1
|
Li M. Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology. Microsc Res Tech 2024; 87:631-659. [PMID: 38053519 DOI: 10.1002/jemt.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Single-cell analysis is an emerging and promising frontier in the field of life sciences, which is expected to facilitate the exploration of fundamental laws of physiological and pathological processes. Single-cell analysis allows experimental access to cell-to-cell heterogeneity to reveal the distinctive behaviors of individual cells, offering novel opportunities to dissect the complexity of severe human diseases such as cancers. Among the single-cell analysis tools, atomic force microscopy (AFM) is a powerful and versatile one which is able to nondestructively image the fine topographies and quantitatively measure multiple mechanical properties of single living cancer cells in their native states under aqueous conditions with unprecedented spatiotemporal resolution. Over the past few decades, AFM has been widely utilized to detect the structural and mechanical behaviors of individual cancer cells during the process of tumor formation, invasion, and metastasis, yielding numerous unique insights into tumor pathogenesis from the biomechanical perspective and contributing much to the field of cancer mechanobiology. Here, the achievements of AFM-based analysis of single cancer cells to advance physical oncology are comprehensively summarized, and challenges and future perspectives are also discussed. RESEARCH HIGHLIGHTS: Achievements of AFM in characterizing the structural and mechanical behaviors of single cancer cells are summarized, and future directions are discussed. AFM is not only capable of visualizing cellular fine structures, but can also measure multiple cellular mechanical properties as well as cell-generated mechanical forces. There is still plenty of room for harnessing AFM-based single-cell analysis to advance physical oncology.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhai H, Jin X, Minnick G, Rosenbohm J, Hafiz MAH, Yang R, Meng F. Spatially Guided Construction of Multilayered Epidermal Models Recapturing Structural Hierarchy and Cell-Cell Junctions. SMALL SCIENCE 2022; 2:2200051. [PMID: 36590765 PMCID: PMC9799093 DOI: 10.1002/smsc.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A current challenge in three-dimensional (3D) bioprinting of skin equivalents is to recreate the distinct basal and suprabasal layers and to promote their direct interactions. Such a structural arrangement is essential to establish 3D stratified epidermis disease models, such as for the autoimmune skin disease pemphigus vulgaris (PV), which targets the cell-cell junctions at the interface of the basal and suprabasal layers. Inspired by epithelial regeneration in wound healing, we develop a method that combines 3D bioprinting and spatially guided self-reorganization of keratinocytes to recapture the fine structural hierarchy that lies in the deep layers of the epidermis. Here, keratinocyte-laden fibrin hydrogels are bioprinted to create geographical cues, guiding dynamic self-reorganization of cells through collective migration, keratinocyte differentiation and vertical expansion. This process results in a region of self-organized multilayers (SOMs) that contain the basal to suprabasal transition, marked by the expressed levels of different types of keratins that indicate differentiation. Finally, we demonstrate the reconstructed skin tissue as an in vitro platform to study the pathogenic effects of PV and observe a significant difference in cell-cell junction dissociation from PV antibodies in different epidermis layers, indicating their applications in the preclinical test of possible therapies.
Collapse
Affiliation(s)
- Haiwei Zhai
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Fanben Meng
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Esfahani AM, Minnick G, Rosenbohm J, Zhai H, Jin X, Tajvidi Safa B, Brooks J, Yang R. Microfabricated platforms to investigate cell mechanical properties. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Jin X, Rosenbohm J, Kim E, Esfahani AM, Seiffert-Sinha K, Wahl JK, Lim JY, Sinha AA, Yang R. Modulation of Mechanical Stress Mitigates Anti-Dsg3 Antibody-Induced Dissociation of Cell-Cell Adhesion. Adv Biol (Weinh) 2021; 5:e2000159. [PMID: 33724731 PMCID: PMC7993752 DOI: 10.1002/adbi.202000159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly clear that mechanical stress in adhesive junctions plays a significant role in dictating the fate of cell-cell attachment under physiological conditions. Targeted disruption of cell-cell junctions leads to multiple pathological conditions, among them the life-threatening autoimmune blistering disease pemphigus vulgaris (PV). The dissociation of cell-cell junctions by autoantibodies is the hallmark of PV, however, the detailed mechanisms that result in tissue destruction remain unclear. Thus far, research and therapy in PV have focused primarily on immune mechanisms upstream of autoantibody binding, while the biophysical aspects of the cell-cell dissociation process leading to acantholysis are less well studied. In work aimed at illuminating the cellular consequences of autoantibody attachment, it is reported that externally applied mechanical stress mitigates antibody-induced monolayer fragmentation and inhibits p38 MAPK phosphorylation activated by anti-Dsg3 antibody. Further, it is demonstrated that mechanical stress applied externally to cell monolayers enhances cell contractility via RhoA activation and promotes the strengthening of cortical actin, which ultimately mitigates antibody-induced cell-cell dissociation. The study elevates understanding of the mechanism of acantholysis in PV and shifts the paradigm of PV disease development from a focus solely on immune pathways to highlight the key role of physical transformations at the target cell.
Collapse
Affiliation(s)
- Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
5
|
Kiio TM, Park S. Nano-scientific Application of Atomic Force Microscopy in Pathology: from Molecules to Tissues. Int J Med Sci 2020; 17:844-858. [PMID: 32308537 PMCID: PMC7163363 DOI: 10.7150/ijms.41805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The advantages of atomic force microscopy (AFM) in biological research are its high imaging resolution, sensitivity, and ability to operate in physiological conditions. Over the past decades, rigorous studies have been performed to determine the potential applications of AFM techniques in disease diagnosis and prognosis. Many pathological conditions are accompanied by alterations in the morphology, adhesion properties, mechanical compliances, and molecular composition of cells and tissues. The accurate determination of such alterations can be utilized as a diagnostic and prognostic marker. Alteration in cell morphology represents changes in cell structure and membrane proteins induced by pathologic progression of diseases. Mechanical compliances are also modulated by the active rearrangements of cytoskeleton or extracellular matrix triggered by disease pathogenesis. In addition, adhesion is a critical step in the progression of many diseases including infectious and neurodegenerative diseases. Recent advances in AFM techniques have demonstrated their ability to obtain molecular composition as well as topographic information. The quantitative characterization of molecular alteration in biological specimens in terms of disease progression provides a new avenue to understand the underlying mechanisms of disease onset and progression. In this review, we have highlighted the application of diverse AFM techniques in pathological investigations.
Collapse
Affiliation(s)
| | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Daegu 42601, Republic of Korea
| |
Collapse
|
6
|
Gosenca Matjaž M, Škarabot M, Gašperlin M, Janković B. Lamellar liquid crystals maintain keratinocytes' membrane fluidity: An AFM qualitative and quantitative study. Int J Pharm 2019; 572:118712. [PMID: 31593808 DOI: 10.1016/j.ijpharm.2019.118712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/21/2023]
Abstract
Despite extensive investigations of lamellar liquid crystals for dermal application, the effects of these systems at the cellular level are still not well elucidated. The key aim of this study was to determine the elasticity and morphological features of keratinocytes after exposure to a lamellar liquid crystal system (LLCS) using atomic force microscopy (AFM) as the method of choice. Prior to AFM assessment, a cell proliferation test and light plus fluorescence imaging were applied to determine the sub-toxic concentration of LLCS. According to the AFM results, slightly altered morphology was observed in the case of fixed keratinocytes, while an intact morphology was visualized on live cells. From the quantitative study, decreased Young's moduli were determined for fixed cells (i.e., 8.6 vs. 15.2 MPa and 1.3 vs. 2.9 MPa for ethanol or PFA-fixed LLCS-treated vs. control cells, respectively) and live cells (i.e., ranging from 0.6 to 2.8 for LLCS-treated vs. 1.1-4.5 MPa for untreated cells), clearly demonstrating increased cell elasticity. This is related to improved membrane fluidity as a consequence of interactions between the acyl chains of cell membrane phosphatidylcholine and those of LLCS. What seems to be of major importance is that the study confirms the potential clinical relevance of such systems in treatment of aged skin with characteristically more rigid epithelial cells.
Collapse
Affiliation(s)
- Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Miha Škarabot
- Jožef Stefan Institute, Department of Condensed Matter Physics, Jamova cesta 39, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Biljana Janković
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Peterková L, Rimpelová S, Slepička P, Křížová I, Kasálková NS, Švorčík V, Ruml T. Argon plasma-treated fluorinated ethylene propylene: Growth of primary dermal fibroblasts and mesenchymal stem cells. Tissue Cell 2019; 58:121-129. [PMID: 31133240 DOI: 10.1016/j.tice.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Surface modification is an important step in making a synthetic polymer cytocompatible. We have previously reported improved cytocompatibility of immortalized human keratinocytes (HaCaT) with the otherwise bioinert fluorinated ethylene propylene (FEP) upon treatment with argon plasma discharge. In this article, we show that FEP modified with Ar plasma with the power of 3 and 8 W for 40 and 240 s served as a suitable material for cultivation of primary human dermal fibroblasts (HDF), which showed significantly improved proliferation and spreading comparable to standard tissue culture polystyrene. We also evaluated focal adhesions formed by HDF cells on modified FEP, which were far more numerous compared to pristine FEP. Moreover, we attempted spontaneous osteogenic differentiation of adipose-derived mesenchymal stem cells modified with human telomerase reverse transcriptase on Ar plasma-modified FEP. While the spontaneous osteogenic differentiation was unsuccessful, the cells were able to adhere and differentiated on tested matrices upon the administration of osteodifferentiation medium. These combined findings suggest that the treatment of FEP with Ar plasma comprises and efficient method to enable the adhesion and proliferation of various cell types on an otherwise largely bioinert material.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
8
|
Chen JY, Pan Y, Collins TJ, Penn LS, Xi N, Xi J. Examining the feasibility of a "top-down" approach to enhancing the keratinocyte-implant adhesion. Exp Cell Res 2019; 376:105-113. [PMID: 30772381 DOI: 10.1016/j.yexcr.2019.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022]
Abstract
The adhesion of human epidermal keratinocytes to the implant surface is one of the most critical steps during the patient's recovery from implantation of transcutaneous prosthesis. To improve the success rate of transcutaneous prosthetic implants, we explored a new "top-down" approach to promoting this dynamic adhering process through modulation of upstream cell signaling pathways. To examine the feasibility of this novel approach, we first established an in vitro platform that is capable of providing a non-invasive, real-time, quantitative characterization of the keratinocyte-implant interaction. This platform is based on the dissipation monitoring function of the quartz crystal microbalance with dissipation monitoring (QCM-D) in conjunction with the open-module setup of the QCM-D. We then employed this platform to assess the effects of various pathways-specific modulators on the adhering process of keratinocytes. We demonstrated that this "top-down" approach is as effective in enhancing the adhesion of keratinocytes as the conventional "bottom-up" approach that relies on modifying the substrate surface with the adhesion protein such as fibronectin. We envision that this new "top-down" approach combined with the QCM-D-based in vitro platform will help facilitate the future development of new therapies for enhancing osseointegration and promoting wound healing.
Collapse
Affiliation(s)
- Jennifer Y Chen
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Yue Pan
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Tucker J Collins
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Lynn S Penn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Jun Xi
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Yang R, Broussard JA, Green KJ, Espinosa HD. Techniques to stimulate and interrogate cell-cell adhesion mechanics. EXTREME MECHANICS LETTERS 2018; 20:125-139. [PMID: 30320194 PMCID: PMC6181239 DOI: 10.1016/j.eml.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell-cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell-extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell-cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell-cell adhesive junctions. This review covers established experimental techniques for stimulation and interrogation of cell-cell adhesion from cell pairs to monolayers.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Kathleen J. Green
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, United States
- Institute for Cellular Engineering Technologies, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
10
|
Vielmuth F, Spindler V, Waschke J. Atomic Force Microscopy Provides New Mechanistic Insights into the Pathogenesis of Pemphigus. Front Immunol 2018; 9:485. [PMID: 29643851 PMCID: PMC5883869 DOI: 10.3389/fimmu.2018.00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/23/2018] [Indexed: 12/19/2022] Open
Abstract
Autoantibodies binding to the extracellular domains of desmoglein (Dsg) 3 and 1 are critical in the pathogenesis of pemphigus by mechanisms leading to impaired function of desmosomes and blister formation in the epidermis and mucous membranes. Desmosomes are highly organized protein complexes which provide strong intercellular adhesion. Desmosomal cadherins such as Dsgs, proteins of the cadherin superfamily which interact via their extracellular domains in Ca2+-dependent manner, are the transmembrane adhesion molecules clustered within desmosomes. Investigations on pemphigus cover a wide range of experimental approaches including biophysical methods. Especially atomic force microscopy (AFM) has recently been applied increasingly because it allows the analysis of native materials such as cultured cells and tissues under near-physiological conditions. AFM provides information about the mechanical properties of the sample together with detailed interaction analyses of adhesion molecules. With AFM, it was recently demonstrated that autoantibodies directly inhibit Dsg interactions on the surface of living keratinocytes, a phenomenon which has long been considered the main mechanism causing loss of cell cohesion in pemphigus. In addition, AFM allows to study how signaling pathways altered in pemphigus control binding properties of Dsgs. More general, AFM and other biophysical studies recently revealed the importance of keratin filaments for regulation of Dsg binding and keratinocyte mechanical properties. In this mini-review, we reevaluate AFM studies in pemphigus and keratinocyte research, recapitulate what is known about the interaction mechanisms of desmosomal cadherins and discuss the advantages and limitations of AFM in these regards.
Collapse
Affiliation(s)
| | | | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Lamboni L, Li Y, Liu J, Yang G. Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound-Healing Biomaterial. Biomacromolecules 2016; 17:3076-84. [DOI: 10.1021/acs.biomac.6b00995] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lallepak Lamboni
- Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 People’s Republic of China
| | - Ying Li
- Department
of Chemistry Institute for Advanced Study, Division of Biomedical
Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, China
| | - Jianfeng Liu
- The
Key Lab of Molecular Biophysics of MOE, College of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 People’s Republic of China
| |
Collapse
|
12
|
Vielmuth F, Waschke J, Spindler V. Loss of Desmoglein Binding Is Not Sufficient for Keratinocyte Dissociation in Pemphigus. J Invest Dermatol 2015; 135:3068-3077. [DOI: 10.1038/jid.2015.324] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 11/10/2022]
|
13
|
Li M, Liu L, Xi N, Wang Y. Biological Applications of a Nanomanipulator Based on AFM: In situ visualization and quantification of cellular behaviors at the single-molecule level. IEEE NANOTECHNOLOGY MAGAZINE 2015. [DOI: 10.1109/mnano.2015.2441110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Sepulveda-Medina P, Katsenovich Y, Musaramthota V, Lee M, Lee B, Dua R, Lagos L. The effect of uranium on bacterial viability and cell surface morphology using atomic force microscopy in the presence of bicarbonate ions. Res Microbiol 2015; 166:419-427. [DOI: 10.1016/j.resmic.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
15
|
Yang R, Song B, Sun Z, Lai KWC, Fung CKM, Patterson KC, Seiffert-Sinha K, Sinha AA, Xi N. Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:137-45. [PMID: 25200612 PMCID: PMC4280342 DOI: 10.1016/j.nano.2014.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhiyong Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - King Wai Chiu Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | | | - Kevin C Patterson
- College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, 14203, USA.
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Vielmuth F, Hartlieb E, Kugelmann D, Waschke J, Spindler V. Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:511-20. [PMID: 25510735 DOI: 10.1016/j.nano.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/30/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
Desmosomes provide strong cell-cell adhesion which is crucial for the integrity of tissues such as the epidermis. However, nothing is known about the distribution and binding properties of desmosomal adhesion molecules on keratinocytes. Here we used atomic force microscopy (AFM) to simultaneously visualize the topography of living human keratinocytes and the distribution and binding properties of the desmosomal adhesion molecule desmoglein 3 (Dsg3). Using recombinant Dsg3 as sensor, binding events were detectable diffusely and in clusters on the cell surface and at areas of cell-cell contact. This was blocked by removing Ca(2+) and by addition of Dsg3-specific antibodies indicating homophilic Dsg3 binding. Binding forces of Dsg3 molecules were lower on the cell surface compared to areas of cell-cell contact. Our data for the first time directly demonstrate the occurrence of Dsg3 molecules outside of desmosomes and show that Dsg3 adhesive properties differ depending on their localization. From the clinical editor: Using atomic force microscopy in the study of keratinocytes, this study directly demonstrates the occurrence of desmoglein 3 molecules outside of desmosomes and reveales that the adhesive properties of these molecules do differ depending on their localization.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Eva Hartlieb
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
17
|
Fang Y, Iu CYY, Lui CNP, Zou Y, Fung CKM, Li HW, Xi N, Yung KKL, Lai KWC. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci Rep 2014; 4:7074. [PMID: 25399549 PMCID: PMC4233341 DOI: 10.1038/srep07074] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022] Open
Abstract
Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuqiang Fang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Cathy N. P. Lui
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yukai Zou
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Hung Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Xi
- Michigan State University, East Lansing, USA
| | - Ken K. L. Yung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - King W. C. Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
18
|
Shin MK, Lim HK, Kang BK, Lee GJ, Uhm YK, Lee MH. Nanostructural change of human melanocytes stimulated with α-melanocyte stimulating hormone observed by atomic force microscopy. SCANNING 2014; 36:570-575. [PMID: 25176438 DOI: 10.1002/sca.21156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
It is well known that α-melanocyte stimulating hormone (α-MSH) induces melanization, but structural changes of melanocytes after α-MSH exposure are not well known. This study investigated the serial morphologic changes of human cultured melanocytes after stimulation with α-MSH using atomic force microscopy (AFM). Cultured human melanocytes were treated with α-MSH for 7 days. Contact mode AFM images were obtained using a NANOstation II and fixed melanocytes were scanned in PBS solution at a resolution of 512 × 512 pixels, at a scan speed of 0.4 line/s. The surface roughness and pore-like structures of the melanocytes were measured from topographic images using the Scanning Probe Imaging Processor. The surface roughness of cell body did not change significantly over time. All three roughness parameters (Sa, Sq, Sz) inside the pore-like structures on the dendrites increased significantly. The number of pore-like structures increased and the length and the breadth of pore-like structures also increased gradually. Pore-like structures changed statistically significantly in response to α-MSH stimulation. Further study will be needed to clarify whether the nature of pore-like structures is related to movement of melanosomes.
Collapse
Affiliation(s)
- Min Kyung Shin
- Department of Dermatology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1323-33. [DOI: 10.1016/j.nano.2014.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/18/2022]
|
20
|
Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot. Biophys J 2014; 105:40-7. [PMID: 23823222 DOI: 10.1016/j.bpj.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/12/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.
Collapse
|
21
|
Wang H, Shi Q, Nakajima M, Takeuchi M, Chen T, Di P, Huang Q, Fukuda T. Rail-Guided Multi-Robot System for 3D Cellular Hydrogel Assembly with Coordinated Nanomanipulation. INT J ADV ROBOT SYST 2014. [DOI: 10.5772/58734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 3D assembly of micro-/nano-building blocks with multi-nanomanipulator coordinated manipulation is one of the central elements of nanomanipulation. A novel rail-guided nanomanipulation system was proposed for the assembly of a cellular vascular-like hydrogel microchannel. The system was equipped with three nanomanipulators and was restricted on the rail in order to realize the arbitrary change of the end-effectors during the assembly. It was set up with hybrid motors to achieve both a large operating space and a 30 nm positional resolution. The 2D components such as the assembly units were fabricated through the encapsulation of cells in the hydrogel. The coordinated manipulation strategies among the multi-nanomanipulators were designed with vision feedback and were demonstrated through the bottom-up assembly of the vascular-like microtube. As a result, the multi-layered microchannel was assembled through the cooperation of the nanomanipulation system.
Collapse
Affiliation(s)
- Huaping Wang
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| | - Qing Shi
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| | - Masahiro Nakajima
- Institute for Advanced Research, Nagoya University, Nagoya, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masaru Takeuchi
- Institute for Advanced Research, Nagoya University, Nagoya, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Tao Chen
- Jiangsu Provincial Key Labratory of Advanced Robotics & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Pei Di
- Institute for Advanced Research, Nagoya University, Nagoya, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Qiang Huang
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| | - Toshio Fukuda
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| |
Collapse
|
22
|
Yang R, Xi N, Lai KWC, Patterson K, Chen H, Song B, Qu C, Zhong B, Wang DH. Cellular biophysical dynamics and ion channel activities detected by AFM-based nanorobotic manipulator in insulinoma β-cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2013; 9:636-45. [PMID: 23178285 PMCID: PMC3594338 DOI: 10.1016/j.nano.2012.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/13/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Distinct biochemical, electrochemical and electromechanical coupling processes of pancreatic β-cells may well underlie different response patterns of insulin release from glucose and capsaicin stimulation. Intracellular Ca(2+) levels increased rapidly and dose-dependently upon glucose stimulation, accompanied with about threefold rapid increases in cellular stiffness. Subsequently, cellular stiffness diminished rapidly and settled at a value about twofold of the baseline. Capsaicin caused a similar transient increase in intracellular Ca(2+) changes. However, cellular stiffness increased gradually to about twofold until leveling off. The current study characterizes for the first time the biophysical properties underlying glucose-induced biphasic responses of insulin secretion, distinctive from the slow and single-phased stiffness response to capsaicin despite similar changes in intracellular Ca(2+) levels. The integrated AFM nanorobotics and optical investigation enables the fine dissection of mechano-property from ion channel activities in response to specific and non-specific agonist stimulation, providing novel biomechanical markers for the insulin secretion process. FROM THE CLINICAL EDITOR This study characterizes the biophysical properties underlying glucose-induced biphasic responses of insulin secretion. Integrated AFM nanorobotics and optical investigations provided novel biomechanical markers for the insulin secretion process.
Collapse
Affiliation(s)
- Ruiguo Yang
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Ning Xi
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - King Wai Chiu Lai
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kevin Patterson
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Hongzhi Chen
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Bo Song
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Chengeng Qu
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Beihua Zhong
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824 USA
- Guangzhou Medical College, Guangzhou, China
| | - Donna H. Wang
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824 USA
- Neuroscience Program, Cell and Molecular Biology Program in Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
23
|
Beard JD, Guy RH, Gordeev SN. Mechanical Tomography of Human Corneocytes with a Nanoneedle. J Invest Dermatol 2013; 133:1565-71. [DOI: 10.1038/jid.2012.465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Aryaei A, Jayasuriya AC. Mechanical properties of human amniotic fluid stem cells using nanoindentation. J Biomech 2013; 46:1524-30. [PMID: 23628151 PMCID: PMC4930323 DOI: 10.1016/j.jbiomech.2013.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to obtain nanomechanical properties of living cells focusing on human amniotic fluid stem (hAFS) cell using nanoindentation techniques. We modified the conventional method of atomic force microscopy (AFM) in aqueous environment for cell imaging and indentation to avoid inherent difficulties. Moreover, we determined the elastic modulus of murine osteoblast (OB6) cells and hAFS cells at the nucleus and cytoskeleton using force-displacement curves and Hertz theory. Since OB6 cell line has been widely used, it was selected to validate and compare the obtained results with the previous research studies. As a result, we were able to capture high resolution images through utilization of the tapping mode without adding protein or using fixation methods. The maximum depth of indentation was kept below 15% of the cell thickness to minimize the effect of substrate hardness. Nanostructural details on the surface of cells were visualized by AFM and fluorescence microscopy. The cytoskeletal fibers presented remarkable increase in elastic modulus as compared with the nucleus. Furthermore, our results showed that the elastic modulus of hAFS cell edge (31.6 kPa) was lower than that of OB6 cell edge (42.2 kPa). In addition, the elastic modulus of nucleus was 13.9 kPa for hAFS cell and 26.9 kPa for OB6 cells. Differences in cell elastic modulus possibly resulted from the type and number of actin cytoskeleton organization in these two cell types.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Mechanical Engineering, University of Toledo, 1650 N. Westwood Avenue, Toledo, OH 43606-3390, USA
| | - Ambalangodage C. Jayasuriya
- Department of Orthopaedic Surgery, University of Toledo, MS 1094, 3065 Arlington Avenue, Toledo, OH 43614-5807, USA
| |
Collapse
|
25
|
Ning Xi, Bo Song, Ruiguo Yang, King Wai Chiu Lai, Hongzhi Chen, Chengeng Qu, Liangliang Chen. Video Rate Atomic Force Microscopy: Use of compressive scanning for nanoscale video imaging. IEEE NANOTECHNOLOGY MAGAZINE 2013. [DOI: 10.1109/mnano.2013.2237711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Klusch A, Ponce L, Gorzelanny C, Schäfer I, Schneider SW, Ringkamp M, Holloschi A, Schmelz M, Hafner M, Petersen M. Coculture model of sensory neurites and keratinocytes to investigate functional interaction: chemical stimulation and atomic force microscope-transmitted mechanical stimulation combined with live-cell imaging. J Invest Dermatol 2012; 133:1387-90. [PMID: 23235528 DOI: 10.1038/jid.2012.471] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Song B, Yang R, Xi N, Patterson KC, Qu C, Lai KWC. Cellular-level surgery using nano robots. ACTA ACUST UNITED AC 2012; 17:425-34. [PMID: 23015517 DOI: 10.1177/2211068212460665] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.
Collapse
Affiliation(s)
- Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J Struct Biol 2012; 178:1-7. [PMID: 22369932 DOI: 10.1016/j.jsb.2012.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/27/2012] [Accepted: 02/08/2012] [Indexed: 12/29/2022]
Abstract
The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype.
Collapse
Affiliation(s)
- Celine Heu
- University of Franche-Comte, Laboratoire de Biologie Cellulaire, EA4268, FED4234, UFR des Sciences Medicales & Pharmaceutiques, 19 rue Ambroise Pare, 25030 Besancon cedex, France.
| | | | | | | |
Collapse
|
30
|
Xi N, Fung CKM, Yang R, Lai KWC, Wang DH, Seiffert-Sinha K, Sinha AA, Li G, Liu L. Atomic force microscopy as nanorobot. Methods Mol Biol 2011; 736:485-503. [PMID: 21660745 DOI: 10.1007/978-1-61779-105-5_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules under physiological condition at the nanometer scale. In this chapter, an AFM-based nanorobot for biological studies is introduced. Using the AFM tip as an end effector, the AFM can be modified into a nanorobot that can manipulate biological objects at the single-molecule level. By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on the cell membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFM image based on interaction force information and objects' model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface. The development of the AFM-based nanorobotic system enables us to conduct in situ imaging, sensing, and manipulation simultaneously at the nanometer scale (e.g., protein and DNA levels). The AFM-based nanorobotic system offers several advantages and capabilities for studying structure-function relationships of biological specimens. As a result, many biomedical applications can be achieved by the AFM-based nanorobotic system.
Collapse
Affiliation(s)
- Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang RG, Xi N, Lai KWC, Zhong BH, Fung CKM, Qu CG, Wang DH. Nanomechanical analysis of insulinoma cells after glucose and capsaicin stimulation using atomic force microscopy. Acta Pharmacol Sin 2011; 32:853-60. [PMID: 21623392 DOI: 10.1038/aps.2011.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Glucose stimulates insulin secretion from pancreatic islet β cells by altering ion channel activity and membrane potential in the β cells. TRPV1 channel is expressed in the β cells and capsaicin induces insulin secretion similarly to glucose. This study aims to investigate the biophysical properties of the β cells upon stimulation of membrane channels using an atomic force microscopic (AFM) nanoindentation system. METHODS ATCC insulinoma cell line was used. Cell stiffness, a marker of reorganization of cell membrane and cytoskeleton due to ion channel activation, was measured in real time using an integrated AFM nanoindentation system. Cell height that represented structural changes was simultaneously recorded along with cell stiffness. RESULTS After administration of glucose (16, 20 and 40 mmol/L), the cell stiffness was markedly increased in a dose-dependent manner, whereas cell height was changed in an opposite way. Lower concentrations of capsaicin (1.67 × 10(-9) and 1.67 × 10(-8) mol/L) increased the cell stiffness without altering cell height. In contrast, higher concentrations of capsaicin (1.67 × 10(-6) and 1.67 × 10(-7) mol/L) had no effect on the cell physical properties. CONCLUSION A unique bio-nanomechanical signature was identified for characterizing biophysical properties of insulinoma cells upon general or specific activation of membrane channels. This study may deepen our understanding of stimulus-secretion coupling of pancreatic islet cells that leads to insulin secretion.
Collapse
|
32
|
Polyakov P, Soussen C, Duan J, Duval JFL, Brie D, Francius G. Automated force volume image processing for biological samples. PLoS One 2011; 6:e18887. [PMID: 21559483 PMCID: PMC3084721 DOI: 10.1371/journal.pone.0018887] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/24/2011] [Indexed: 01/09/2023] Open
Abstract
Atomic force microscopy (AFM) has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature) which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.
Collapse
Affiliation(s)
- Pavel Polyakov
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - Charles Soussen
- Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - Junbo Duan
- Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - Jérôme F. L. Duval
- Laboratoire Environnement et Minéralurgie, LEM, UMR 7569, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - David Brie
- Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
- * E-mail: (GF); (DB)
| | - Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
- * E-mail: (GF); (DB)
| |
Collapse
|
33
|
Fung CKM, Xi N, Yang R, Seiffert-Sinha K, Lai KWC, Sinha AA. Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM). IEEE Trans Nanobioscience 2011; 10:9-15. [PMID: 21349797 PMCID: PMC3852989 DOI: 10.1109/tnb.2011.2113397] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present the use of atomic force microscopy (AFM) to visualize and quantify the dynamics of epithelial cell junction interactions under physiological and pathophysiological conditions at the nanoscale. Desmosomal junctions are critical cellular adhesion components within epithelial tissues and blistering skin diseases such as Pemphigus are the result in the disruption of these components. However, these structures are complex and mechanically inhomogeneous, making them difficult to study. The mechanisms of autoantibody mediated keratinocyte disassembly remain largely unknown. Here, we have used AFM technology to image and measure the mechanical properties of living skin epithelial cells in culture. We demonstrate that force measurement data can distinguish cells cultured with and without autoantibody treatment. Our demonstration of the use of AFM for in situ imaging and elasticity measurements at the local, or tissue level opens potential new avenues for the investigation of disease mechanisms and monitoring of therapeutic strategies in blistering skin diseases.
Collapse
Affiliation(s)
- Carmen Kar Man Fung
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Ning Xi
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA (Phone: 517-432-1925; fax: 517-353-1980; )
| | - Ruiguo Yang
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Kristina Seiffert-Sinha
- Division of Dermatology and Cutaneous Sciences, Center for Investigative Dermatology, Michigan State University, East Lansing, MI 48824 USA
| | - King Wai Chiu Lai
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Animesh A. Sinha
- Division of Dermatology and Cutaneous Sciences, Center for Investigative Dermatology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
34
|
Xi N, Man Fung C, Yang R, Seiffert-Sinha K, Chiu Lai K, Sinha A. Bionanomanipulation Using Atomic Force Microscopy. IEEE NANOTECHNOLOGY MAGAZINE 2010. [DOI: 10.1109/mnano.2010.935968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|