1
|
Kirkby M, Sabri AHB, Holmes A, Moss GPJ, Scurr D. PAMAM dendrimers as mediators of dermal and transdermal drug delivery: a review. J Pharm Pharmacol 2024; 76:1284-1300. [PMID: 39045860 DOI: 10.1093/jpp/rgae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Poly(amidoamine) dendrimers have been widely investigated as potential nanomaterials that can enhance the skin permeation of topically applied drugs. This article reviews the studies that have used dendrimers as penetration enhancers and examines the mechanisms by which enhancement is claimed. KEY FINDINGS A wide range of studies have demonstrated that, in certain circumstances and for certain drugs, the incorporation of dendrimers into a topically applied formulation can significantly increase the amount of drug passing into and through the skin. In some cases, dendrimers offered little or no enhancement of skin permeation, suggesting that the drug-dendrimer interaction and the selection of a specific dendrimer were central to ensuring optimal enhancement of skin permeation. Significant interactions between dendrimers and other formulation components were also reported in some cases. SUMMARY Dendrimers offer substantial potential for enhancing drug delivery into and across the skin, putatively by mechanisms that include occlusion and changes to surface tension. However, most of these studies are conducted in vitro and limited progress has been made beyond such laboratory studies, some of which are conducted using membranes of limited relevance to humans, such as rodent skin. Thus, the outcomes and claims of such studies should be treated with caution.
Collapse
Affiliation(s)
- Melissa Kirkby
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Akmal Hidayat Bin Sabri
- The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Amy Holmes
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gary P J Moss
- The School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - David Scurr
- The School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Uram Ł, Twardowska M, Szymaszek Ż, Misiorek M, Łyskowski A, Setkowicz Z, Rauk Z, Wołowiec S. The Importance of Biotinylation for the Suitability of Cationic and Neutral Fourth-Generation Polyamidoamine Dendrimers as Targeted Drug Carriers in the Therapy of Glioma and Liver Cancer. Molecules 2024; 29:4293. [PMID: 39339289 PMCID: PMC11434373 DOI: 10.3390/molecules29184293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, we hypothesized that biotinylated and/or glycidol-flanked fourth-generation polyamidoamine (PAMAM G4) dendrimers could be a tool for efficient drug transport into glioma and liver cancer cells. For this purpose, native PAMAM (G4) dendrimers, biotinylated (G4B), glycidylated (G4gl), and biotinylated and glycidylated (G4Bgl), were synthesized, and their cytotoxicity, uptake, and accumulation in vitro and in vivo were studied in relation to the transport mediated by the sodium-dependent multivitamin transporter (SMVT). The studies showed that the human temozolomide-resistant glioma cell line (U-118 MG) and hepatocellular carcinoma cell line (HepG2) indicated a higher amount of SMVT than human HaCaT keratinocytes (HaCaTs) used as a model of normal cells. The G4gl and G4Bgl dendrimers were highly biocompatible in vitro (they did not affect proliferation and mitochondrial activity) against HaCaT and U-118 MG glioma cells and in vivo (against Caenorhabditis elegans and Wistar rats). The studied compounds penetrated efficiently into all studied cell lines, but inconsistently with the uptake pattern observed for biotin and disproportionately for the level of SMVT. G4Bgl was taken up and accumulated after 48 h to the highest degree in glioma U-118 MG cells, where it was distributed in the whole cell area, including the nuclei. It did not induce resistance symptoms in glioma cells, unlike HepG2 cells. Based on studies on Wistar rats, there are indications that it can also penetrate the blood-brain barrier and act in the central nervous system area. Therefore, it might be a promising candidate for a carrier of therapeutic agents in glioma therapy. In turn, visualization with a confocal microscope showed that biotinylated G4B penetrated efficiently into the body of C. elegans, and it may be a useful vehicle for drugs used in anthelmintic therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Magdalena Twardowska
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Żaneta Szymaszek
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Maria Misiorek
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Andrzej Łyskowski
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| | - Zuzanna Rauk
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
3
|
Hansen CB, Janaszewska A, Dąbrzalska M, Marcinkowska M, Klajnert-Maculewicz B, Christensen JB. Core-size and geometry versus toxicity in small amino terminated PAMAM dendrimers. RSC Adv 2024; 14:28684-28692. [PMID: 39257659 PMCID: PMC11384932 DOI: 10.1039/d4ra02020k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A series of 6 small PAMAM dendrimers (G0-dendrimers) differing in the size, polarity and flexibility has been synthesized. The toxicity has been investigated in three different human cancer cell lines (HeLa, MCF-7, THP-1) and the endothelial skin cell line HMEC-1 in order to evaluate their potential as vehicles for drug delivery.
Collapse
Affiliation(s)
- Claus Bøge Hansen
- Department of Chemistry, Faculty of Science, University of Copenhagen Thorvaldsensvej 40 DK-1871 Frederiksberg Denmark
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Monika Dąbrzalska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska Street 90-236 Lodz Poland
| | - Jørn Bolstad Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen Thorvaldsensvej 40 DK-1871 Frederiksberg Denmark
| |
Collapse
|
4
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
5
|
Kołodziejczyk AM, Grala MM, Zimon A, Białkowska K, Walkowiak B, Komorowski P. Investigation of HUVEC response to exposure to PAMAM dendrimers – changes in cell elasticity and vesicles release. Nanotoxicology 2022; 16:375-392. [DOI: 10.1080/17435390.2022.2097138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Agnieszka Maria Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
| | | | - Aleksandra Zimon
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bogdan Walkowiak
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
6
|
Zhong H, Liang H, Yan Y, Chen L, Zhao T, Liu L, Chen Y. Nucleic Acid-Scavenging Hydrogels Accelerate Diabetic Wound Healing. Biomacromolecules 2022; 23:3396-3406. [PMID: 35786877 DOI: 10.1021/acs.biomac.2c00526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic inflammation is a typical feature and a major impediment in refractory diabetic foot ulcer (DFU). High levels of extracellular cell-free nucleic acid (cfDNA) have recently been known to play a critical role in the cause of inflammation. Herein, we fabricated polyacrylamide-based cationic hydrogels and topically applied them to the ulcer of a diabetic rat model. The cfDNA level in the wound area was significantly reduced after hydrogel adsorption, and the level of inflammation was eliminated. In turn, the wound closure was significantly promoted without introducing systemic toxicity. Cationic hydrogels represent an effective material to combat uncontrolled inflammation in DFU.
Collapse
Affiliation(s)
- Hai Zhong
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Huiyi Liang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanzi Yan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Chen
- Department of Burns, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Pérez-Guaita D, Quintás G, Farhane Z, Tauler R, Byrne HJ. Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells 2022; 11:1555. [PMID: 35563861 PMCID: PMC9099467 DOI: 10.3390/cells11091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations. Advantages of and challenges to the methodology were evaluated using simulated Raman spectral data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations used, and the importance of the temporal resolution of the data set to enable the use of complex equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more comprehensive modelling of the system, enabling the elucidation of not only the time-dependent concentration profiles and spectral features of the drug binding and cellular responses, but also an accurate computation of the kinetic constants.
Collapse
Affiliation(s)
- David Pérez-Guaita
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
- Department of Anaytical Chemistry, University of Valencia, 46100 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Centre, 08028 Barcelona, Spain;
| | - Zeineb Farhane
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| | - Romá Tauler
- Institute of Environmental Assessment and Water Research (IDAEA)—Higher Council for Scientific Research (CSIC), 08043 Barcelona, Spain;
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| |
Collapse
|
8
|
Cheng W, Su YL, Hsu HH, Lin YH, Chu LA, Huang WC, Lu YJ, Chiang CS, Hu SH. Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs. ACS NANO 2022; 16:4014-4027. [PMID: 35225594 DOI: 10.1021/acsnano.1c09601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | | | | |
Collapse
|
9
|
Park JH, Mohapatra A, Zhou J, Holay M, Krishnan N, Gao W, Fang RH, Zhang L. Virus‐Mimicking Cell Membrane‐Coated Nanoparticles for Cytosolic Delivery of mRNA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joon Ho Park
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Animesh Mohapatra
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Jiarong Zhou
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Maya Holay
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Nishta Krishnan
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Weiwei Gao
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Ronnie H. Fang
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Liangfang Zhang
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
10
|
Park JH, Mohapatra A, Zhou J, Holay M, Krishnan N, Gao W, Fang RH, Zhang L. Virus-Mimicking Cell Membrane-Coated Nanoparticles for Cytosolic Delivery of mRNA. Angew Chem Int Ed Engl 2022; 61:e202113671. [PMID: 34694684 PMCID: PMC8727555 DOI: 10.1002/anie.202113671] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/12/2023]
Abstract
Effective endosomal escape after cellular uptake represents a major challenge in the field of nanodelivery, as the majority of drug payloads must localize to subcellular compartments other than the endosomes in order to exert activity. In nature, viruses can readily deliver their genetic material to the cytosol of host cells by triggering membrane fusion after endocytosis. For the influenza A virus, the hemagglutinin (HA) protein found on its surface fuses the viral envelope with the surrounding membrane at endosomal pH values. Biomimetic nanoparticles capable of endosomal escape were fabricated using a membrane coating derived from cells engineered to express HA on their surface. When evaluated in vitro, these virus-mimicking nanoparticles were able to deliver an mRNA payload to the cytosolic compartment of target cells, resulting in the successful expression of the encoded protein. When the mRNA-loaded nanoparticles were administered in vivo, protein expression levels were significantly increased in both local and systemic delivery scenarios. We therefore conclude that utilizing genetic engineering approaches to express viral fusion proteins on the surface of cell membrane-coated nanoparticles is a viable strategy for modulating the intracellular localization of encapsulated cargoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093 (USA)
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093 (USA)
| |
Collapse
|
11
|
Kharwade R, Badole P, Mahajan N, More S. Toxicity And Surface Modification Of Dendrimers: A Critical Review. Curr Drug Deliv 2021; 19:451-465. [PMID: 34674620 DOI: 10.2174/1567201818666211021160441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
As compared to other nano polymers, dendrimers have novel three dimensional, synthetic hyperbranched, nano-polymeric structures. The characteristic of these supramolecular dendritic structures has a high degree of significant surface as well as core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface. It includes cytotoxicity, hemolytic toxicity, haematological toxicity, immunogenicity and in vivo toxicity. Therefore to resolve these problems surface modification of the dendrimer group is one of the methods. From that point, this review involves different strategies which reduce the toxicity and improve the biocompatibility of different types of dendrimers. From that viewpoint, we broaden the structural and safe characteristics of the dendrimers in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Payal Badole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| |
Collapse
|
12
|
Viltres H, López YC, Leyva C, Gupta NK, Naranjo AG, Acevedo–Peña P, Sanchez-Diaz A, Bae J, Kim KS. Polyamidoamine dendrimer-based materials for environmental applications: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Gao Y, Shen M, Shi X. Interaction of dendrimers with the immune system: An insight into cancer nanotheranostics. VIEW 2021. [DOI: 10.1002/viw.20200120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai People's Republic of China
| |
Collapse
|
14
|
Sahai N, Gogoi M, Ahmad N. Mathematical Modeling and Simulations for Developing Nanoparticle-Based Cancer Drug Delivery Systems: A Review. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-020-00219-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kovacs L, Cabral P, Chammas R. Mannose receptor 1 expression does not determine the uptake of high-density mannose dendrimers by activated macrophages populations. PLoS One 2020; 15:e0240455. [PMID: 33048944 PMCID: PMC7553290 DOI: 10.1371/journal.pone.0240455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022] Open
Abstract
The presence of a high number of macrophages within solid tumors is often significantly associated with poor prognosis and predict treatment failure for chemotherapy and radiotherapy. Macrophages are innate immune cells capable of performing diverse functions depending on the different signals from the microenvironment. The classically activated macrophage is commonly present during the early stages of tumor development while alternatively activated macrophages are associated with more advanced tumors. The distinction of the antitumoral macrophages from the pro-tumoral macrophages is not absolute. However, they have different cell surface markers such as mannose receptor (MRC1 or CD206) abundantly expressed by macrophages treated with interleukin-4 (IL-4). The important roles of macrophages in cancers suggest that it is important to develop novel therapies that target these cells. In the present study, we designed a probe using Polyamidoamine (PAMAM) fifth-generation (G5) dendrimers conjugated with mannose, Cyanine 7 (Cy7), and hydrazinonicotinamide (HYNIC) for target macrophages with high expression of MRC1 in the tumor. The intracellular uptake of 99mTc-HYNIC-dendrimer-mannose-Cy7 through the interaction with MRC1 in bone marrow-derived macrophages (BMDMs) untreated or treated with lipopolysaccharides (LPS) + interferon (IFN)γ or IL-4 was analyzed. Our results show that high-density mannose dendrimers are preferentially bound by macrophages treated by IFNγ and LPS that express lower levels of MRC1 than for macrophages treated by IL-4 that express high levels of MRC1. Furthermore, the intracellular 99mTc-HYNIC-dendrimer-mannose-Cy7 uptake in BMDMs was not inhibited in the presence of free mannose or glucose. This result suggests that 99mTc-HYNIC-dendrimer-mannose-Cy7 is not internalized via macrophage MRC1. Based on these findings, we concluded that MRC1 expression does not determine the uptake of high-density mannose dendrimers.
Collapse
Affiliation(s)
- Luciana Kovacs
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pablo Cabral
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias Universidad de la República, Montevideo, Uruguay
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Radiologia e Oncologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Kelly IB, Fletcher RB, McBride JR, Weiss SM, Duvall CL. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39602-39611. [PMID: 32805967 PMCID: PMC8356247 DOI: 10.1021/acsami.0c05827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Porous silicon nanoparticles (PSNPs) offer tunable pore structure and easily modified surface chemistry, enabling high loading capacity for drugs with diverse chemicophysical properties. While PSNPs are also cytocompatible and degradable, PSNP integration into composite structures can be a useful approach to enhance carrier colloidal stability, drug-cargo loading stability, and endosome escape. Here, we explored PSNP polymer composites formed by coating of oxidized PSNPs with a series of poly[ethylene glycol-block-(dimethylaminoethyl methacrylate-co-butyl methacrylate)] (PEG-DB) diblock copolymers with varied molar ratios of dimethylaminoethyl methacrylate (D) and butyl methacrylate (B) in the random copolymer block. We screened and developed PSNP composites specifically toward intracellular delivery of microRNA inhibitory peptide nucleic acids (PNA). While a copolymer with 50 mol % B (50B) is optimal for early endosome escape in free polymer form, its pH switch was suppressed when it was formed into 50B polymer-coated PSNP composites (50BCs). We demonstrate that a lower mol % B (30BC) is the ideal PEG-DB composition for PSNP/PEG-DB nanocomposites based on having both the highest endosome disruption potential and miR-122 inhibitory activity. At a 1 mM PNA dose, 30BCs facilitated more potent inhibition of miR-122 in comparison to 40BC (p = 0.0095), 50BC (p < 0.0001), or an anti-miR-122 oligonucleotide delivered with the commercial transfection reagent Fugene 6. Using a live cell galectin 8-based endosome disruption reporter, 30BCs had greater endosomal escape than 40BCs and 50BCs within 2 h after treatment, suggesting that rapid endosome escape correlates with higher intracellular bioactivity. This study provides new insight on the polymer structure-dependent effects on stability, endosome escape, and cargo intracellular bioavailability for endosomolytic polymer-coated PSNPs.
Collapse
Affiliation(s)
- Isom B Kelly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - R Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - James R McBride
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sharon M Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
17
|
Li X, Vieweger M, Guo P. Self-assembly of four generations of RNA dendrimers for drug shielding with controllable layer-by-layer release. NANOSCALE 2020; 12:16514-16525. [PMID: 32729600 PMCID: PMC7448292 DOI: 10.1039/d0nr02614j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical dendrimers have been shown to be a promising drug delivery platform due to their advantageous properties such as monodispersity, multivalency and branched structure. Taking advantage of self-assembly and its intrinsic negative charge, we used RNA as the building block for dendrimer construction to eliminate complex synthesis procedures and cationic charge-related toxicity. Oligo ribonucleotides produced by solid phase chemical synthesis allow the large-scale manufacture of homologous RNA dendrimers. Employing concepts from RNA nanotechnology enabled the controllable production of dendrimers with generations from G1, G2, G3, to G4 with layer-by-layer release capability. The conjugation of functional groups into individual RNA strands and the incorporation of functionalized RNA strands into the dendrimers at different sites have been reported. Anticancer drugs loaded into RNA dendrimers showed comparable cancer cell inhibition effect to free drugs. Encapsulation of cell binding ligands and hydrophobic drugs within the dendrimer significantly reduced the efficiency of cell binding and protein binding respectively, demonstrating the shielding effect of RNA dendrimers. The results imply a potential application of RNA dendrimer for delivery, shielding and controlled release of hydrophobic drugs in vivo.
Collapse
Affiliation(s)
- Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
18
|
Kharwade R, More S, Warokar A, Agrawal P, Mahajan N. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
20
|
Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. Biomolecules 2020; 10:biom10030427. [PMID: 32182909 PMCID: PMC7175207 DOI: 10.3390/biom10030427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Dendrimers as drug carriers can be utilized for drugs and siRNA delivery in central nervous system (CNS) disorders, including various types of cancers, such as neuroblastomas and gliomas. They have also been considered as drugs per se, for example as anti-Alzheimer's disease (AD), anti-cancer, anti-prion or anti-inflammatory agents. Since the influence of carbosilane-viologen-phosphorus dendrimers (SMT1 and SMT2) on the basic cellular processes of nerve cells had not been investigated, we examined the impact of two generations of these hybrid macromolecules on two murine cell lines-cancer cell line N2a (mouse neuroblastoma) and normal immortalized cell line mHippoE-18 (embryonic mouse hippocampal cell line). We examined alterations in cellular responses including the activity of mitochondrial dehydrogenases, the generation of reactive oxygen species (ROS), changes in mitochondrial membrane potential, and morphological modifications and fractions of apoptotic and dead cells. Our results show that both dendrimers at low concentrations affected the cancer cell line more than the normal one. Also, generation-dependent effects were found: the highest generation induced greater cytotoxic effects and morphological modifications. The most promising is that the changes in mitochondrial membrane potential and transmission electron microscopy (TEM) images indicate that dendrimer SMT1 can reach mitochondria. Thus, SMT1 and SMT2 seem to have potential as nanocarriers to mitochondria or anti-cancer drugs per se in CNS disorders.
Collapse
|
21
|
Sharma S, Dang S. Neuropsychological Disorders and their Nanocarriers. Curr Pharm Des 2020; 26:2247-2256. [PMID: 32091327 DOI: 10.2174/1381612826666200224111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
Neuropsychological disorders are now growing rapidly worldwide among the people of diverse backgrounds irrespective of age, gender, and geographical region. Such disorders not only disturb the normal life and functionality of an individual but also impact the social relationships of the patient and the people associated with them, and if not treated in time, it may also result in mortality in severe conditions. Various antipsychotic drugs have been developed but their use is often limited by issues related to effective drug delivery at the site of action i.e. brain, mainly because of the blood-brain barrier. To resolve these issues, researchers and scientists have been working to develop a more effective drug delivery system where drugs can cross the blood-brain barrier and reach the brain in more effective concentrations. Drugs have been modified and formulated into nano-carriers and experimental studies for efficient and targeted delivery of drugs have been conducted. This review focuses on certain common neuropsychological diseases and their nanocarriers developed for drug delivery in the brain and are discussed with a brief description of various experimental in vitro and in vivo studies. This review also focuses on the intranasal route for the delivery of antipsychotic drugs and constraints faced due to the blood-brain barrier by the drugs.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, U.P., 201309, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, U.P., 201309, India
| |
Collapse
|
22
|
Uram Ł, Filipowicz-Rachwał A, Misiorek M, Winiarz A, Wałajtys-Rode E, Wołowiec S. Synthesis and Different Effects of Biotinylated PAMAM G3 Dendrimer Substituted with Nimesulide in Human Normal Fibroblasts and Squamous Carcinoma Cells. Biomolecules 2019; 9:biom9090437. [PMID: 31480608 PMCID: PMC6770390 DOI: 10.3390/biom9090437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma (SCC) remains a main cause of mortality in patients with neck and head cancers, with poor prognosis and increased prevalence despite of available therapies. Recent studies have identified a role of cyclooxygenases, particularly inducible isoform cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in cancer cell proliferation, and its inhibition become a target for control of cancer development, particularly in the view of recognized additive or synergic action of COX-2 inhibitors with other forms of therapy. Nimesulide (N), the selective COX-2 inhibitor, inhibits growth and proliferation of various types of cancer cells by COX-2 dependent and independent mechanisms. In the presented study, the conjugates of biotinylated third generation poly(amidoamine) dendrimer (PAMAM) with covalently linked 18 (G3B18N) and 31 (G3B31N) nimesulide residues were synthesized and characterized by NMR spectroscopy. Biological properties of conjugates were evaluated, including cytotoxicity, proliferation, and caspase 3/7 activities in relation to COX-2/PGE2 axis signaling in human normal fibroblast (BJ) and squamous cell carcinoma (SCC-15). Both conjugates exerted a selective cytotoxicity against SCC-15 as compared with BJ cells at low 1.25-10 µM concentration range and their action in cancer cells was over 250-fold stronger than nimesulide alone. Conjugates overcome apoptosis resistance and sensitized SCC-15 cells to the apoptotic death independently of COX-2/PGE2 axis. In normal human fibroblasts the same concentrations of G3B31N conjugate were less effective in inhibition of proliferation and induction of apoptosis, as measured by caspase 3/7 activity in a manner depending on increase of PGE2 production by either COX-1/COX-2.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland.
| | | | - Maria Misiorek
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Aleksandra Winiarz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszow, Poland
| |
Collapse
|
23
|
Molecular Mechanisms of Antitumor Activity of PAMAM Dendrimer Conjugates with Anticancer Drugs and a Monoclonal Antibody. Polymers (Basel) 2019; 11:polym11091422. [PMID: 31470686 PMCID: PMC6780640 DOI: 10.3390/polym11091422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
Taxanes are considered fundamental drugs in the treatment of breast cancer, but despite the similarities, docetaxel (doc) and paclitaxel (ptx) work differently. For this reason, it is interesting to identify mechanisms of antitumor activity of PAMAM dendrimer conjugates that carry docetaxel or paclitaxel and monoclonal antibody trastuzumab, specifically targeted to cells which overexpressed HER-2. For this purpose, the impact on the level of reactive oxygen species, the mitochondrial membrane potential, cell cycle distribution and the activity of caspases-3/7, -8 and -9 of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined and compared with free docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. Moreover, apoptosis and necrosis were studied using flow cytometry and confocal microscopy, respectively. Our studies show the complexity of the potential mechanism of cytotoxic action of PAMAM-drug-trastuzumab conjugates that should be sought as a resultant of oxidative stress, mitochondrial activation of the caspase cascade and the HER-2 receptor blockade.
Collapse
|
24
|
Abstract
Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle.
Collapse
|
25
|
Oikiri H, Asano Y, Matsusaki M, Akashi M, Shimoda H, Yokoyama Y. Inhibitory effect of carbonyl reductase 1 against peritoneal progression of ovarian cancer: evaluation by ex vivo 3D-human peritoneal model. Mol Biol Rep 2019; 46:4685-4697. [PMID: 31025149 DOI: 10.1007/s11033-019-04788-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
The current authors previously reported that a carbonyl reductase 1 (CR1) DNA-dendrimer complex could potentially be used in gene therapy for peritoneal metastasis of ovarian cancer. The aims of the current study were to observe the cellular dynamics of peritoneal metastasis of epithelial ovarian cancer cells and to ascertain changes in the dynamics of ovarian cancer cells as a result of transfection of CR1 DNA. (1) Artificial human peritoneal tissue (AHPT) was seeded with serous ovarian cancer cells, and the process leading to development of peritoneal carcinomatosis was observed over time. (2) Peritoneal carcinomatosis was produced in mice and compared to a model using AHPT to determine the appropriateness of AHPT. (3) CR1 DNA was transfected into cancer cells seeded on AHPT, and the dynamics of cancer cells were observed over time. (1) Cancer cells perforated the mesothelium, leaving normal mesothelium intact. However, the cells proliferated between the layers of the mesothelium, forming a mass. After 24 h, cancer cells had invaded the lymphatics, and after 48-72 h cancer cells had invaded deep into the mesothelium, where they formed a mass. (2) Invasion of the peritoneum by cancer cells in a murine model of peritoneal carcinomatosis resembled that in a model using AHPT, and results substantiated the reproducibility of peritoneal carcinomatosis in AHPT. (3) Proliferation of cells transfected with CR1 DNA was significantly inhibited on AHPT, and necrosis was evident. Nevertheless, cancer cell invasion deep into the mesothelium was not inhibited. Use of a new tool, AHPT, in an in vitro model of peritoneal metastasis revealed that CR1 DNA inhibited cancer cell proliferation. CR1 DNA does not play a role in inhibiting invasion of the mesothelium during peritoneal metastasis, but it does affect cancer cell proliferation. Results suggested that CR1 DNA inhibits cancer cell proliferation via necrosis.
Collapse
Affiliation(s)
- Hiroe Oikiri
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 1-3 Yamada-oka, Osaka, 565-0871, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamada-oka, Osaka, 565-0871, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan.,Department of Anatomical Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan.
| |
Collapse
|
26
|
Maurya A, Singh AK, Mishra G, Kumari K, Rai A, Sharma B, Kulkarni GT, Awasthi R. Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interv Med Appl Sci 2019; 11:38-54. [PMID: 32148902 PMCID: PMC7044564 DOI: 10.1556/1646.11.2019.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Since the development of first lipid-based nanocarrier system, about 15% of the present pharmaceutical market uses nanomedicines to achieve medical benefits. Nanotechnology is an advanced area to meliorate the delivery of compounds for improved medical diagnosis and curing disease. Nanomedicines are gaining significant interest due to the ultra small size and large surface area to mass ratio. In this review, we discuss the potential of nanotechnology in delivering of active moieties for the disease therapy including their toxicity evidences. This communication will help the formulation scientists in understanding and exploring the new aspects of nanotechnology in the field of nanomedicine.
Collapse
Affiliation(s)
- Anand Maurya
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gaurav Mishra
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Komal Kumari
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Arati Rai
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Bhupesh Sharma
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | | | |
Collapse
|
27
|
Tomich JM, Wessel E, Choi J, Avila LA. Nonviral Gene Therapy: Peptiplexes. NUCLEIC ACID NANOTHERANOSTICS 2019:247-276. [DOI: 10.1016/b978-0-12-814470-1.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Pourjavadi A, Asgari S, Hosseini SH, Akhlaghi M. Codelivery of Hydrophobic and Hydrophilic Drugs by Graphene-Decorated Magnetic Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15304-15318. [PMID: 30424605 DOI: 10.1021/acs.langmuir.8b02710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a nanocarrier was prepared for the codelivery of a hydrophilic drug (doxorubicin) and a hydrophobic drug (curcumin) to cancer cells. In this nanocarrier, the edges of graphene oxide sheets were decorated with a magnetic-functionalized polyamidoamine dendrimer with hydrazone groups at the end of the polymer. The edge functionalization of graphene sheets not only improved the solubility and dispersibility of graphene sheets but also imparted the magnetic properties to the nanocarrier. The resulting nanocarrier was loaded with doxorubicin through the covalent linkage and curcumin through π-π stacking. The nanocarrier showed a pH-sensitive release for both drugs, and the drug release behavior was also improved by the coimmobilization of both drugs. The cytotoxicity assay of nanocarrier showed low toxicity toward MCF-7 cell compared to unmodified graphene oxide, which was attributed to the presence of a magnetic dendrimer. Besides, the drug-loaded nanocarrier was highly toxic for cells even more than for free drugs. The cellular uptake images revealed higher drug internalization for coloaded nanocarrier than for the nanocarrier loaded with one drug alone. All of the results showed that the codelivery of curcumin and doxorubicin in the presence of the nanocarrier was more effective in chemotherapy than the nanocarrier loaded with one drug.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry , Sharif University of Technology , Tehran 11365-9516 , Iran
| | - Shadi Asgari
- Polymer Research Laboratory, Department of Chemistry , Sharif University of Technology , Tehran 11365-9516 , Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering , University of Science and Technology of Mazandaran , Behshahr 01134 , Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine , Tehran University of Medical Sciences , Tehran 1416753955 , Iran
| |
Collapse
|
29
|
Ghosh S, Roy A, Singhania A, Chatterjee S, Swarnakar S, Fujita D, Bandyopadhyay A. In-vivo & in-vitro toxicity test of molecularly engineered PCMS: A potential drug for wireless remote controlled treatment. Toxicol Rep 2018; 5:1044-1052. [PMID: 30406021 PMCID: PMC6214879 DOI: 10.1016/j.toxrep.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/08/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022] Open
Abstract
PC, PCM, PCS, and PCMS are our designed & synthesized ∼8 nm PAMAM dendrimer (P) -based organic supramolecular systems, for example, PCMS has 32 molecular motors (M), 4 pH sensors (S) and 2 multi-level molecular electronic switches (C). We have reported earlier following a preliminary in-vitro test that the synthesized PCMS can selectively target cancer cell nucleotides if triggered wirelessly by an electromagnetic pulse. Here to further verify its drug potential, we have studied the preliminary efficacy, toxicity, and pharmacokinetics of P derivatives (PC, PCM, PCMS) in-vivo and in-vitro. We used ethanol-induced gastric inflammation model and cultured human gastric epithelial cells AGS to examine to the toxicity of PAMAM dendrimers cell permeability and toxicity, in (a) the cultured human gastric epithelium cells (AGS), and in (b) the gastric ulcer mice model. Here we report that the toxicity of PAMAM dendrimer (>G3.5) P can be reduced by adding C, M and S. Gastric ulcer is the primary stage of the manifestation of acute inflammation, even gastric epithelial cancer. Ethanol causes ulceration (ulcer index 30), thus upregulates both pro and active MMP-9. A 50 μl PCMS dose prior to ethanol administration reduces ulceration by ∼80% and downregulates MMP-9 and prevents oxidative damages of gastric tissue by ECM remodeling. Alcohol's inflammation of mouse stomach causes up-regulation of both pro and active MMP-9, resulting in oxidative damages of gastric tissue by ECM remodeling. PCMS in particular dose window reverses & alters ECM remodeling, thus, neutralizing alcohol-induced inflammation & generation of ROS.
Collapse
Key Words
- AGS, human caucasian gastric adenocarcinoma
- CEES, combined excitation emission spectroscopy
- CNDP, critical nanoscale design parameters
- Dendrimer toxicity
- G, generation
- Gastric ulcer
- Inflammation
- Matrix metalloproteinase
- Nonchemical drug
- P, PAMAM
- PAMAM, poly(amido)amine
- PC, PAMAM-controller
- PCM, PAMAM controller-motor
- PCMS, PAMAM-controller-motor-sensor
- ROS, radical oxygen species
Collapse
Affiliation(s)
- Subrata Ghosh
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
- CSIR-North East Institute of Science & Technology, Natural Product Chemistry Group, Chemical Science & Technology Division, Jorhat, 785006, Assam, India
| | - Anirban Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Anup Singhania
- CSIR-North East Institute of Science & Technology, Natural Product Chemistry Group, Chemical Science & Technology Division, Jorhat, 785006, Assam, India
| | - Somnath Chatterjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Snehasikta Swarnakar
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Daisuke Fujita
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
| | - Anirban Bandyopadhyay
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
| |
Collapse
|
30
|
Cao J, Wang C, Guo L, Xiao Z, Liu K, Yan H. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy. Eur J Pharm Biopharm 2018; 127:371-377. [DOI: 10.1016/j.ejpb.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 01/14/2023]
|
31
|
Huang D, Wu D. Biodegradable dendrimers for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:713-727. [PMID: 29853143 DOI: 10.1016/j.msec.2018.03.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 01/09/2023]
Abstract
Dendrimers, as a type of artificial polymers with unique structural features, have been extensively explored for their applications in biomedical fields, especially in drug delivery. However, one important concern about the most commonly used dendrimers exists - the nondegradability, which may cause side effects induced by the accumulation of synthetic polymers in cells or tissues. Therefore, biodegradable dendrimers incorporating biodegradability with merits of dendrimers such as well-defined architectures, copious internal cavities and surface functionalities, are much more promising for developing novel nontoxic drug carriers. Herein, we review the recent advances in design and synthesis of biodegradable dendrimers, as well as their applications in fabricating drug delivery systems, with the aim to provide researchers in the related fields a good understanding of biodegradable dendrimers for drug delivery.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
32
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
33
|
Vidal F, Vásquez P, Cayumán FR, Díaz C, Fuentealba J, Aguayo LG, Yévenes GE, Alderete J, Guzmán L. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. NANOMATERIALS 2017; 8:nano8010007. [PMID: 29295581 PMCID: PMC5791094 DOI: 10.3390/nano8010007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
One of the most studied nanocarriers for drug delivery are polyamidoamine (PAMAM) dendrimers. However, the alterations produced by PAMAM dendrimers in neuronal function have not been thoroughly investigated, and important aspects such as effects on synaptic transmission remain unexplored. We focused on the neuronal activity disruption induced by dendrimers and the possibility to prevent these effects by surface chemical modifications. Therefore, we studied the effects of fourth generation PAMAM with unmodified positively charged surface (G4) in hippocampal neurons, and compared the results with dendrimers functionalized in 25% of their surface groups with folate (PFO25) and polyethylene glycol (PPEG25). G4 dendrimers significantly reduced cell viability at 1 µM, which was attenuated by both chemical modifications, PPEG25 being the less cytotoxic. Patch clamp recordings demonstrated that G4 induced a 7.5-fold increment in capacitive currents as a measure of membrane permeability. Moreover, treatment with this dendrimer increased intracellular Ca2+ by 8-fold with a complete disruption of transients pattern, having as consequence that G4 treatment increased the synaptic vesicle release and frequency of synaptic events by 2.4- and 3-fold, respectively. PFO25 and PPEG25 treatments did not alter membrane permeability, total Ca2+ intake, synaptic vesicle release or synaptic activity frequency. These results demonstrate that cationic G4 dendrimers have neurotoxic effects and induce alterations in normal synaptic activity, which are generated by the augmentation of membrane permeability and a subsequent intracellular Ca2+ increase. Interestingly, these toxic effects and synaptic alterations are prevented by the modification of 25% of PAMAM surface with either folate or polyethylene glycol.
Collapse
Affiliation(s)
- Felipe Vidal
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Pilar Vásquez
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Francisca R Cayumán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Carola Díaz
- Laboratory of Biomaterials and Molecular Design, Department of Organic Chemistry, Faculty of Chemical Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Joel Alderete
- Laboratory of Biomaterials and Molecular Design, Department of Organic Chemistry, Faculty of Chemical Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Leonardo Guzmán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| |
Collapse
|
34
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Anal Bioanal Chem 2017; 410:1631-1646. [DOI: 10.1007/s00216-017-0812-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
35
|
Janaszewska A, Gorzkiewicz M, Ficker M, Petersen JF, Paolucci V, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone Modification Prevents PAMAM Dendrimers from Activation of Pro-Inflammatory Signaling Pathways in Human Monocytes. Mol Pharm 2017; 15:12-20. [DOI: 10.1021/acs.molpharmaceut.7b00515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anna Janaszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Mario Ficker
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | | | - Valentina Paolucci
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Jørn Bolstad Christensen
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
36
|
Wilde M, Green RJ, Sanders MR, Greco F. Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers. J Drug Target 2017; 25:910-918. [DOI: 10.1080/1061186x.2017.1365877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marleen Wilde
- School of Pharmacy, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
37
|
Gerecke C, Edlich A, Giulbudagian M, Schumacher F, Zhang N, Said A, Yealland G, Lohan SB, Neumann F, Meinke MC, Ma N, Calderón M, Hedtrich S, Schäfer-Korting M, Kleuser B. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology 2017; 11:267-277. [PMID: 28165853 DOI: 10.1080/17435390.2017.1292371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse consequences of their exposure must be elucidated. In this study, tNGs were synthesized from dendritic polyglycerol (dPG) and two thermoresponsive polymers. tNG_dPG_tPG are the combination of dPG with poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)) and tNG_dPG_pNIPAM the one with poly(N-isopropylacrylamide) (pNIPAM). Both thermoresponsive nanogels are able to incorporate high amounts of dexamethasone and tacrolimus, drugs used in the treatment of severe skin diseases. Cellular uptake, intracellular localization and the toxicological properties of the tNGs were comprehensively characterized in primary normal human keratinocytes (NHK) and in spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (HaCaT). Laser scanning confocal microscopy revealed fluorescently labeled tNGs entered into the cells and localized predominantly within lysosomal compartments. MTT assay, comet assay and carboxy-H2DCFDA assay, demonstrated neither cytotoxic or genotoxic effects, nor any induction of reactive oxygen species of the tNGs in keratinocytes. In addition, both tNGs were devoid of eye irritation potential as shown by bovine corneal opacity and permeability (BCOP) test and red blood cell (RBC) hemolysis assay. Therefore, our study provides evidence that tNGs are locally well tolerated and underlines their potential for cutaneous drug delivery.
Collapse
Affiliation(s)
- Christian Gerecke
- a Institute of Nutritional Science, Department of Nutritional Toxicology , University of Potsdam , Arthur-Scheunert-Allee 114-116 , Nuthetal , Germany
| | - Alexander Edlich
- a Institute of Nutritional Science, Department of Nutritional Toxicology , University of Potsdam , Arthur-Scheunert-Allee 114-116 , Nuthetal , Germany
| | - Michael Giulbudagian
- b Institute of Chemistry and Biochemistry , Freie Universität Berlin , Berlin , Germany
| | - Fabian Schumacher
- a Institute of Nutritional Science, Department of Nutritional Toxicology , University of Potsdam , Arthur-Scheunert-Allee 114-116 , Nuthetal , Germany.,c Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany
| | - Nan Zhang
- d Institute for Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Berlin , Germany
| | - Andre Said
- d Institute for Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Berlin , Germany
| | - Guy Yealland
- d Institute for Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Berlin , Germany
| | - Silke B Lohan
- e Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology , Center of Experimental and Applied Cutaneous Physiology , Berlin , Germany
| | - Falko Neumann
- b Institute of Chemistry and Biochemistry , Freie Universität Berlin , Berlin , Germany
| | - Martina C Meinke
- e Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology , Center of Experimental and Applied Cutaneous Physiology , Berlin , Germany
| | - Nan Ma
- f Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht , Teltow , Germany
| | - Marcelo Calderón
- b Institute of Chemistry and Biochemistry , Freie Universität Berlin , Berlin , Germany
| | - Sarah Hedtrich
- d Institute for Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Berlin , Germany
| | - Monika Schäfer-Korting
- d Institute for Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Berlin , Germany
| | - Burkhard Kleuser
- a Institute of Nutritional Science, Department of Nutritional Toxicology , University of Potsdam , Arthur-Scheunert-Allee 114-116 , Nuthetal , Germany
| |
Collapse
|
38
|
Efeoglu E, Casey A, Byrne HJ. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure. Analyst 2017; 142:3848-3856. [DOI: 10.1039/c7an00969k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman microspectroscopy as anin vitrolabel-free, high content screening technique to determine spectral markers of cytogenotoxicity.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 8
- Ireland
- FOCAS Research Institute
| | - Alan Casey
- School of Physics
- Dublin Institute of Technology
- Dublin 8
- Ireland
- FOCAS Research Institute
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|
39
|
Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:230-248. [PMID: 28632040 PMCID: PMC6127079 DOI: 10.1080/10937404.2017.1305924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.
Collapse
Affiliation(s)
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
40
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2). Analyst 2017; 142:3500-3513. [DOI: 10.1039/c7an00461c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman microspectroscopy as a ‘high content nanotoxicological screening technique’ with the aid of multivariate analysis, on non-cancerous and cancerous cell lines.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 2
- Ireland
- FOCAS Research Institute
| | - Marcus A. Maher
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Alan Casey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| |
Collapse
|
41
|
Lee J, Jackman JG, Kwun J, Manook M, Moreno A, Elster EA, Kirk AD, Leong KW, Sullenger BA. Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 2016; 120:94-102. [PMID: 28049065 DOI: 10.1016/j.biomaterials.2016.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Trauma patients produce a host of danger signals and high levels of damage-associated molecular patterns (DAMPs) after cellular injury and tissue damage. These DAMPs are directly and indirectly involved in the pathogenesis of various inflammatory and thrombotic complications in patients with severe injuries. No effective therapeutic agents for the removal of DAMPs from blood or tissue fluid have been developed. Herein, we demonstrated that nucleic acid binding polymers, e.g., polyethylenimine (PEI) and polyamidoamine dendrimers, immobilized onto electrospun microfiber mesh can effectively capture various DAMPs, such as extracellular DNAs and high mobility group box 1 (HMGB1). Furthermore, treatment with PEI-immobilized microfiber mesh abrogated the ability of DAMPs, released from dead and dying cells in culture or found in patients following traumatic injury, to activate innate immune responses and coagulation in vitro and in vivo. Nucleic acid scavenging microfiber meshes represent an effective strategy to combat inflammation and thrombosis in trauma.
Collapse
Affiliation(s)
- Jaewoo Lee
- Department of Surgery, Duke University, Durham, NC, 27710, USA.
| | - Jennifer G Jackman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Miriam Manook
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Angelo Moreno
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Duke Transplant Center, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC, 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Meng L, Xia X, Yang Y, Ye J, Dong W, Ma P, Jin Y, Liu Y. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 2016; 513:8-16. [DOI: 10.1016/j.ijpharm.2016.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
|
43
|
Fernández Freire P, Peropadre A, Rosal R, Pérez Martín JM, Hazen MJ. Toxicological assessment of third generation (G3) poly (amidoamine) dendrimers using the Allium cepa test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:899-903. [PMID: 26345251 DOI: 10.1016/j.scitotenv.2015.07.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Paloma Fernández Freire
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ana Peropadre
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain; Advanced Study Institute of Madrid, IMDEA-Agua, Parque Científico Tecnológico, Alcalá de Henares, E-28805 Madrid, Spain
| | - José Manuel Pérez Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - María José Hazen
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| |
Collapse
|
44
|
Teo J, McCarroll JA, Boyer C, Youkhana J, Sagnella SM, Duong HTT, Liu J, Sharbeen G, Goldstein D, Davis TP, Kavallaris M, Phillips PA. A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo. Biomacromolecules 2016; 17:2337-51. [DOI: 10.1021/acs.biomac.6b00185] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joann Teo
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Joshua A. McCarroll
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Janet Youkhana
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Sharon M. Sagnella
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Hien T. T. Duong
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Jie Liu
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - George Sharbeen
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - David Goldstein
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
- Prince
of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales 2052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Maria Kavallaris
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- ARC Centre
of Excellence in Convergent Bio-Nano Science and Technology UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Phoebe A. Phillips
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
45
|
In vivo proinflammatory activity of generations 0-3 (G0-G3) polyamidoamine (PAMAM) nanoparticles. Inflamm Res 2016; 65:745-55. [PMID: 27338943 DOI: 10.1007/s00011-016-0959-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to determine whether different generations (G) polyamidoamine (PAMAM) dendrimers possess proinflammatory activities in vivo. MATERIAL OR SUBJECTS Several hundred female CD-1 mice were used to test four different PAMAM dendrimers using the murine air pouch model. TREATMENT Mice received appropriate negative and positive controls or G0-G3 PAMAM nanoparticles at 100 and 500 µg/ml into air pouches. METHODS Exudates were harvested after 3, 6, 24 and 48 h. Cell pellets and supernatants were used to determine the number of total leukocytes and neutrophils and to detect the production of several analytes by an antibody array approach, respectively. One-way analysis of variance was used for statistical analysis. RESULTS PAMAM dendrimers rapidly increased a leukocyte influx after 3 h, the vast majority of cells being neutrophils. This was also observed after 6 and 24 h, and resolution of inflammation was noted after 48 h. In general, the increased production of a greater number of analytes detected in the exudates after 6 h correlated with the number of dendrimer generations (G3 > G2 > G1 > G0). CONCLUSIONS PAMAM dendrimers devoid of any delivering molecules possess proinflammatory activities in vivo by themselves, probably via the production of different chemokines released by air pouch lining cells.
Collapse
|
46
|
Svenningsen SW, Janaszewska A, Ficker M, Petersen JF, Klajnert-Maculewicz B, Christensen JB. Two for the Price of One: PAMAM-Dendrimers with Mixed Phosphoryl Choline and Oligomeric Poly(Caprolactone) Surfaces. Bioconjug Chem 2016; 27:1547-57. [DOI: 10.1021/acs.bioconjchem.6b00213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Søren Wedel Svenningsen
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Anna Janaszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Mario Ficker
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jørn Bolstad Christensen
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
47
|
Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. Anal Bioanal Chem 2016; 408:5443-55. [DOI: 10.1007/s00216-016-9641-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/23/2016] [Accepted: 05/13/2016] [Indexed: 01/08/2023]
|
48
|
Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles. Anal Bioanal Chem 2016; 408:5295-307. [DOI: 10.1007/s00216-016-9623-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
49
|
Kodama Y, Kuramoto H, Mieda Y, Muro T, Nakagawa H, Kurosaki T, Sakaguchi M, Nakamura T, Kitahara T, Sasaki H. Application of biodegradable dendrigraft poly-l-lysine to a small interfering RNA delivery system. J Drug Target 2016; 25:49-57. [PMID: 27125178 DOI: 10.1080/1061186x.2016.1184670] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dendrigraft poly-l-lysine (DGL), including its central core, consists entirely of lysine, hence it is completely biodegradable. We applied DGL in a small interfering RNA (siRNA) delivery system. Binary complexes with siRNA and DGL had particle sizes of 23-73 nm and ζ-potentials of 34-42 mV. The siRNA-DGL complexes showed significant silencing effects in a mouse colon carcinoma cell line expressing luciferase (Colon26/Luc cells). The siRNA-DGL complexes induced slight cytotoxicity and hematological toxicity at a high charge ratio of DGL to siRNA, probably because of their cationic charges. Therefore, we recharged the siRNA-DGL complexes with γ-polyglutamic acid (γ-PGA), a biodegradable anionic compound, which was reported to reduce the cytotoxicity of cationic complexes. The ternary complexes showed particle sizes of 35-47 nm at a charge ratio of greater than 14 to siRNA with negative charges. Strong silencing effects of the ternary complexes were observed in Colon26/Luc cells without cytotoxicity or hematological toxicity. The cellular uptake and degradation of the binary and ternary complexes were confirmed by fluorescence microscopy. The ternary complexes suppressed luciferase activity in the tumor after direct injection into the tumors of mice bearing Colon26/Luc cells. Thus, a potentially important siRNA delivery system was constructed using biodegradable DGL.
Collapse
Affiliation(s)
- Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Haruka Kuramoto
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Yukari Mieda
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Miako Sakaguchi
- b Institute of Tropical Medicine, Nagasaki University , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| |
Collapse
|
50
|
Golkar N, Samani SM, Tamaddon AM. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection. JOURNAL OF NANOPARTICLE RESEARCH 2016; 18:107. [DOI: 10.1007/s11051-016-3413-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|