo A, Tempesta M, Giusiano G, Tábora RFM, Otranto D, Cafarchia C. Part 2: Understanding the role of Malassezia spp. in skin disorders: pathogenesis of Malassezia associated skin infections. Expert Rev Anti Infect Ther 2023; 21:1245-1257. [PMID: 37883035 DOI: 10.1080/14787210.2023.2274500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Malassezia is a major component of the skin microbiome, a lipophilic symbiotic organism of the mammalian skin, which can switch to opportunistic pathogens triggering multiple dermatological disorders in humans and animals. This phenomenon is favored by endogenous and exogenous host predisposing factors, which may switch Malassezia from a commensal to a pathogenic phenotype. AREA COVERED This review summarizes and discusses the most recent literature on the pathogenesis of Malassezia yeasts, which ultimately results in skin disorders with different clinical presentation. A literature search of Malassezia pathogenesis was performed via PubMed and Google scholar (up to May 2023), using the following keywords: Pathogenesis and Malassezia;host risk factors and Malassezia, Malassezia and skin disorders; Malassezia and virulence factors: Malassezia and metabolite production; Immunology and Malassezia. EXPERT OPINION Malassezia yeasts can maintain skin homeostasis being part of the cutaneous mycobiota; however, when the environmental or host conditions change, these yeasts are endowed with a remarkable plasticity and adaptation by modifying their metabolism and thus contributing to the appearance or aggravation of human and animal skin disorders.
Collapse
Affiliation(s)
- Iniobong Chukwuebuka Ikenna Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology, Department of Clinical Biology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Antonio Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, Resistencia, Argentina
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
4
|
Chebil W, Haouas N, Eskes E, Vandecruys P, Belgacem S, Belhadj Ali H, Babba H, Van Dijck P. In Vitro Assessment of Azole and Amphotericin B Susceptibilities of Malassezia spp. Isolated from Healthy and Lesioned Skin. J Fungi (Basel) 2022; 8:jof8090959. [PMID: 36135684 PMCID: PMC9502168 DOI: 10.3390/jof8090959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/11/2022] Open
Abstract
Malassezia yeasts have recently gained medical importance as emerging pathogens associated with a wide range of dermatological and systemic infections. Since standardized methods for in vitro antifungal susceptibility testing have not yet been established for Malassezia spp., related diseases are always treated empirically. As a result, a high rate of recurrence and decreased antifungal susceptibility have appeared. Thus, the aims of the study were to assess and analyze the in vitro susceptibility of Malassezia isolated from pityriasis versicolor (PV) lesions and healthy controls. A total of 58 Malassezia strains isolated from PV patients and healthy controls were tested. In vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. Candida spp. criteria established in accordance with CLSI guidelines were used for data interpretation. Ketoconazole and posaconazole seemed to be the most effective molecules against Malassezia species. However, considerable percentages of itraconazole, fluconazole, and amphotericin B ‘‘resistant’’ strains (27.6%, 29.3%, and 43.1%, respectively) were revealed in this study. Malassezia furfur, M. sympodialis, and M. globosa showed different susceptibility profiles to the drugs tested. These results emphasize the importance of accurately identifying and evaluating the antifungal susceptibility of Malassezia species in order to guide a specific and effective treatment regimen.
Collapse
Affiliation(s)
- Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Najoua Haouas
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Elja Eskes
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, Faculty of Sciences, KU Leuven, Heverlee, 3001 Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, Faculty of Sciences, KU Leuven, Heverlee, 3001 Leuven, Belgium
| | - Sameh Belgacem
- Laboratory of Parasitology-Mycology, Fattouma Bourguiba University Hospital, Monastir 5000, Tunisia
| | - Hichem Belhadj Ali
- Dermatology Department, Fattouma Bourguiba University Hospital, Monastir 5000, Tunisia
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, Faculty of Sciences, KU Leuven, Heverlee, 3001 Leuven, Belgium
- Correspondence: ; Tel.: +32-16321512
| |
Collapse
|
5
|
Chebil W, Rhimi W, Haouas N, Romano V, Belgacem S, Ali HB, Babba H, Cafarchia C. Virulence factors of Malassezia strains isolated from pityriasis versicolor patients and healthy individuals. Med Mycol 2022; 60:6652903. [PMID: 35913746 DOI: 10.1093/mmy/myac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, Malassezia species have emerged as increasingly important pathogens associated with a wide range of dermatological disorders and bloodstream infections. The pathogenesis of Malassezia yeasts is not completely clear but it seems to be strictly related to Malassezia strains and hosts and need to be better investigated. This study aimed to assess the enzymatic activities, biofilm formation and in vitro antifungal profiles of Malassezia spp. from Pityriasis versicolor and heathy patients. The potential relationship between virulence attributes, the antifungal profiles and the origin of strains were also assessed. A total of 44 Malassezia strains isolated from patients with (n = 31) and without (n = 13) Pityriasis versicolor (PV) were employed to evaluate phospholipase (Pz), lipase (Lz), hemolytic (Hz) activities and biofilm formation. In addition, in vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. A high percentage of strains produced phospholipase, lipase, hemolysins and biofilm regardless of their clinical origin. The highest number of strains producing high enzymatic activities came from PV patients. A correlation between the intensity of hydrolytic activities (lipase and phospholipase activities) and the hemolytic activity was detected. Positive associations between Lz and the low fluconazole susceptibility and Hz and biofilm formation were observed. These results suggest that enzyme patterns and biofilm formation together with antifungal profiles play a role in the pathogenicity of Malassezia spp. and might explain the implication of some Malassezia spp. in invasive fungal infections and in the development of inflammation.
Collapse
Affiliation(s)
- Wissal Chebil
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| | - Najoua Haouas
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Valentina Romano
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| | - Sameh Belgacem
- Laboratory of Parasitology-Mycology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hichem Belhadj Ali
- Dermatology Department, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hamouda Babba
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| |
Collapse
|