1
|
Song X, Chen M, Zhao Y, Zhang M, Zhang L, Zhang D, Song C, Shang X, Tan Q. Multi-stage nuclear transcriptomic insights of morphogenesis and biparental role changes in Lentinula edodes. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12624-y. [PMID: 37439832 DOI: 10.1007/s00253-023-12624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/14/2023]
Abstract
Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: • Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. • Some genes show a biparental role-divergent expression at mycelial growth stage. • Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.
Collapse
Affiliation(s)
- Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Dang Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| |
Collapse
|
2
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
3
|
Zhang L, Gong W, Li C, Shen N, Gui Y, Bian Y, Kwan HS, Cheung MK, Xiao Y. RNA-Seq-based high-resolution linkage map reveals the genetic architecture of fruiting body development in shiitake mushroom, Lentinula edodes. Comput Struct Biotechnol J 2021; 19:1641-1653. [PMID: 33868600 PMCID: PMC8026754 DOI: 10.1016/j.csbj.2021.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023] Open
Abstract
We constructed a reference genetic map of Lentinula edodes. We re-assembled a chromosome-level genome of L. edodes. We disclosed three hotspots regions for fruiting body-related traits in shiitake. We scanned candidate genes for fruiting body-related traits.
Fruiting body development (FBD) of mushroom-forming fungi has attracted tremendous interest. However, the genetic and molecular basis of FBD is poorly known. Here, using Lentinula edodes (shiitake) as a model, we deciphered the genetic architecture underlying fruiting body-related traits (FBRTs) by combined genomic, genetic and phenotypic data. Using RNA-Seq of fruiting bodies from 110 dikaryons in a bi-parental mapping population, we constructed an ultra-high-density genetic map of L. edodes (Lemap2.0) with a total length of 810.14 cM, which covered 81.7% of the shiitake genome. A total of 94 scaffolds of the shiitake genome were aligned to Lemap2.0 and re-anchored into nine pseudo-chromosomes. Then via quantitative trait locus (QTL) analysis, we disclosed an outline of the genetic architecture of FBD in shiitake. Twenty-nine QTLs and three main genomic regions associated with FBD of shiitake were identified. Using meta-QTL analysis, seven pleiotropic QTLs for multiple traits were detected, which contributed to the correlations of FBRTs. In the mapped QTLs, the expression of 246 genes were found to significantly correlate with the phenotypic traits. Thirty-three of them were involved in FBD and could represent candidate genes controlling the shape and size of fruiting bodies. Collectively, our findings have advanced our understanding of the genetic regulation of FBD in shiitake and mushroom-forming fungi at large.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Chuang Li
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Nan Shen
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Ying Gui
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| |
Collapse
|
4
|
Song T, Shen Y, Jin Q, Feng W, Fan L, Cai W. Comparative phosphoproteome analysis to identify candidate phosphoproteins involved in blue light-induced brown film formation in Lentinula edodes. PeerJ 2020; 8:e9859. [PMID: 33384895 PMCID: PMC7751435 DOI: 10.7717/peerj.9859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes' brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Gong M, Wang Y, Zhang J, Zhao Y, Wan J, Shang J, Yang R, Wu Y, Li Y, Tan Q, Bao D. Chilling Stress Triggers VvAgo1-Mediated miRNA-Like RNA Biogenesis in Volvariella volvacea. Front Microbiol 2020; 11:523593. [PMID: 33042047 PMCID: PMC7522536 DOI: 10.3389/fmicb.2020.523593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
In Volvariella volvacea, an important species of edible mushroom, cryogenic autolysis is a typical phenomenon that occurs during abnormal metabolism. Analysis of gene expression profiling and qPCR showed that chilling stress (CS) significantly and continuously upregulated only one type of Argonaute in V. volvacea, i.e., VvAgo1. Structural and evolutionary analysis revealed that VvAgo1 belongs to the Ago-like family, and its evolution has involved gene duplication, subsequent gene loss, and purifying selection. Analysis of its interaction network and expression suggested that CS triggers VvAgo1-mediated miRNA-like RNA (milRNA) biogenesis in V. volvacea V23 but not in VH3 (a composite mutant strain from V23 with improved CS resistance). Small RNA sequencing and qPCR analysis confirmed that CS triggered the increased milRNA expression in V23 and not in VH3. The predicted target genes of the increased milRNAs were enriched in several pathways, such as signal transduction and ubiquitination. Heatmap analysis showed that CS altered the expression profile of milRNAs with their target genes related to signal transduction and ubiquitination in V23. Combined analysis of transcriptome and proteome data confirmed that most of the target genes of the increased milRNAs were not translated into proteins. Our observations indicate that CS might trigger VvAgo1-mediated RNAi to facilitate the cryogenic autolysis of V. volvacea.
Collapse
Affiliation(s)
- Ming Gong
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Ying Wang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinsong Zhang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhao
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianing Wan
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junjun Shang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruiheng Yang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Wu
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dapeng Bao
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Kim JY, Kim DY, Park YJ, Jang MJ. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PLoS One 2020; 15:e0230680. [PMID: 32218597 PMCID: PMC7100940 DOI: 10.1371/journal.pone.0230680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/05/2020] [Indexed: 01/04/2023] Open
Abstract
Lentinula edodes is one of the most popular edible mushrooms worldwide and contains important medicinal components such as lentinan, ergosterol, and eritadenine. Mushroom metabolism is regulated by the mycelia and fruit body using light; however, in mushrooms, the underlying molecular mechanisms controlling this process as well as light-induced gene expression remain unclear. Therefore, in this study, we compared morphological changes and gene expression in the fruit bodies of L. edodes cultivated under blue light and continuous darkness. Our results showed that blue light primarily induced pileus growth (diameter and thickness) compared to dark cultivation. Alternatively, stipe length development was promoted by dark cultivation. We also performed RNAseq on L. edodes under the blue light/dark cultivation conditions. A total of 12,051 genes were used for aligning the Illumina raw reads and 762 genes that showed fold change cut-offs of >|2| and significance p-values of <0.05 were selected under blue light condition. Among the genes which showed two-fold changed genes, 221 were upregulated and 541 were downregulated. In order to identify blue light induced candidate genes, differentially expressed genes (DEGs) were selected according to 4-fold changes and validated by RT-PCR. We identified 8 upregulated genes under blue light condition, such as DDR48-heat shock protein, Fasciclin-domain-containing protein and carbohydrate esterase family 4 protein, FAD NAD-binding domain-containing protein that are involved in morphological development of primordium and embryonic muscle development, cell adhesion and affect the structure of cellulosic and non-cellulosic cell walls of fruit body development, and photoreceptor of blue light signaling for fruit body and pigment development, respectively. This study provides valuable insights into the molecular mechanisms underlying the role of blue light in mushroom growth and development and can thus contribute to breeding programs to improve mushroom cultivation.
Collapse
Affiliation(s)
- Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, Republic of Korea
- * E-mail: (JYK); (MJJ)
| | - Dae Yeon Kim
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, Republic of Korea
| | - Youn-Jin Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, Republic of Korea
| | - Myoung-Jun Jang
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, Republic of Korea
- * E-mail: (JYK); (MJJ)
| |
Collapse
|
7
|
SOUSA MADC, COSTA LMAS, PEREIRA TS, ZIED DC, RINKER DL, DIAS ES. Enzyme activity and biochemical changes during production of Lentinula edodes (Berk.) Pegler. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.38517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS One 2018; 13:e0198234. [PMID: 30231028 PMCID: PMC6145500 DOI: 10.1371/journal.pone.0198234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Coprinopsis cinerea is a model mushroom particularly suited for the study of fungal fruiting body development and the evolution of multicellularity in fungi. While microRNAs (miRNAs) have been extensively studied in animals and plants for their essential roles in post-transcriptional regulation of gene expression, miRNAs in fungi are less well characterized and their potential roles in controlling mushroom development remain unknown. To identify miRNA-like RNAs (milRNAs) in C. cinerea and explore their expression patterns during the early developmental transition of mushroom development, small RNA libraries of vegetative mycelium and primordium were generated and putative milRNA candidates were identified following the standards of miRNA prediction in animals and plants. Two out of 22 novel predicted milRNAs, cci-milR-12c and cci-milR-13e-5p, were validated by northern blot and stem-loop reverse transcription real-time PCR. Cci-milR-12c was differentially expressed whereas the expression levels of cci-milR-13e-5p were similar in the two developmental stages. Target prediction of the validated milRNAs resulted in genes associated with fruiting body development, including pheromone, hydrophobin, cytochrome P450, and protein kinase. Essential genes for miRNA biogenesis, including three coding for Dicer-like (DCL), one for Argonaute (AGO), one for AGO-like and one for quelling deficient-2 (QDE-2) proteins, were also identified in the C. cinerea genome. Phylogenetic analysis showed that the DCL and AGO proteins of C. cinerea were more closely related to those in other basidiomycetes and ascomycetes than to those in animals and plants. Taken together, our findings provided the first evidence for milRNAs in the model mushroom and their potential roles in regulating fruiting body development. New information on the evolutionary relationship of milRNA biogenesis proteins across kingdoms has also provided new insights for guiding further functional and evolutionary studies of miRNAs.
Collapse
|
9
|
Song HY, Kim DH, Kim JM. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci Rep 2018; 8:8983. [PMID: 29895888 PMCID: PMC5997629 DOI: 10.1038/s41598-018-27318-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023] Open
Abstract
Lentinula edodes is a popular cultivated edible mushroom with high nutritional and medicinal value. To understand the regulation of gene expression in the dikaryotic mycelium and mature fruiting body in the commercially important Korean L. edodes strain, we first performed comparative transcriptomic analysis, using Illumina HiSeq platform. De novo assembly of these sequences revealed 11,675 representative transcripts in two different stages of L. edodes. A total of 9,092 unigenes were annotated and subjected to Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Gene expression analysis revealed that 2,080 genes were differentially expressed, with 1,503 and 577 upregulated in the mycelium and a mature fruiting body, respectively. Analysis of 18 KEGG categories indicated that fruiting body-specific transcripts were significantly enriched in ‘replication and repair’ and ‘transcription’ pathways, which are important for premeiotic replication, karyogamy, and meiosis during maturation. We also searched for fruiting body-specific proteins such as aspartic protease, gamma-glutamyl transpeptidase, and cyclohexanone monooxygenase, which are involved in fruiting body maturation and isolation of functional substances. These transcriptomes will be useful in elucidating the molecular mechanisms of mature fruiting body development and beneficial properties, and contribute to the characterization of novel genes in L. edodes.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk, 54538, Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk, 54896, Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk, 54538, Korea.
| |
Collapse
|
10
|
Xiang Q, Li J, Qin P, He M, Yu X, Zhao K, Zhang X, Ma M, Chen Q, Chen X, Zeng X, Gu Y. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes. PLoS One 2018; 13:e0190226. [PMID: 29293626 PMCID: PMC5749753 DOI: 10.1371/journal.pone.0190226] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022] Open
Abstract
Lentinula edodes (shiitake mushroom) is a common edible mushroom with a number of potential therapeutic and nutritional applications. It contains various medically important molecules, such as polysaccharides, terpenoids, sterols, and lipids, were contained in this mushroom. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to analyze the mechanisms underlying the biosynthetic pathways of these substances. qRT-PCR is used for accurate analyses of transcript levels owing to its rapidity, sensitivity, and reliability. However, its accuracy and reliability for the quantification of transcripts rely on the expression stability of the reference genes used for data normalization. To ensure the reliability of gene expression analyses using qRT-PCR in L. edodes molecular biology research, it is necessary to systematically evaluate reference genes. In the current study, ten potential reference genes were selected from L. edodes genomic data and their expression levels were measured by qRT-PCR using various samples. The expression stability of each candidate gene was analyzed by three commonly used software packages: geNorm, NormFinder, and BestKeeper. Base on the results, Rpl4 was the most stable reference gene across all experimental conditions, and Atu was the most stable gene among strains. 18S was found to be the best reference gene for different development stages, and Rpl4 was the most stably expressed gene under various nutrient conditions. The present work will contribute to qRT-PCR studies in L. edodes.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- * E-mail: (YG); (QX)
| | - Jin Li
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Peng Qin
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Maolan He
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xianfu Zeng
- Horticulture Research Institute, Chengdu Academy of Agriculture and Forestry Science, Chengdu, Sichuan, P.R. China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- * E-mail: (YG); (QX)
| |
Collapse
|
11
|
Feng K, Wang LY, Liao DJ, Lu XP, Hu DJ, Liang X, Zhao J, Mo ZY, Li SP. Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis. Mycology 2017; 8:231-258. [PMID: 30123644 PMCID: PMC6059060 DOI: 10.1080/21501203.2017.1365314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
The fruiting body formation mechanisms of Cordyceps sinensis are still unclear. To explore the mechanisms, proteins potentially related to the fruiting body formation, proteins from fruiting bodies, and mycelia of Cordyceps species were assessed by using two-dimensional fluorescence difference gel electrophoresis, and the differential expression proteins were identified by matrix-assisted laser desorption/ionisation tandem time of flight mass spectrometry. The results showed that 198 differential expression proteins (252 protein spots) were identified during the fruiting body formation of Cordyceps species, and 24 of them involved in fruiting body development in both C. sinensis and other microorganisms. Especially, enolase and malate dehydrogenase were first found to play an important role in fruiting body development in macro-fungus. The results implied that cAMP signal pathway involved in fruiting body development of C. sinensis, meanwhile glycometabolism, protein metabolism, energy metabolism, and cell reconstruction were more active during fruiting body development. It has become evident that fruiting body formation of C. sinensis is a highly complex differentiation process and requires precise integration of a number of fundamental biological processes. Although the fruiting body formation mechanisms for all these activities remain to be further elucidated, the possible mechanism provides insights into the culture of C. sinensis.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Lan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.,Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, China
| | - Dong-Jiang Liao
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin-Peng Lu
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | | | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zi-Yao Mo
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
12
|
Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis. Appl Environ Microbiol 2017; 83:AEM.02990-16. [PMID: 28314725 DOI: 10.1128/aem.02990-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes postharvest fruiting bodies, transcriptome analysis was carried out using serial analysis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as β-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and thaumatin-like proteins. In addition, we found that several chitin-related genes are upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and a putative chitosanase in GH family 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high-mobility-group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for the loss of postharvest quality newly found in this research will be targets for the future breeding of strains that keep fresh longer than present strains. De novoLentinula edodes genome assembly data will be used for the construction of a complete Lentinula edodes chromosome map for future breeding.
Collapse
|
13
|
León-Ramírez CG, Cabrera-Ponce JL, Martínez-Soto D, Sánchez-Arreguin A, Aréchiga-Carvajal ET, Ruiz-Herrera J. Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda. Fungal Genet Biol 2017; 101:34-45. [PMID: 28285895 DOI: 10.1016/j.fgb.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.
Collapse
Affiliation(s)
- C G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico
| | - J L Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico.
| | - D Martínez-Soto
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico
| | - A Sánchez-Arreguin
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico; Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, Mexico
| | - E T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, Mexico
| | - J Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
14
|
Gong WB, Li L, Zhou Y, Bian YB, Kwan HS, Cheung MK, Xiao Y. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Appl Microbiol Biotechnol 2016; 100:5437-52. [PMID: 26875873 DOI: 10.1007/s00253-016-7347-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/28/2022]
Abstract
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
Collapse
Affiliation(s)
- Wen-Bing Gong
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Lei Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yan Zhou
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yin-Bing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Hoi-Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Man-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Zhang J, Ren A, Chen H, Zhao M, Shi L, Chen M, Wang H, Feng Z. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS One 2015; 10:e0123025. [PMID: 25837428 PMCID: PMC4383556 DOI: 10.1371/journal.pone.0123025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023] Open
Abstract
To elucidate the mechanisms of fruit body development in H. marmoreus, a total of 43609521 high-quality RNA-seq reads were obtained from four developmental stages, including the mycelial knot (H-M), mycelial pigmentation (H-V), primordium (H-P) and fruiting body (H-F) stages. These reads were assembled to obtain 40568 unigenes with an average length of 1074 bp. A total of 26800 (66.06%) unigenes were annotated and analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Eukaryotic Orthologous Group (KOG) databases. Differentially expressed genes (DEGs) from the four transcriptomes were analyzed. The KEGG enrichment analysis revealed that the mycelium pigmentation stage was associated with the MAPK, cAMP, and blue light signal transduction pathways. In addition, expression of the two-component system members changed with the transition from H-M to H-V, suggesting that light affected the expression of genes related to fruit body initiation in H. marmoreus. During the transition from H-V to H-P, stress signals associated with MAPK, cAMP and ROS signals might be the most important inducers. Our data suggested that nitrogen starvation might be one of the most important factors in promoting fruit body maturation, and nitrogen metabolism and mTOR signaling pathway were associated with this process. In addition, 30 genes of interest were analyzed by quantitative real-time PCR to verify their expression profiles at the four developmental stages. This study advances our understanding of the molecular mechanism of fruiting body development in H. marmoreus by identifying a wealth of new genes that may play important roles in mushroom morphogenesis.
Collapse
Affiliation(s)
- Jinjing Zhang
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ang Ren
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingwen Zhao
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Liang Shi
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Feng
- College of Life Science, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People’s Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
16
|
The first set of expressed sequence tags (EST) from the medicinal mushroom Agaricus subrufescens delivers resource for gene discovery and marker development. Appl Microbiol Biotechnol 2014; 98:7879-92. [PMID: 24917377 DOI: 10.1007/s00253-014-5844-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Agaricus subrufescens is one of the most important culinary-medicinal cultivable mushrooms with potentially high-added-value products and extended agronomical valorization. The development of A. subrufescens-related technologies is hampered by, among others, the lack of suitable molecular tools. Thus, this mushroom is considered as a genomic orphan species with a very limited number of available molecular markers or sequences. To fill this gap, this study reports the generation and analysis of the first set of expressed sequence tags (EST) for A. subrufescens. cDNA fragments obtained from young sporophores (SP) and vegetative mycelium in liquid culture (CL) were sequenced using 454 pyrosequencing technology. After assembly process, 4,989 and 5,125 sequences were obtained in SP and CL libraries, respectively. About 87% of the EST had significant similarity with Agaricus bisporus-predicted proteins, and 79% correspond to known proteins. Functional categorization according to Gene Ontology could be assigned to 49% of the sequences. Some gene families potentially involved in bioactive compound biosynthesis could be identified. A total of 232 simple sequence repeats (SSRs) were identified, and a set of 40 EST-SSR polymorphic markers were successfully developed. This EST dataset provides a new resource for gene discovery and molecular marker development. It constitutes a solid basis for further genetic and genomic studies in A. subrufescens.
Collapse
|
17
|
Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl Microbiol Biotechnol 2013; 97:4977-89. [DOI: 10.1007/s00253-013-4832-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 01/10/2023]
|
18
|
Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genomics 2013; 14:195. [PMID: 23514374 PMCID: PMC3606632 DOI: 10.1186/1471-2164-14-195] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/08/2013] [Indexed: 12/02/2022] Open
Abstract
Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Food Research Centre and Food and Nutrition Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, S.A.R., Hong Kong
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 2013; 8:e56686. [PMID: 23418592 PMCID: PMC3572045 DOI: 10.1371/journal.pone.0056686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Bianli Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Molecular Diagnosis Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yijie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yalin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yongfu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guojun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yamu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Barry Hon Cheung Wong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, People's Republic of China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Eastwood DC, Herman B, Noble R, Dobrovin-Pennington A, Sreenivasaprasad S, Burton KS. Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO₂. Fungal Genet Biol 2013; 55:54-66. [PMID: 23354075 DOI: 10.1016/j.fgb.2013.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/03/2012] [Accepted: 01/01/2013] [Indexed: 11/25/2022]
Abstract
Reproductive phase change from vegetative mycelium to the initiation of fruiting in Agaricus bisporus is regulated in large part by the sensing of environmental conditions. A model is proposed in which three separate environmental factors exert control at different stages of the reproductive developmental process change. The eight carbon volatile 1-octen-3-ol controls the early differentiation from vegetative hyphae to multicellular knots; temperature reduction is essential for the later differentiation of primodia; and carbon dioxide level exerts quantitative control on the number of fruiting bodies developed. Analysis of transcriptomic changes during the reproductive phase change was carried out with initiation-specific microarrays, and the newly published A. bisporus genome was used to analyse the promoter regions of differentially regulated genes. Our studies have shown there to be both early and late initiation responses relating to sensing of eight carbon volatiles and temperature respectively. A subset of 45 genes was transcriptionally regulated during the reproductive phase change which exhibited a range of functions including cell structure, nitrogen and carbon metabolism, and sensing and signalling. Three gene clusters linking increased transcription with developmental stage were identified. Analysis of promoter regions revealed cluster-specific conserved motifs indicative of co-ordinated regulation of transcription.
Collapse
Affiliation(s)
- Daniel C Eastwood
- Department of Bioscience, University of Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Wong KS, Huang Q, Au CH, Wang J, Kwan HS. Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. BIORESOURCE TECHNOLOGY 2012; 104:157-164. [PMID: 22130082 DOI: 10.1016/j.biortech.2011.10.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
Laccases from basidiomycetes are efficient enzymes in the degradation of xenobiotics. In this study we aimed to provide an industrially relevant expression system for Lentinula edodes laccases, to characterize their enzymatic properties, and to evaluate their potential in bioremediation. Two 1573-bp allelic laccase genes from L. edodes L54 were cloned based on gene models in the genome sequence. A novel upstream consensus (GCTCCGA/CCGGAG) was proposed as an alternative signature sequence for laccases. Both alleles were overexpressed in Pichia pastoris, purified, and verified by zymograms. Kinetic analyses suggested an order of catalytic efficiency of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)>2,6-dimethoxyphenol>guaiacol>l-3,4-dihydroxyphenylalanine>catechol, and a stable range of working temperature below 40 °C. With the appropriate mediators, 1-hydroxybenzotriazole and 2,2,6,6-tetramethylpiperidine-1-oxyl, the recombinant enzymes could catalyze a 70-100% decolorization of selected dyes and a complete degradation of anthracene. These results laid a solid foundation for the use of L. edodes laccases in bioremediations and for improvement with protein engineering.
Collapse
Affiliation(s)
- Kin-Sing Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | | | | | | | |
Collapse
|
22
|
Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence. Microbiol Res 2011; 166:484-93. [DOI: 10.1016/j.micres.2010.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 09/25/2010] [Indexed: 11/23/2022]
|
23
|
Chum WWY, Kwan HS, Au CH, Kwok ISW, Fung YW. Cataloging and profiling genes expressed in Lentinula edodes fruiting body by massive cDNA pyrosequencing and LongSAGE. Fungal Genet Biol 2011; 48:359-69. [PMID: 21281728 DOI: 10.1016/j.fgb.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/29/2010] [Accepted: 01/23/2011] [Indexed: 11/25/2022]
Abstract
This study investigated the molecular mechanism of the fruiting body development and sporulation in the cap of the Shiitake mushroom, Lentinula edodes. Although there has been much research into L. edodes, there remain significant gaps in our knowledge of how the species reproduces. In order to provide molecular resources and to understand the molecular mechanism of the fruiting body development in basidiomycete comprehensively, we searched for the genes which are important for fruiting body development and sporulation in the cap of mature fruiting body of L. edodes by using the whole-genome approach. Massive cDNA pyrosequencing was used to generate >7000 sequence contigs from mature fruiting bodies. We used Gene Ontology to categorize the contigs to form the catalog of genes expressed at the stage of the mature fruiting body. We also assigned the contigs into the KEGG pathways. The catalog of expressed genes indicates that the mature fruiting bodies (1) sense the external environment, (2) transmit signals to express genes through regulatory systems, (3) produce many proteins, (4) degrade unwanted proteins, (5) perform extensive biosynthesis, (6) generate energy, (7) regulate the internal environment, (8) transport molecules, (9) carry out cell division, and (10) differentiate and develop. After establishing the catalog of expressed genes in L. edodes, we used the LongSAGE approach to analyze the expression levels of genes found in mature fruiting bodies before (FB) and after (FBS) spores appeared. Gene-expression patterns according to GO categories were similar in these two stages. We have also successfully identified genes differentially expressed in FB and FBS. Fold-changes in expression levels of selected genes based on LongSAGE tag counts were similar to those obtained by real-time RT-PCR. The consistency between real-time RT-PCR and LongSAGE results indicates reliability of the LongSAGE results. Overall, this study provides valuable information on the fruiting processes of L. edodes through a combination of massive cDNA pyrosequencing and LongSAGE sequencing, and the knowledge thereby obtained may provide insight into the improvement of the yield of commercially grown Shiitake mushrooms.
Collapse
Affiliation(s)
- W W Y Chum
- Division of Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | | | | | | | | |
Collapse
|
24
|
Mutations in the Cc.rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea. Curr Genet 2010; 56:361-7. [PMID: 20495806 DOI: 10.1007/s00294-010-0307-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
We characterized two developmental mutants of Coprinopsis cinerea, Apa56 and Sac29, newly isolated from a homokaryotic fruiting strain, 326 (Amut Bmut pab1-1), after restriction enzyme-mediated integration (REMI) mutagenesis. Both Apa56 and Sac29 exhibited slower mycelial growth than the parental wild-type strain and failed to initiate fruiting when grown on standard malt extract-yeast extract-glucose medium under 12 h light/12 h dark cycle. Both mutants exhibited unusual differentiation in aerial hyphae: differentiated hyphae lacked clamp connections and exhibited irregular shapes. The differentiated hyphae were similar to the component cells of hyphal knots, but did not form hyphal knots: they spread as dense mycelial mats. When the carbon source (glucose) in the medium was substituted with sucrose or galactose, both strains formed as many hyphal knots as the parental wild type. The hyphal knots formed, however, did not develop into fruiting-body initials, but developed into sclerotia. Molecular genetic analysis revealed that the gene, designated Cc.rmt1, is disrupted by REMI mutagenesis and is responsible for the phenotypes in both mutants. Cc.rmt1 is predicted to encode a putative protein arginine methyltransferase, some homologs of which have been shown to be involved in the regulation of gene expression in eukaryotes.
Collapse
|
25
|
The homologue of Lentinula edodes ctg1, a target for CDC5 and its interacting partner CIPB, from Coprinopsis cinerea is involved in fruitingbody morphogenesis of C. cinerea. MYCOSCIENCE 2009. [DOI: 10.1007/s10267-009-0489-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr Genet 2009; 55:409-23. [PMID: 19488757 DOI: 10.1007/s00294-009-0255-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 01/19/2023]
Abstract
We compared the gene expression patterns of Lentinula edodes fresh fruiting bodies and fruiting bodies 3 days after harvest, by suppression subtractive hybridization, to characterize the physiologic changes that occur after harvest, such as gill browning and cell wall lysis of the fruiting body, which are responsible for the loss of food quality and value. We found increase of transcription levels of several enzyme encoding genes, such as, two phenol oxidases encoding genes (tyr tyrosinase, lcc4 laccase), and several cell wall degradation-related enzyme-encoding genes, such as mixed-linked glucanase (mlg1), chitinases (chi1, chi2), chitin deacetylase (chd1), and chitosanase (cho1), after harvesting. We isolated a putative transcription factor-encoding gene (L. edodes exp1) with high similarity to exp1 from Coprinopsis cinerea, which is involved in autolysis of the cap during spore diffusion. Transcription of L. edodes exp1 increased post-harvest, which suggests that its target genes are up-regulated after harvesting. These enzymes and the transcription factor may be involved in L. edodes fruiting body senescence.
Collapse
|