1
|
Mosleh AM, El-Sherif AA, El-Sayed AA, Fahmy HM. Characterization and Cytotoxicity Assessment of Synthesized Palladium (II) Complex-Encapsulated Zinc Oxide Nanoparticles for Cancer Treatment. Cell Biochem Biophys 2024; 82:1225-1234. [PMID: 38744782 DOI: 10.1007/s12013-024-01273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 μg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.
Collapse
Affiliation(s)
- Ayaat M Mosleh
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Mahdavi B, Ebrahimi S, Farzi GA, Maleki B, Mohammadhosseini M. Ephedra intermedia Schrenk & C. A. Mey Methanol Extract: Nanoencapsulation by Mini-Emulsion Polymerization and its Release Trend under Simulated Conditions of the Human Body. Chem Biodivers 2024; 21:e202400033. [PMID: 38488267 DOI: 10.1002/cbdv.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
In this research, the extract of Ephedra intermedia Schrenk & C.A.Mey. was encapsulated using the mini-emulsion polymerization method based on methyl methacrylate polymers with a nanometer size. The encapsulated extract was characterized using different analytical techniques. Furthermore, the loading efficiency and release of the plant extract were examined. FT-IR spectroscopy confirmed the formation of an expectational product. The TEM and SEM imaging showed a spherical morphology for the prepared encapsulated extract. The average size of poly-methyl-methacrylate nanoparticles containing Ephedra extract was found to be approximately 47 nm. The extract loading efficiency and encapsulation efficiency test demonstrated a dose-depending behavior on E. intermedia extract for both analyses, which is highly advantageous for traversing biological barriers. The release assay shows a controlled release for the extract at phosphate buffer solution (PBS). A 38 % release was calculated after 36 hours. The results obtained from the present study reveal that encapsulating the plant extract is a suitable alternative to control and increase their medicinal properties.
Collapse
Affiliation(s)
- Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Sanaz Ebrahimi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Gholam Ali Farzi
- Department of Polymer Science, Faculty of Chemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
3
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
4
|
Green synthesized zinc oxide nanoparticles from Cinnamomum verum bark extract inhibited cell growth and induced caspase-mediated apoptosis in oral cancer KB cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
6
|
Mittas N, Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Theodoroula NF, Papazoglou AS, Karagiannidis E, Sofidis G, Moysidis DV, Stalikas N, Papa A, Chatzidimitriou D, Sianos G, Angelis L, Vizirianakis IS. A Risk-Stratification Machine Learning Framework for the Prediction of Coronary Artery Disease Severity: Insights From the GESS Trial. Front Cardiovasc Med 2022; 8:812182. [PMID: 35118145 PMCID: PMC8804295 DOI: 10.3389/fcvm.2021.812182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Our study aims to develop a data-driven framework utilizing heterogenous electronic medical and clinical records and advanced Machine Learning (ML) approaches for: (i) the identification of critical risk factors affecting the complexity of Coronary Artery Disease (CAD), as assessed via the SYNTAX score; and (ii) the development of ML prediction models for accurate estimation of the expected SYNTAX score. We propose a two-part modeling technique separating the process into two distinct phases: (a) a binary classification task for predicting, whether a patient is more likely to present with a non-zero SYNTAX score; and (b) a regression task to predict the expected SYNTAX score accountable to individual patients with a non-zero SYNTAX score. The framework is based on data collected from the GESS trial (NCT03150680) comprising electronic medical and clinical records for 303 adult patients with suspected CAD, having undergone invasive coronary angiography in AHEPA University Hospital of Thessaloniki, Greece. The deployment of the proposed approach demonstrated that atherogenic index of plasma levels, diabetes mellitus and hypertension can be considered as important risk factors for discriminating patients into zero- and non-zero SYNTAX score groups, whereas diastolic and systolic arterial blood pressure, peripheral vascular disease and body mass index can be considered as significant risk factors for providing an accurate estimation of the expected SYNTAX score, given that a patient belongs to the non-zero SYNTAX score group. The experimental findings utilizing the identified set of important risk factors indicate a sufficient prediction performance for the Support Vector Machine model (classification task) with an F-measure score of ~0.71 and the Support Vector Regression model (regression task) with a median absolute error value of ~6.5. The proposed data-driven framework described herein present evidence of the prediction capacity and the potential clinical usefulness of the developed risk-stratification models. However, further experimentation in a larger clinical setting is needed to ensure the practical utility of the presented models in a way to contribute to a more personalized management and counseling of CAD patients.
Collapse
Affiliation(s)
- Nikolaos Mittas
- Department of Chemistry, International Hellenic University, Kavala, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Sofidis
- First Department of Cardiology, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios V. Moysidis
- First Department of Cardiology, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Stalikas
- First Department of Cardiology, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- *Correspondence: Ioannis S. Vizirianakis
| |
Collapse
|
7
|
Rani V, Verma Y, Rana SVS. Zinc Oxide Nanoparticles Ameliorate Dimethylnitrosamine-Induced Renal Toxicity in Rat. Appl Biochem Biotechnol 2021; 194:1699-1715. [PMID: 34855113 DOI: 10.1007/s12010-021-03689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Dimethylnitrosamine (DMN) is an established carcinogen. It is toxic to several organs, viz., the liver, kidney, and lungs, and immune system. Several drugs have been used in the past to modulate its toxicity using experimental animal models. The present study was designed to investigate the effect of zinc oxide nanoparticles (ZnONPs) on renal toxicity caused by DMN in laboratory rat. Since oxidative mechanisms are mainly involved in its toxicity, the proposed study focuses on the amelioration of oxidative stress response by ZnONPs, if any. The present results show that administration of ZnONPs (50 mg/kg body weight/rat) to DMN (2 μl/100 g body weight/rat)-treated rats diminuted the concentration of malonaldehyde, H2O2, and NO in the kidney. However, reduced glutathione (GSH) concentration increased after ZnONP treatment. Results on glutathione S-transferase and glutathione peroxidase favored its antioxidative effects. These results are supported by the recovery of oxidative DNA damage and less pronounced histopathological changes in the kidney. It is hypothesized that ZnONPs might be toxic to renal tissue; however, its strong therapeutic/antioxidative potential helps in ameliorating DMN-induced renal toxicity in rat.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
8
|
Daoud NM, Aly MS, Ezzo OH, Ali NA. Zinc oxide nanoparticles improve testicular steroidogenesis machinery dysfunction in benzo[α]pyrene-challenged rats. Sci Rep 2021; 11:11675. [PMID: 34083679 PMCID: PMC8175368 DOI: 10.1038/s41598-021-91226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) demonstrate potential positive effects on reproduction. However, their protective role against the reproductive toxicity pollutants has not yet been adequately studied at the molecular level. This study was designed to assess this objective using Benzo[α]pyrene B[a]P as reproductive toxic agent . Forty-eight mature male rats were randomly distributed into six groups: Group1 (negative control); Groups 2 and 3 (positive control I and II, wherein the animals were treated with 10 and 30 mg ZnO NPs/kg BW, respectively); Group 4 (B[a]P group; treated with 150 mg B[a]P/kg BW); and Groups 5 and 6 (subjected to B[a]P treatment co-administered with different concentrations of ZnO NPs). We investigated oxidative stress biomarkers; cholesterol side-chain cleavage enzyme (CYP11A1), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD) gene expression; testosterone levels; and histopathology of the liver, kidney, and testicles. The B[a]P-treated group showed significant deterioration in all reproductive parameters and displayed induced oxidative stress. ZnO NPs remarkably reduced oxidative stress, effectively upregulated the mRNA levels of CY11A1, StAR, and 3β-HSD, and improved the histological pictures in the examined organs. At their investigated doses and given their NPs properties, ZnO NPs demonstrated a marked ameliorative effect against the reproductive toxic effects of B[a]P. Further studies are needed to thoroughly investigate the molecular mechanisms of ZnO NPs.
Collapse
Affiliation(s)
- Niveen M. Daoud
- grid.419725.c0000 0001 2151 8157Veterinary Research Division, Animal Reproduction and A. I. Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| | - Mohamed S. Aly
- grid.419725.c0000 0001 2151 8157Veterinary Research Division, Animal Reproduction and A. I. Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| | - Omaima H. Ezzo
- grid.419725.c0000 0001 2151 8157Veterinary Research Division, Animal Reproduction and A. I. Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| | - Naglaa A. Ali
- grid.419725.c0000 0001 2151 8157Medical Research Division, Hormones Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| |
Collapse
|
9
|
Asem H, Zheng W, Nilsson F, Zhang Y, Hedenqvist MS, Hassan M, Malmström E. Functional Nanocarriers for Drug Delivery by Surface Engineering of Polymeric Nanoparticle Post-Polymerization-Induced Self-Assembly. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Heba Asem
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Wenyi Zheng
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm SE-141 86, Sweden
| | - Fritjof Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Division of Polymeric Materials, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yuning Zhang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Mikael S. Hedenqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Division of Polymeric Materials, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Moustapha Hassan
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm SE-141 86, Sweden
- Clinical Research Centrum, Department of Stem Cell Transplantation (CAST), Karolinska University Hospital-Huddinge, Stockholm SE-141 86, Sweden
| | - Eva Malmström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
10
|
Biresaw SS, Damte SM, Taneja P. Green Synthesized Silver Nanoparticles: A Promising Anticancer Agent. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x19500273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles (AgNPs) have attracted a great deal of attention in the recent years. It is mostly due to their availability, chemical stability, catalytic activity, conductivity, biocompatibility and anticancer activity. There are three major approaches for AgNPs synthesis; i.e., chemical, physical, and biological methods. Today, many chemical and physical methods have become less popular due to usage of hazardous chemicals or their high costs, respectively. The green method has introduced an appropriate substitute synthesis strategy for the conventional physical and chemical approaches. The utilization of the plant extracts as reducing, stabilizing and coating agent of AgNPs is an interesting eco-friendly approach leading to high efficiency. The anticancer synergistic effects among the AgNPs and phytochemicals will enhance their therapeutic potentials. Surprisingly, although many studies have demonstrated the significant enhancement in cytotoxic activities of plant-mediated AgNPs toward cancerous cells, these nanoparticles (NPs) have been found nontoxic to normal human cells in their therapeutic concentrations. This paper provides a specific insight into the mechanism of plant-mediated AgNPs synthesis, their anticancer and cytotoxic activities in vitro cancer cells, in vivo model animals and clinical trials.
Collapse
Affiliation(s)
- Samuel Shiferaw Biresaw
- Department of Biotechnology and Life Sciences, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
- Life Sciences, Wollo University, Dessie, South Wollo 1145, Ethiopia
| | - Samrawit Mekonnen Damte
- Department of Biotechnology and Life Sciences, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Pankaj Taneja
- Department of Biotechnology and Life Sciences, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
11
|
Zor F, Selek FN, Orlando G, Williams DF. Biocompatibility in regenerative nanomedicine. Nanomedicine (Lond) 2019; 14:2763-2775. [PMID: 31612774 DOI: 10.2217/nnm-2019-0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biocompatibility is a very common word that is used within biomaterial science and used for description of the interactions between the foreign material and the body. However, the meaning of biocompatibility as well as the mechanisms that collectively constitutes is still unclear. With the advance of nanotechnology, new concerns have been observed related to biocompatibility of these biomaterials. Due to their small size and variability of their physical and chemical properties, nanoparticles' (NP) distribution within the body and interactions with the target cells and tissues are highly variable. Here, we tried to provide an overview about NPs, the concept of biocompatibility and biocompatibility-related issues in nanomedicine and several different NPs.
Collapse
Affiliation(s)
- Fatih Zor
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Fatma Nurefsan Selek
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - David F Williams
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
12
|
R MA, B G, M S MJ, G A, N S. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109840. [PMID: 31349511 DOI: 10.1016/j.msec.2019.109840] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Development of novel approach for cancer therapy, sparing healthy normal cells overcoming the limitation of available therapies is of prime importance for cervical cancer treatment. Recently metal oxide based chemotherapeutics has emanated as a promising approach for cancer therapy. Hence, the present study was carried out to assess the anticancer potential of zinc oxide nanoparticles (ZnONPs) synthesized using biogenic source, aqueous extract of Gracilaria edulis. The prepared ZnONPs were characterized using UV-Visible spectroscopy, FTIR, XRD, FESEM, EDX and HRTEM. The anticancer potential of ZnONPs against cervical cancer cell lines (SiHa cells) was evaluated using MTT and the mechanism of apoptosis was evaluated using various staining techniques. UV-Vis spectroscopy exhibited absorption band at 367 nm specific for ZnONPs and the average energy gap was calculated as 3.37 eV. Further characterization by XRD, TEM, and FESEM illustrated the formation of wurtzite structure (hexagonal phase) with size ranging between 20 and 50 nm. EDS of SEM analysis confirmed the presence of Zn and O, which was further substantiated by XPS analysis. PL emission studies showed UV emission peak at 387 nm and broad visible emission peak at 520 nm. Zeta potential value of -28.2 mV depicted the stability of ZnONPs in the dispersion medium. Results of anticancer potential illustrated that ZnONPs exhibited cytotoxic effect against SiHa cells in a dose dependent manner with IC50 value of 35 ± 0.03 μg/ml. AO/EtBr dual staining, JC-1 staining, Hoechst 33258 nuclear staining and comet assay illustrated the ZnONPs induced ROS mediated mitochondrial dependent apoptotic cell death in SiHa cells. Further, flow cytometric analysis using Annexin V/FITC dye demonstrated that ZnONPs induced both apoptotic and necrotic mediated death in SiHa cells. Over all the results conclude that ZnONPs synthesized using algal sources might act as a new medicinal approach for the treatment of cervical carcinoma in conjugation with the current therapy.
Collapse
Affiliation(s)
- Mohamed Asik R
- Department of Animal Science, Bharadhidasan University, Triuchirappalli, Tamil Nadu, India; National Center for Alternativesto Animal Experiments, Bharathidasan University, Tiruchirappalli, India
| | - Gowdhami B
- Department of Animal Science, Bharadhidasan University, Triuchirappalli, Tamil Nadu, India; National Center for Alternativesto Animal Experiments, Bharathidasan University, Tiruchirappalli, India
| | | | - Archunan G
- Department of Animal Science, Bharadhidasan University, Triuchirappalli, Tamil Nadu, India; National Center for Alternativesto Animal Experiments, Bharathidasan University, Tiruchirappalli, India
| | - Suganthy N
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
13
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Sun J, Sun L, Li J, Xu J, Wan Z, Ouyang Z, Liang L, Li S, Zeng D. A multi-functional polymeric carrier for simultaneous positron emission tomography imaging and combination therapy. Acta Biomater 2018; 75:312-322. [PMID: 29885530 PMCID: PMC6119490 DOI: 10.1016/j.actbio.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023]
Abstract
Multifunctional nanoplatforms offering simultaneous imaging and therapeutic functions have been recognized as a highly promising strategy for personalized nanomedicine. In this work, we synthesized a farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) based triblock copolymer POEG-b-PVBA-b-PFTS (POVF) composed of a poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic block, a poly(FTS) hydrophobic block, and a poly(4-vinylbenzyl azide) (PVBA) middle block. The POVF polymer itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it could serve as a carrier to effectively encapsulate paclitaxel (PTX) to form stable PTX/POVF mixed micelles with a diameter around 100 nm. Meanwhile, POVF polymer provides the active azide group for incorporating a positron emission tomography (PET) imaging modality via a facile strategy based on metal-free click chemistry. This nanocarrier system could not only be used for co-delivery of PTX and FTS, but also for PET imaging guided drug delivery. In the 4T1.2 tumor bearing mice, PET imaging showed rapid uptake and slow clearance of radiolabeled PTX/POVF nanomicelles in the tumor tissues. In addition, the FTS-based multi-functional nanocarrier was able to inhibit tumor growth effectively, and the co-delivery of PTX by the carrier further improved the therapeutic effect. STATEMENT OF SIGNIFICANCE Due to the intrinsic heterogeneity of cancer and variability in individual patient response, personalized nanomedicine based on multi-functional carriers that integrate the functionalities of combination therapy and imaging guidance is highly demanded. Here we developed a multi-functional nanocarrier based on triblock copolymer POEG-b-PVBA-b-PFTS (POVF), which could not only be used for co-delivery of anticancer drugs PTX and Ras inhibitor FTS, but also for PET imaging guided drug delivery. The POVF carrier itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it was effective in formulating PTX with high drug loading capacity, which further enhanced the tumor inhibition effect. Meanwhile, we developed a simple and universal approach to incorporate a PET radioisotope (Zr-89 and Cu-64) into the azide-containing PTX/POVF micelles via metal-free click chemistry in aqueous solution. The radiolabeled PTX/POVF micelles exhibited excellent serum stability, rapid tumor uptake and slow clearance, which validated the feasibility of the PET image-guided delivery of PTX/POVF micelles.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lingyi Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jianchun Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zubin Ouyang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lei Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Dexing Zeng
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
15
|
Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today 2018; 23:1007-1015. [PMID: 29155026 PMCID: PMC6897362 DOI: 10.1016/j.drudis.2017.11.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) diseases are rapidly increasing globally. Currently used therapeutic agents to treat CNS diseases exhibit significant efficacy. However, the inability of these drugs to cross the blood-brain barrier (BBB) and invasiveness of the technologies to achieve localized drug delivery in disease-specific parts of the brain have thwarted pain-free and complete treatment of CNS diseases. Therefore, the safe, non-invasive, and targeted delivery of drugs to the brain using nanoparticles (NPs) is currently receiving considerable research attention. Here, we highlight advances in state-of-the-art personalized nanomedicine for the treatment of CNS diseases (with a focus on dementia), the related challenges, possible solutions, and prospects for nano-enabled personalized medicine.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Vinay Bhardwaj
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
16
|
Blocker SJ, Douglas KA, Polin LA, Lee H, Hendriks BS, Lalo E, Chen W, Shields AF. Liposomal 64Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts. Am J Cancer Res 2017; 7:4229-4239. [PMID: 29158822 PMCID: PMC5695009 DOI: 10.7150/thno.21688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Liposomes (LP) deliver drug to tumors due to enhanced permeability and retention (EPR). LP were labeled with 64Cu for positron emission tomography (PET) to image tumor localization. Bevacizumab (bev), a VEGF targeted antibody, may modify LP delivery by altering tumor EPR and this change can also be imaged. Objective: Assess the utility of 64Cu-labeled LP for PET in measuring altered LP delivery early after treatment with bev. Methods: HT-29 human colorectal adenocarcinoma tumors were grown subcutaneously in SCID mice. Empty LP MM-DX-929 (Merrimack Pharmaceuticals, Inc. Cambridge, MA) were labeled with 64CuCl2 chelated with 4-DEAP-ATSC. Tumor-bearing mice received ~200-300 μCi of 64Cu-MM-DX-929 and imaged with microPET. All mice were scanned before and after the treatment period, in which half of the mice received bev for one week. Scans were compared for changes in LP accumulation during this time. Initially, tissues were collected after the second PET for biodistribution measurements and histological analysis. Subsequent groups were divided for further treatment. Tumor growth following bev treatment, with or without LP-I, was assessed compared to untreated controls. Results: PET scans of untreated mice showed increased uptake of 64Cu-MM-DX-929, with a mean change in tumor SUVmax of 43.9%±6.6% (n=10) after 7 days. Conversely, images of treated mice showed that liposome delivery did not increase, with changes in SUVmax of 7.6%±4.8% (n=12). Changes in tumor SUVmax were significantly different between both groups (p=0.0003). Histology of tumor tissues indicated that short-term bev was able to alter vessel size. Therapeutically, while bev monotherapy, LP-I monotherapy, and treatment with bev followed by LP-I all slowed HT-29 tumor growth compared to controls, combination provided no therapeutic benefit. Conclusions: PET with tracer LP 64Cu-MM-DX-929 can detect significant differences in LP delivery to colon tumors treated with bev when compared to untreated controls. Imaging with 64Cu-MM-DX-929 is sensitive enough to measure drug-induced changes in LP localization which can have an effect on outcomes of treatment with LP.
Collapse
|
17
|
Yordanov G, Gemeiner P, Katrlík J. Study of interactions between blood plasma proteins and poly(butyl cyanoacrylate) drug nanocarriers by surface plasmon resonance. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
18
|
Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y. Radiolabeled theranostics: magnetic and gold nanoparticles. BIOIMPACTS 2016; 6:169-181. [PMID: 27853680 PMCID: PMC5108989 DOI: 10.15171/bi.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: Growing advances in nanotechnology have facilitated the applications of newly emerged nanomaterials in the field of biomedical/pharmaceutical sciences. Following this trend, the multifunctional nanoparticles (NPs) play a significant role in development of advanced drug delivery systems (DDSs) such as diapeutics/theranostics used for simultaneous diagnosis and therapy. Multifunctional radiolabeled NPs with capability of detecting, visualizing and destroying diseased cells with least side effects have been considered as an emerging filed in presentation of the best choice in solving the therapeutic problems. Functionalized magnetic and gold NPs (MNPs and GNPs, respectively) have produced the potential of nanoparticles as sensitive multifunctional probes for molecular imaging, photothermal therapy and drug delivery and targeting.
Methods: In this study, we review the most recent works on the improvement of various techniques for development of radiolabeled magnetic and gold nanoprobes, and discuss the methods for targeted imaging and therapies.
Results: The receptor-specific radiopharmaceuticals have been developed to localized radiotherapy in disease sites. Application of advanced multimodal imaging methods and related modality imaging agents labeled with various radioisotopes (e.g., 125I, 111In, 64Cu, 68Ga, 99mTc) and MNPs/GNPs have significant effects on treatment and prognosis of cancer therapy. In addition, the surface modification with biocompatible polymer such as polyethylene glycol (PEG) have resulted in development of stealth NPs that can evade the opsonization and immune clearance. These long-circulating agents can be decorated with homing agents as well as radioisotopes for targeted imaging and therapy purposes.
Conclusion: The modified MNPs or GNPs have wide applications in concurrent diagnosis and therapy of various malignancies. Once armed with radioisotopes, these nanosystems (NSs) can be exploited for combined multimodality imaging with photothermal/photodynamic therapy while delivering the loaded drugs or genes to the targeted cells/tissues. These NSs will be a game changer in combating various cancers.
Collapse
Affiliation(s)
- Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Chen H, Gratton E, Digman MA. Self-assisted optothermal trapping of gold nanorods under two-photon excitation. Methods Appl Fluoresc 2016; 4:035003. [PMID: 28355163 DOI: 10.1088/2050-6120/4/3/035003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a self-assisted optothermal trapping and patterning of gold nanorods (GNRs) on glass surfaces with a femtosecond laser. We show that GNRs are not only the trapping targets, but also can enhance the optothermal trapping of other particles. This trapping phenomenon is the net result of thermophoresis and a convective flow caused by localized heating. The heating is due to the conversion of absorbed photons into heat at GNR's longitudinal surface plasmon resonance (LSPR) wavelength. First, we investigated the optothermal trapping of GNRs at their LSPR wavelength on the glass surface with as low as 0.5 mW laser power. The trapping range was observed to be larger than a typical field of view, e.g. 210 µm × 210 µm here. Second, by adjusting the distance between the laser focus and the glass surface, ring patterns of GNRs on the glass surface were obtained. These patterns could be controlled by the laser power and the numerical aperture of the microscope objective. Moreover, we examined the spectral emission of GNRs under different trapping conditions using the spectral phasor approach to reveal the temperature and association status of GNRs. Our study will help understanding manipulation of flows in solution and in biological systems that can be applied in future investigations of GNR-induced heating and flows.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
20
|
Satalkar P, Elger BS, Hunziker P, Shaw D. Challenges of clinical translation in nanomedicine: A qualitative study. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:893-900. [DOI: 10.1016/j.nano.2015.12.376] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022]
|
21
|
Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG, Spanakis M. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol Rep 2016; 35:1891-904. [PMID: 26781205 DOI: 10.3892/or.2016.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 11/05/2022] Open
Abstract
The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - George A Mystridis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Patras, Patras GR-26504, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Marios Spanakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Crete, Greece
| |
Collapse
|
22
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
23
|
Bisht G, Rayamajhi S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine (Rij) 2016; 3:9. [PMID: 29942384 PMCID: PMC5998263 DOI: 10.5772/63437] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/04/2016] [Indexed: 01/16/2023] Open
Abstract
Nanoparticles, with their selective targeting capabilities and superior efficacy, are becoming increasingly important in modern cancer therapy and starting to overshadow traditional cancer therapies such as chemotherapy radiation and surgery. ZnO nanoparticles, with their unique properties such as biocompatibility, high selectivity, enhanced cytotoxicity and easy synthesis, may be a promising anticancer agent. Zinc, as one of the major trace elements of the human body and co-factor of more than 300 mammalian enzymes, plays an important role in maintaining crucial cellular processes including oxidative stress, DNA replication, DNA repair, cell cycle progression and apoptosis. Thus, it is evident that an alteration in zinc levels in cancer cells can cause a deleterious effect. Research has shown that low zinc concentration in cells leads to the initiation and progression of cancer and high zinc concentration shows toxic effects. Zinc-mediated protein activity disequilibrium and oxidative stress through reactive oxygen species (ROS) may be the probable mechanism of this cytotoxic effect. The selective localization of ZnO nanoparticles towards cancer cells due to enhanced permeability and retention (EPR) effect and electrostatic interaction and selective cytotoxicity due to increased ROS present in cancer cells show that ZnO nanoparticles can selectively target and kill cancer cells, making them a promising anticancer agent.
Collapse
Affiliation(s)
- Gunjan Bisht
- Department of Chemical Science and Engineering, Kathmandu University Dhulikhel, Nepal
| | - Sagar Rayamajhi
- Department of Biotechnology, Kathmandu University Dhulikhel, Nepal
| |
Collapse
|
24
|
Angelova N, Yordanov G. Albumin-stabilized epirubicin nanocarriers of core–shell type based on poly(butyl cyanoacrylate) and poly(styrene-co-maleic acid). Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Kubischok N. Assessing the future: past and present visions of nanomedicine. Nanomedicine (Lond) 2015; 10:3195-7. [DOI: 10.2217/nnm.15.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nils Kubischok
- University of Duisburg-Essen, Department of Sociology, Lotharstr. 65, 47057 Duisburg, Germany
| |
Collapse
|
26
|
Azhdarzadeh M, Saei AA, Sharifi S, Hajipour MJ, Alkilany AM, Sharifzadeh M, Ramazani F, Laurent S, Mashaghi A, Mahmoudi M. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine (Lond) 2015; 10:2931-52. [PMID: 26370561 DOI: 10.2217/nnm.15.130] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As research progresses, nanoparticles (NPs) are becoming increasingly promising tools for medical diagnostics and therapeutics. Despite this rise, their potential risks to human health, together with environmental issues, has led to increasing concerns regarding their use. As such, a comprehensive understanding of the interactions that occur at the nano-bio interface is required in order to design safe, reliable and efficient NPs for biomedical applications. To this end, extensive studies have been dedicated to probing the factors that define various properties of the nano-bio interface. However, the literature remains unclear and contains conflicting reports on cytotoxicity and biological fates, even for seemingly identical NPs. This uncertainty reveals that we frequently fail to identify and control relevant parameters that unambiguously and reproducibly determine the toxicity of nanoparticles, both in vitro and in vivo. An effective understanding of the toxicological impact of NPs requires the consideration of relevant factors, including the temperature of the target tissue, plasma gradient, cell shape, interfacial effects and personalized protein corona. In this review, we discuss the factors that play a critical role in nano-bio interface processes and nanotoxicity. A proper combinatorial assessment of these factors substantially changes our insight into the cytotoxicity, distribution and biological fate of NPs.
Collapse
Affiliation(s)
- Morteza Azhdarzadeh
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ata Saei
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shahriar Sharifi
- Department of Biomaterials Science & Technology, University of Twente, The Netherlands
| | - Mohammad J Hajipour
- Department of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Sharifzadeh
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramazani
- Faculty of Medicine & Dentistry, University of Alberta, 116 St & 85 Ave, T6G 2R3, Edmonton, Canada
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
| | - Alireza Mashaghi
- Harvard Medical School, Harvard University, 25 Shattuck St, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Vedernikova IA. Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079978015030036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Vizirianakis IS. Harnessing pharmacological knowledge for personalized medicine and pharmacotyping: Challenges and lessons learned. World J Pharmacol 2014; 3:110-119. [DOI: 10.5497/wjp.v3.i4.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The contribution of the genetic make-up to an individual’s capacity has long been recognized in modern pharmacology as a crucial factor leading to therapy inefficiency and toxicity, negatively impacting the economic burden of healthcare and restricting the monitoring of diseases. In practical terms, and in order for drug prescription to be improved toward meeting the personalized medicine concept in drug delivery, the maximum clinical outcome for most, if not all, patients must be achieved, i.e., pharmacotyping. Such a direction although promising and of high expectation from the society, it is however hardly to be afforded for healthcare worldwide. To overcome any existed hurdles, this means that practical clinical utility of personalized medicine decisions have to be documented and validated in the clinical setting. The latter implies for drug delivery the efficient implementation of previously gained in vivo pharmacology experience with pharmacogenomics knowledge. As an approach to work faster and in a more productive way, the elaboration of advanced physiologically based pharmacokinetics models is discussed. And in better clarifying this topic, the example of tamoxifen is thoroughly presented. Overall, pharmacotyping represents a major challenge in modern therapeutics for which pharmacologists need to work in successfully fulfilling this task.
Collapse
|
29
|
TPLUFIB-WEB: A fuzzy linguistic Web system to help in the treatment of low back pain problems. Knowl Based Syst 2014. [DOI: 10.1016/j.knosys.2014.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Bosetti R, Ferrandina G, Marneffe W, Scambia G, Vereeck L. Cost–effectiveness of gemcitabine versus PEGylated liposomal doxorubicin for recurrent or progressive ovarian cancer: comparing chemotherapy with nanotherapy. Nanomedicine (Lond) 2014; 9:2175-86. [DOI: 10.2217/nnm.14.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article examines the cost–effectiveness of chemotherapy (gemcitabine) versus nanotherapy (PEGylated liposomal doxorubicin) in the treatment of ovarian cancer. Significant differences in costs were mainly due to the initial drug costs, which were €1285.28 in favor of chemotherapy. These costs were more than offset by hospitalization costs, which were €2670.21 in favor of the nanotherapy. The cost per quality-adjusted life week (QALW) for the nanotherapy was estimated to be €220.92/QALW for the base case and ranged from €170–318/QALW based on model assumptions. The clinical benefit associated with nanotherapy was achieved, yielding not only positive cost–effectiveness results, but also, surprisingly, financial savings. Although more studies are necessary, this first comprehensive analysis supports the further use of nanotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Rita Bosetti
- Hasselt University, Department of Applied Economics, Martelarenlaan 42 – BE3500 Hasselt, Belgium
| | - Gabriella Ferrandina
- Catholic University Sacred Heart, Department of Obstetrics & Gynecology, Rome, Italy
| | - Wim Marneffe
- Hasselt University, Department of Applied Economics, Martelarenlaan 42 – BE3500 Hasselt, Belgium
| | - Giovanni Scambia
- Catholic University Sacred Heart, Department of Obstetrics & Gynecology, Rome, Italy
| | - Lode Vereeck
- Hasselt University, Department of Applied Economics, Martelarenlaan 42 – BE3500 Hasselt, Belgium
| |
Collapse
|
31
|
Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P, Penny C, Pillay V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 2014; 9:589-613. [PMID: 24489467 PMCID: PMC3904834 DOI: 10.2147/ijn.s50941] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanotechnology, although still in its infantile stages, has the potential to revolutionize the diagnosis, treatment, and monitoring of disease progression and success of therapy for numerous diseases and conditions, not least of which is cancer. As it is a leading cause of mortality worldwide, early cancer detection, as well as safe and efficacious therapeutic intervention, will be indispensable in improving the prognosis related to cancers and overall survival rate, as well as health-related quality of life of patients diagnosed with cancer. The development of a relatively new field of nanomedicine, which combines various domains and technologies including nanotechnology, medicine, biology, pharmacology, mathematics, physics, and chemistry, has yielded different approaches to addressing these challenges. Of particular relevance in cancer, nanosystems have shown appreciable success in the realm of diagnosis and treatment. Characteristics attributable to these systems on account of the nanoscale size range allow for individualization of therapy, passive targeting, the attachment of targeting moieties for more specific targeting, minimally invasive procedures, and real-time imaging and monitoring of in vivo processes. Furthermore, incorporation into nanosystems may have the potential to reintroduce into clinical practice drugs that are no longer used because of various shortfalls, as well as aid in the registration of new, potent drugs with suboptimal pharmacokinetic profiles. Research into the development of nanosystems for cancer diagnosis and therapy is thus a rapidly emerging and viable field of study.
Collapse
Affiliation(s)
- Derusha Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lomas Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Medical Oncology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Bosetti R, Marneffe W, Vereeck L. Assessing the need for quality-adjusted cost-effectiveness studies of nanotechnological cancer therapies. Nanomedicine (Lond) 2013; 8:487-97. [PMID: 23477338 DOI: 10.2217/nnm.13.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New therapies, such as nanotechnology-based cancer treatments, typically entail high acquisition costs. Their use can be justified, however, by their superior cost-effectiveness. This article assesses the quality of cost-effectiveness analyses of nanotechnological cancer therapies by screening nine major studies. They conclude that nanotherapies are cost effective for the treatment of ovarian and breast cancer, as well as multiple myeloma, but not for other types of cancer. However, these studies have some serious methodological flaws. Typically, the results are not quality adjusted, although both length and quality of life are affected. Moreover, only fragmented direct medical costs are included, neglecting indirect costs that impose a significant economic burden on patients and society. Finally, cost definitions differ widely making any comparison between studies virtually impossible. This article concludes that economic research of nanotechnology-based therapeutics is still in its infancy. It warns that incomplete economic analysis may lead to inefficient policy recommendations.
Collapse
Affiliation(s)
- Rita Bosetti
- Hasselt University, Department of Applied Economics, Martelarenlaan 42, BE3500 Hasselt, Belgium.
| | | | | |
Collapse
|
33
|
Ku B, Kim JE, Chung BH, Chung BG. Retinoic acid-polyethyleneimine complex nanoparticles for embryonic stem cell-derived neuronal differentiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9857-9862. [PMID: 23844968 DOI: 10.1021/la4015543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We synthesized functional retinoic acid (RA)-polyethyleneimine (PEI) complex nanoparticles. NH groups of branched PEI chains were electrostatically interacted with carboxyl groups of RA surfaces to form cationic RA-PEI complex nanoparticles. We observed that the average diameter of RA-PEI complex nanoparticles was approximately 70 nm and the morphology of complex nanoparticles was homogeneous circular shape. To confirm the synthesis of RA-PEI complex nanoparticles, we characterized complex nanoparticles using (1)H nuclear magnetic resonance (NMR), indicating that hydrophilic branched PEI chains were covered on hydrophobic RA surfaces. Furthermore, we demonstrated that pH enabled the control of amounts of RA released from RA-PEI complex nanoparticles, showing that RA exposed to acidic pH 5 was steadily released (∼76%) from complex nanoparticles, whereas RA was rapidly released (∼97%) at pH 7.4 on day 11. We also observed that RA-PEI complex nanoparticles induced embryonic stem (ES) cell-derived neuronal differentiation. Therefore, this RA-PEI complex nanoparticle is a potentially powerful tool for directing murine ES cell fate.
Collapse
Affiliation(s)
- Boram Ku
- Department of Bionano Technology, Hanyang University, Ansan, Korea
| | | | | | | |
Collapse
|
34
|
Bernardi A, Frozza RL, Hoppe JB, Salbego C, Pohlmann AR, Battastini AMO, Guterres SS. The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways. Int J Nanomedicine 2013; 8:711-28. [PMID: 23440594 PMCID: PMC3578504 DOI: 10.2147/ijn.s40284] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite recent advances in radiotherapy, chemotherapy, and surgical techniques, glioblastoma multiforme (GBM) prognosis remains dismal. There is an urgent need for new therapeutic strategies. Nanoparticles of biodegradable polymers for anticancer drug delivery have attracted intense interest in recent years because they can provide sustained, controlled, and targeted delivery. Here, we investigate the mechanisms involved in the antiproliferative effect of indomethacin-loaded lipid-core nanocapsules (IndOH-LNC) in glioma cells. IndOH-LNC were able to reduce cell viability by inducing apoptotic cell death in C6 and U138-MG glioma cell lines. Interestingly, IndOH-LNC did not affect the viability of primary astrocytes, suggesting that this formulation selectively targeted transformed cells. Mechanistically, IndOH-LNC induced inhibition of cell growth and cell-cycle arrest to be correlated with the inactivation of AKT and β-catenin and the activation of GSK-3β. IndOH-LNC also induced G0/G1 and/or G2/M phase arrest, which was accompanied by a decrease in the levels of cyclin D1, cyclin B1, pRb, and pcdc2 and an increase in the levels of Wee1 CDK inhibitor p21WAF1. Additionally, IndOH-LNC promoted GBM cell differentiation, observed as upregulation of glial fibrillary acidic protein (GFAP) protein and downregulation of nestin and CD133. Taken together, the crosstalk among antiproliferative effects, cell-cycle arrest, apoptosis, and cell differentiation should be considered when tailoring pharmacological interventions aimed at reducing glioma growth by using formulations with multiples targets, such as IndOH-LNC.
Collapse
Affiliation(s)
- Andressa Bernardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJR, Decuzzi P. In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine (Lond) 2012. [PMID: 23199308 DOI: 10.2217/nnm.12.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS To predict the deposition of nanoparticles in a patient-specific arterial tree as a function of the vascular architecture, flow conditions, receptor surface density and nanoparticle properties. MATERIALS & METHODS The patient-specific vascular geometry is reconstructed from computed tomography angiography images. The isogeometric analysis framework integrated with a special boundary condition for the firm wall adhesion of nanoparticles is implemented. A parallel plate flow chamber system is used to validate the computational model in vitro. RESULTS Particle adhesion is dramatically affected by changes in patient-specific attributes, such as branching angle and receptor density. The adhesion pattern correlates well with the spatial and temporal distribution of the wall shear rates. For the case considered, the larger (2.0 µm) particles adhere two-times more in the lower branches of the arterial tree, whereas the smaller (0.5 µm) particles deposit more in the upper branches. CONCLUSION Our computational framework in conjunction with patient-specific attributes can be used to rationally select nanoparticle properties to personalize, and thus optimize, therapeutic interventions.
Collapse
Affiliation(s)
- Shaolie S Hossain
- Department of Translational Imaging, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Room R8-218, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 2012; 64:1488-507. [PMID: 22820528 DOI: 10.1016/j.addr.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic effects remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles.
Collapse
|
37
|
Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 2012; 64:1394-416. [PMID: 22728642 DOI: 10.1016/j.addr.2012.06.006] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/28/2022]
Abstract
The application of nanotechnology in the biomedical field, known as nanomedicine, has gained much interest in the recent past, as versatile strategy for selective drug delivery and diagnostic purposes. The already encouraging results obtained with monofunctional nanomedicines have directed the efforts of the scientists towards the creation of "nanotheranostics" (i.e. theranostic nanomedicines) which integrate imaging and therapeutic functions in a single platform. Nanotheranostics hold great promises because they combine the simultaneous non-invasive diagnosis and treatment of diseases with the exciting possibility to monitor in real time drug release and distribution, thus predicting and validating the effectiveness of the therapy. Due to these features nanotheranostics are extremely attractive for optimizing treatment outcomes in cancer and other severe diseases. The following step is the attempt to use nanotheranostics for performing a real personalized medicine which will tailor optimized treatment to each patient, taking into account the individual variability. Clinical application of nanotheranostics would enable earlier detection and treatment of diseases and earlier assessment of the response, thus allowing screening for patients which would potentially respond to therapy and have higher possibilities of a favorable outcome. This concept makes nanotheranostics extremely appealing to elaborate personalized therapeutic protocols for achieving the maximal benefit along with a high safety profile. Among the several systems developed up to now, this review focuses on the nanotheranostics which, due to the promising results, show the highest potential of translation to clinical applications and may transform into concrete practice the concept of personalized nanomedicine.
Collapse
Affiliation(s)
- Simona Mura
- Univ Paris-Sud, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | | |
Collapse
|
38
|
Vizirianakis IS, Fatouros DG. Personalized nanomedicine: paving the way to the practical clinical utility of genomics and nanotechnology advancements. Adv Drug Deliv Rev 2012; 64:1359-62. [PMID: 22983333 DOI: 10.1016/j.addr.2012.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | |
Collapse
|
39
|
Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1363-84. [PMID: 22917779 DOI: 10.1016/j.addr.2012.08.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022]
Abstract
The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials.
Collapse
|
40
|
Aziz MS, Jukgoljan B, Daud S, Tan TS, Ali J, Yupapin PP. Molecular filter on-chip design for drug targeting use. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2012; 41:178-83. [DOI: 10.3109/10731199.2012.715087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y, Li J, Di Y, Fu D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 2012; 38:566-79. [PMID: 22655679 DOI: 10.1016/j.ctrv.2012.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a devastating disease with incidence increasing at an alarming rate and survival not improved substantially during the past three decades. Although enormous efforts have been made in early detection and comprehensive treatment for this disease, little or no survival improvement was obtained, which necessitates the development of novel strategies. Emerging inorganic nanomaterials, such as carbon nanotubes, quantum dots, mesoporous silica/gold/supermagnetic nanoparticles, have been widely used in biomedical research with great optimism for cancer diagnosis and therapy. Such nanoparticles possess unique optical, electrical, magnetic and/or electrochemical properties. With such properties along with their impressive nano-size, these particles can be targeted to cancer cells, tissues, and ligands efficiently and monitored with extreme precision in real-time. In additional to liposome, dendrimer, and polymeric nanoparticles, they are considered the most promising nanomaterials with the capability of both cancer detection and multimodality treatment. Emerging approaches to harness nanotechnology to optimize the existing diagnostic and therapeutic tools for pancreatic cancer have been extensively explored during the recent years. Future options for early detection, individual therapy and monitoring responses of pancreatic cancer are focused on multifunctional nanomedicine. In this review, we present the recent development of clinically applicable inorganic nanoparticles, with focus on the diagnosis and treatment of pancreatic cancer. Furthermore, their advantages in theranostic nanomedicine, and challenges of translation to clinical practice, are discussed.
Collapse
Affiliation(s)
- Feng Yang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 2012; 18:3229-41. [PMID: 22669131 PMCID: PMC3916007 DOI: 10.1158/1078-0432.ccr-11-2938] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues, which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities that are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems that could not be effectively solved in the past and include overcoming formulation issues, multidrug-resistance phenomenon, and penetrating cellular barriers that may limit device accessibility to intended targets, such as the blood-brain barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise toward new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, UNC Institute for Pharmacogenomics and Individualized Therapy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012. [DOI: 10.1007/978-3-642-24181-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
|
45
|
Özgüç M. Genetic testing: predictive value of genotyping for diagnosis and management of disease. EPMA J 2011; 2:173-9. [PMID: 23199147 PMCID: PMC3405385 DOI: 10.1007/s13167-011-0077-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/29/2011] [Indexed: 12/13/2022]
Abstract
This article describes predictive, preventive value of genetic tests and the implication of the use of testing for personalized treatment. This year marks the 10th anniversity of publishing of the sequence of the human genome. One important area of application of this mega project is a development of genetic tests for mutation detection in single gene disorders that has impact for pediatric age group patients and analyzing susceptibility genes as risk factors in common disorders. Types of genetic tests, new emerging technologies will enable developments of high-throughput approaches by microarrays of great application capacity as described here. As it is usual for all technologies used in health care, bioethical concerns has to be delt with. The ethical, social and governance issues associated with genetic testing are discussed.
Collapse
Affiliation(s)
- Meral Özgüç
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
46
|
Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A. Nanomedicine: application areas and development prospects. Int J Mol Sci 2011; 12:3303-21. [PMID: 21686186 PMCID: PMC3116192 DOI: 10.3390/ijms12053303] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/06/2011] [Accepted: 05/16/2011] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology, along with related concepts such as nanomaterials, nanostructures and nanoparticles, has become a priority area for scientific research and technological development. Nanotechnology, i.e., the creation and utilization of materials and devices at nanometer scale, already has multiple applications in electronics and other fields. However, the greatest expectations are for its application in biotechnology and health, with the direct impact these could have on the quality of health in future societies. The emerging discipline of nanomedicine brings nanotechnology and medicine together in order to develop novel therapies and improve existing treatments. In nanomedicine, atoms and molecules are manipulated to produce nanostructures of the same size as biomolecules for interaction with human cells. This procedure offers a range of new solutions for diagnoses and “smart” treatments by stimulating the body’s own repair mechanisms. It will enhance the early diagnosis and treatment of diseases such as cancer, diabetes, Alzheimer’s, Parkinson’s and cardiovascular diseases. Preventive medicine may then become a reality.
Collapse
Affiliation(s)
- Houria Boulaiz
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.B.); (A.A.); Tel.:+34-958-243534; Fax: +34-958-246296
| | - Pablo J. Alvarez
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Alberto Ramirez
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Juan A. Marchal
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Jose Prados
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Fernando Rodríguez-Serrano
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jáen 23071, Spain; E-Mail:
| | - Consolación Melguizo
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
| | - Antonia Aranega
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada 18071, Spain; E-Mails: (P.J.A.); (A.R.); (J.A.M.); (J.P.); (F.R.-S.); (C.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.B.); (A.A.); Tel.:+34-958-243534; Fax: +34-958-246296
| |
Collapse
|