1
|
Braz EMA, Silva SCCC, Alves MMM, Carvalho FAA, Magalhães R, Osajima JA, Silva DA, Oliveira AL, Muniz EC, Silva-Filho EC. Chitosan/collagen biomembrane loaded with 2,3-dihydrobenzofuran for the treatment of cutaneous Leishmaniasis. Int J Biol Macromol 2024; 280:135995. [PMID: 39326592 DOI: 10.1016/j.ijbiomac.2024.135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, chitosan/collagen-based membranes loaded with 2,3-dihydrobenzofuran (2,3-DHB) were developed through a simple solvent-casting procedure for use in the treatment of cutaneous Leishmaniasis. The obtained membranes were characterized by elemental analysis, FTIR, TG, DSC, and XRD. Porosity, swelling, mechanical properties, hydrophilicity, and antioxidant activity were analyzed. In addition, assessment to the biocompatibility, through fibroblasts/keratinocytes and in vitro wound healing essays were performed. The obtained results show that the new 2,3-DHB loaded chitosan/collagen membrane presented high porosity and swelling capacity as well as maximum strength, hydrophilicity, and antioxidant activity higher in relation to the control. The tests of antileishmanial activity and the AFM images demonstrate great efficacy of inhibition growth of the parasite, superior to those from the standard therapeutic agent that is currently used: Amphotericin B. The new membranes are biocompatible and stimulated the proliferation of keratinocytes. SEM images clearly demonstrate that fibroblasts were able to adhere, maintained their characteristic morphology. The healing test evidenced that the membranes have adequate environment for promoting cell proliferation and growth. As the conventional treatments often use drugs with high toxicity, the as-developed new membranes proved to be excellent candidate to treat cutaneous Leishmaniasis and can be clearly indicated for further advanced studies in vivo.
Collapse
Affiliation(s)
- Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI 64770-000, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Josy Anteveli Osajima
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Edvani Curti Muniz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual de Maringá, Departamento de Química, Maringá, PR 87020-970, Brazil
| | - Edson Cavalcanti Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
2
|
Chang X, Yun L, Liu Z, Shen Y, Feng S, Yang G, Meng X. Antagonistic Effects and the Underlying Mechanisms of Bacillus velezensis and its Antibacterial Peptide LCI Against Aeromonas hydrophila Infection in Largemouth Bass. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10329-w. [PMID: 39073749 DOI: 10.1007/s12602-024-10329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Aeromonas hydrophila is one of the most prevalent pathogenic bacteria in largemouth bass. The use of antibiotics to inhibit A. hydrophila poses a significant threat to fish and environmental safety. Bacillus velezensis, a safe bacterium with probiotic and antibacterial characteristics, is an ideal candidate for antagonizing A. hydrophila. This study explored the antagonistic effects of B. velezensis FLU-1 on A. hydrophila in vivo and in vitro. In addition, we explored the antimicrobial peptides (AMPs) produced by strain FLU-1 and clarified the underlying antibacterial mechanisms. The results showed that strain FLU-1 could inhibit a variety of fish pathogens, including A. hydrophila. The challenge test showed that dietary supplementation with B. velezensis FLU-1 significantly improved the survival rate of largemouth bass and reduced the bacterial load in liver. Subsequently, the AMP LCI was isolated from B. velezensis FLU-1 and was found to be effective against A. hydrophila in vitro and in vivo. Transcriptomic analysis revealed that LCI downregulated the genes associated with flagellar assembly and peptidoglycan synthesis in A. hydrophila. Phenotypic test results showed that LCI disrupted the membrane integrity, markedly reduced the biofilm biomass and diminished the swimming motility of A. hydrophila. Furthermore, the results showed that LCI bound to the genomic DNA of A. hydrophila and destroyed the DNA structures. Overall, these findings elucidated the mechanism of action of LCI against A. hydrophila at the phenotypic and physiological levels. This study suggests that B. velezensis FLU-1 and its AMP LCI could serve as antibiotic alternatives for controlling pathogens in aquaculture.
Collapse
Affiliation(s)
- Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Lili Yun
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhikun Liu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yihao Shen
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Shikun Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
3
|
Sikarwar M, Mishra VS, Tiwari P, Gupta M, Dholpuria S, Gupta PK. Polyester nanomedicines for visceral leishmaniasis treatment. Nanomedicine (Lond) 2023; 18:1515-1518. [PMID: 37724503 DOI: 10.2217/nnm-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Tweetable abstract Unveiling the power of polyester nanomedicines in revolutionizing visceral leishmaniasis treatment with enhanced drug loading and precise targeting.
Collapse
Affiliation(s)
- Mohini Sikarwar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Development of Biomaterials, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Vaishali Sunil Mishra
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Development of Biomaterials, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Preeti Tiwari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, MB Road, New Delhi, 110017, India
| | - Sunny Dholpuria
- Department of Life Sciences, JC Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Development of Biomaterials, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
4
|
de Sousa JMS, Nunes TADL, Rodrigues RRL, de Sousa JPA, Val MDCA, Coelho FADR, dos Santos ALS, Maciel NB, de Souza VMR, Machado YAA, Sousa PSDA, de Araújo AR, Rocha JA, de Sousa DP, da Silva MV, Arcanjo DDR, Rodrigues KADF. Cytotoxic and Antileishmanial Effects of the Monoterpene β-Ocimene. Pharmaceuticals (Basel) 2023; 16:183. [PMID: 37259336 PMCID: PMC9960243 DOI: 10.3390/ph16020183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 08/05/2023] Open
Abstract
Leishmaniasis is a group of infectious-parasitic diseases with high mortality rates, and endemic in many regions of the globe. The currently available drugs present serious problems such as high toxicity, costs, and the emergence of drug resistance. This has stimulated research into new antileishmania drugs based on natural products and their derivatives. β-Ocimene is a monoterpene found naturally in the essential oils of many plant species which presents antileishmanial activity, and which has not yet been evaluated for its potential to inhibit the etiological agent of leishmaniasis. The aim of this work was to evaluate the activity of β-ocimene against Leishmania amazonensis, its cytotoxicity, and potential mechanisms of action. β-Ocimene presented direct activity against the parasite, with excellent growth inhibition of promastigotes (IC50 = 2.78 μM) and axenic amastigotes (EC50 = 1.12 μM) at concentrations non-toxic to RAW 264.7 macrophages (CC50 = 114.5 µM). The effect is related to changes in membrane permeability and resulting abnormalities in the parasitic cell shape. These were, respectively, observed in membrane integrity and atomic force microscopy assays. β-Ocimene was also shown to act indirectly, with greater activity against intra-macrophagic amastigotes (EC50 = 0.89 μM), increasing TNF-α, nitric oxide (NO), and reactive oxygen species (ROS), with lysosomal effects, as well as promoting decreases in IL-10 and IL-6. Against intra-macrophagic amastigote forms the selectivity index was higher than the reference drugs, being 469.52 times more selective than meglumine antimoniate, and 42.88 times more selective than amphotericin B. Our results suggest that β-ocimene possesses promising in vitro antileishmania activity and is a potential candidate for investigation in in vivo assays.
Collapse
Affiliation(s)
- Julyanne Maria Saraiva de Sousa
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Thaís Amanda de Lima Nunes
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - João Paulo Araújo de Sousa
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | | | - Francisco Alex da Rocha Coelho
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Airton Lucas Sousa dos Santos
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Nicolle Barreira Maciel
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Vanessa Maria Rodrigues de Souza
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Yasmim Alves Aires Machado
- Laboratory of Infectious Diseases, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Paulo Sérgio de Araújo Sousa
- Research Group on Medicinal Chemistry and Biotechnology, Federal University of Maranhão, São Bernardo 65550-000, MA, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center in Biodiversity and Biotechnology, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Jefferson Almeida Rocha
- Research Group on Medicinal Chemistry and Biotechnology, Federal University of Maranhão, São Bernardo 65550-000, MA, Brazil
- Research Center in Biodiversity and Biotechnology, Campus Ministro Reis Velloso, Parnaíba Delta Federal University, Parnaíba 64202-020, PI, Brazil
| | - Damião Pergentino de Sousa
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Campus I, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Marcos Vinicius da Silva
- Laboratory of Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | | |
Collapse
|
5
|
Santos FA, Cruz GS, Vieira FA, Queiroz BR, Freitas CD, Mesquita FP, Souza PF. Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta Trop 2022; 236:106675. [DOI: 10.1016/j.actatropica.2022.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/01/2022]
|
6
|
Das A, Kamran M, Ali N. HO-3867 Induces ROS-Dependent Stress Response and Apoptotic Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021; 11:774899. [PMID: 34926321 PMCID: PMC8677699 DOI: 10.3389/fcimb.2021.774899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lack of vaccine and increasing chemotherapeutic toxicities currently necessitate the development of effective and safe drugs against various forms of leishmaniases. We characterized the cellular stress induced by a novel curcumin analogue, HO-3867, encapsulated within the phosphatidylcholine-stearylamine (PC-SA) liposome for the first time against Leishmania. The liposomal formulation of HO-3867 (i.e., PC-SA/HO-3867) initiated oxidative stress-induced apoptosis in L. donovani, revealed by altered cell morphology, phosphatidylserine externalization, mitochondrial depolarization, intracellular lipid accumulation, and cell cycle arrest in promastigotes. Liposomal HO-3867 was observed to be a strong apoptosis inducer in L. donovani and L. major in a dose-dependent manner, yet completely safe for normal murine macrophages. Moreover, PC-SA/HO-3867 treatment induced L. donovani metacaspase and PARP1 activation along with downregulation of the Sir2 gene. PC-SA/HO-3867 arrested intracellular L. donovani amastigote burden in vitro, with reactive oxygen species (ROS) and nitric oxide (NO)-mediated parasite killing. These data suggest that liposomal HO-3867 represents a highly promising and non-toxic nanoparticle-based therapeutic platform against leishmaniasis inspiring further preclinical developments.
Collapse
Affiliation(s)
| | | | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
7
|
Valéria Amorim L, de Lima Moreira D, Muálem de Moraes Alves M, Jessé Ramos Y, Pereira Costa Sobrinho E, Arcanjo DDR, Rodrigues de Araújo A, de Souza de Almeida Leite JR, das Chagas Pereira de Andrade F, Mendes AN, Aécio de Amorim Carvalho F. Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae). ACTA ACUST UNITED AC 2021; 76:229-241. [PMID: 33660490 DOI: 10.1515/znc-2020-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 μg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 μg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Layane Valéria Amorim
- Antileishmania Activity Laboratory, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Davyson de Lima Moreira
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Ygor Jessé Ramos
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Daniel Dias Rufino Arcanjo
- Department of Biophysics and Physiology, Laboratory of Funcional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, Piauí, Brazil
| | | | | | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology, Laboratory of Innovation on Science and Technology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | |
Collapse
|
8
|
Rodrigues RRL, Nunes TAL, de Araújo AR, Marinho Filho JDB, da Silva MV, Carvalho FADA, Pessoa ODL, Freitas HPS, Rodrigues KADF, Araújo AJ. Antileishmanial activity of cordiaquinone E towards Leishmania (Leishmania) amazonensis. Int Immunopharmacol 2020; 90:107124. [PMID: 33168414 DOI: 10.1016/j.intimp.2020.107124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.
Collapse
Affiliation(s)
- Raiza Raianne Luz Rodrigues
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Thaís Amanda Lima Nunes
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Alyne Rodrigues de Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - José Delano Barreto Marinho Filho
- Laboratório de Cultura de Células do Delta, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Marcos Vinícius da Silva
- Laboratório de Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil
| | - Fernando Aécio de Amorim Carvalho
- Núcleo de Pesquisas em Plantas Medicinais, Campus Ministro Petrônio Portella, Universidade Federal do Piauí, Teresina 64049-550, Piauí, Brazil
| | | | | | | | - Ana Jérsia Araújo
- Laboratório de Cultura de Células do Delta, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil.
| |
Collapse
|
9
|
de Oliveira Silva Ribeiro F, de França Dourado F, Silva MFS, Brito LM, Pessoa C, de Lima LRM, de Paula RCM, de Souza de Almeida Leite JR, de Araújo AR, da Silva DA. Anti-proliferative profile of Anacardium occidentale polysaccharide and characterization by AFM. Int J Biol Macromol 2020; 156:981-987. [DOI: 10.1016/j.ijbiomac.2020.03.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
|
10
|
Yu Y, Zhao P, Cao L, Gong P, Yuan S, Yao X, Guo Y, Dong H, Jiang W. A Novel Anti-Microbial Peptide from Pseudomonas, REDLK Induced Growth Inhibition of Leishmania tarentolae Promastigote In Vitro. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:173-179. [PMID: 32418386 PMCID: PMC7231825 DOI: 10.3347/kjp.2020.58.2.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a prevalent cause of death and animal morbidity in underdeveloped countries of endemic area. However, there is few vaccine and effective drugs. Antimicrobial peptides are involved in the innate immune response in many organisms and are being developed as novel drugs against parasitic infections. In the present study, we synthesized a 5-amino acid peptide REDLK, which mutated the C-terminus of Pseudomonas exotoxin, to identify its effect on the Leishmania tarentolae. Promastigotes were incubated with different concentration of REDLK peptide, and the viability of parasite was assessed using MTT and Trypan blue dye. Morphologic damage of Leishmania was analyzed by light and electron microscopy. Cellular apoptosis was observed using the annexin V-FITC/PI apoptosis detection kit, mitochondrial membrane potential assay kit and flow cytometry. Our results showed that Leishmania tarentolae was susceptible to REDLK in a dose-dependent manner, disrupt the surface membrane integrity and caused parasite apoptosis. In our study, we demonstrated the leishmanicidal activity of an antimicrobial peptide REDLK from Pseudomonas aeruginosa against Leishmania tarentolae in vitro and present a foundation for further research of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Yanhui Yu
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.,Clinical laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuxian Yuan
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Xinhua Yao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Yanbing Guo
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Hang Dong
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Weina Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
11
|
Study of Ethinyl Estradiol Activity Against Promastigotes, Axenic and Macrophage-Dwelling Amastigotes of Leishmania infantum by Using Atomic Force Microscopy and Methyl Thiazolyl Tetrazolium Methods. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.90857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Oliveira M, Gomes-Alves AG, Sousa C, Mirta Marani M, Plácido A, Vale N, Delerue-Matos C, Gameiro P, Kückelhaus SAS, Tomas AM, S A Leite JR, Eaton P. Ocellatin-PT antimicrobial peptides: High-resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems. Biopolymers 2017; 105:873-86. [PMID: 27463422 DOI: 10.1002/bip.22925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/07/2023]
Abstract
Although the mechanism of action of antimicrobial peptides (AMPs) is not clear, they can interact electrostatically with the cell membranes of microorganisms. New ocellatin-PT peptides were recently isolated from the skin secretion of Leptodactylus pustulatus. The secondary structure of these AMPs and their effect on Leishmania infantum cells, and on different lipid surface models was characterized in this work. The results showed that all ocellatin-PT peptides have an α-helix structure and five of them (PT3, PT4, PT6 to PT8) have leishmanicidal activity; PT1 and PT2 affected the cellular morphology of the parasites and showed greater affinity for leishmania and bacteria-mimicking lipid membranes than for those of mammals. The results show selectivity of ocellatin-PTs to the membranes of microorganisms and the applicability of biophysical methods to clarify the interaction of AMPs with cell membranes.
Collapse
Affiliation(s)
- Mayara Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Núcleo de Medicina Tropical, NMT, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal
| | - Ana Georgina Gomes-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,CEB, Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Carla Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal
| | - Mariela Mirta Marani
- PEEC ? CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina
| | - Alexandra Plácido
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - Nuno Vale
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Gameiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal
| | - Selma A S Kückelhaus
- Programa de Pós-Graduação em Medicina Tropical, Núcleo de Medicina Tropical, NMT, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil.,Departmento de Morfologia, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| | - Ana M Tomas
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Roberto S A Leite
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal.,Departmento de Morfologia, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil.,Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
| | - Peter Eaton
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal. .,Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil.
| |
Collapse
|
13
|
Ramu D, Garg S, Ayana R, Keerthana AK, Sharma V, Saini CP, Sen S, Pati S, Singh S. Novel β-carboline-quinazolinone hybrids disrupt Leishmania donovani redox homeostasis and show promising antileishmanial activity. Biochem Pharmacol 2016; 129:26-42. [PMID: 28017772 DOI: 10.1016/j.bcp.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Visceral Leishmaniasis is a deadly parasitic disease caused by Leishmania donovani. Paucity exists in the discovery of novel chemotherapeutics against Leishmaniasis. In this study, we synthesized a natural product inspired Diversity Oriented Synthesis library of L. donovani Trypanothione reductase (LdTR) inhibitor β-carboline-quinazolinone hybrids, which are different in stereochemical architecture and diverse in the bioactive chemical space. It is noteworthy that chirality affects drug-to-protein binding affinity since proteins in any living system are present only in one of the chiral forms. Upon evaluation of the hybrids, one of the chiral forms i.e. Compound 1 showed profound cytotoxic effect in micromolar range as compared to its other chiral form i.e. Compound 2. In-silico docking studies confirmed high binding efficiency of Compound 1 with the catalytic pocket of LdTR. Treatment of L. donovani parasites with Compound 1 inhibits LdTR activity, induces imbalance in redox homeostasis by enhancing ROS, disrupts the mitochondrial membrane potential, modifies actin polymerization and alters the surface topology and architecture. All these cellular modifications eventually led to apoptosis-like death of promastigotes. Furthermore, we synthesized the analogues of Compound 1 and found that these compounds show profound antileishmanial activity in the nanomolar range both in promastigotes and intracellular amastigotes. The enhanced inhibitory potential of these compounds was further supported by in-silico analysis of protein-ligand interactions which revealed high binding efficiency towards the catalytic pocket of LdTR. Taken together, this study reports the serendipitous discovery of β-carboline-quinazolinone hybrids with enhanced antileishmanial activity along with the in-depth structure-activity relationships and mechanism of action of these analogues.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - R Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - A K Keerthana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Vijeta Sharma
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - C P Saini
- Department of Physics, School of Natural Sciences, Shiv Nadar University, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
14
|
Bittencourt CR, de Oliveira Farias EA, Bezerra KC, Véras LMC, Silva VC, Costa CHN, Bemquerer MP, Silva LP, Souza de Almeida Leite JRD, Eiras C. Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:549-555. [DOI: 10.1016/j.msec.2015.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
15
|
The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases. Molecules 2015; 20:15392-433. [PMID: 26305243 PMCID: PMC6332049 DOI: 10.3390/molecules200815392] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.
Collapse
|