1
|
Kajani AA, Rafiee L, Samandari M, Mehrgardi MA, Zarrin B, Javanmard SH. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv 2022; 12:32834-32843. [PMID: 36425208 PMCID: PMC9667373 DOI: 10.1039/d2ra05930d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Facile and sensitive detection and isolation of circulating tumor cells (CTCs) was achieved using the aptamer-targeted magnetic nanoparticles (Apt-MNPs) in conjugation with a microfluidic device. Apt-MNPs were developed by the covalent attachment of anti-MUC1 aptamer to the silica-coated magnetic nanoparticles via the glutaraldehyde linkers. Apt-MNPs displayed high stability and functionality after 6 months of storage at 4 °C. The specific microfluidic device consisting of mixing, sorting and separation modules was fabricated through conventional photo- and soft-lithography by using polydimethylsiloxane. The capture efficiency of Apt-MNPs was first studied in vitro on MCF-7 and MDA-MB-231 cancer cell lines in the bulk and microfluidic platforms. The cell capture yields of more than 91% were obtained at the optimum condition after 60 minutes of exposure to 50 μg mL-1 Apt-MNPs with 10 to 106 cancer cells in different media. CTCs were also isolated efficiently from the blood samples of breast cancer patients and successfully propagated in vitro. The isolated CTCs were further characterized using immunofluorescence staining. The overall results indicated the high potential of the present method for the detection and capture of CTCs.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Mohamadmahdi Samandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
- Department of Biomedical Engineering, University of Connecticut Farmington CT 06030 USA
| | | | - Bahare Zarrin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| |
Collapse
|
2
|
Muhanna N, Eu D, Chan HHL, Douglas C, Townson JL, Di Grappa MA, Mohamadi RM, Kelley SO, Bratman SV, Irish JC. Cell-free DNA and circulating tumor cell kinetics in a pre-clinical head and neck Cancer model undergoing radiation therapy. BMC Cancer 2021; 21:1075. [PMID: 34600526 PMCID: PMC8487588 DOI: 10.1186/s12885-021-08791-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Monitoring circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), known as liquid biopsies, continue to be developed as diagnostic and prognostic markers for a wide variety of cancer indications, mainly due to their minimally invasive nature and ability to offer a wide range of phenotypic and genetic information. While liquid biopsies maintain significant promising benefits, there is still limited information regarding the kinetics of ctDNA and CTCs following radiation therapy which remains a vital treatment modality in head and neck cancers. This study aims to describe the kinetics of ctDNA and CTCs following radiation exposure in a preclinical rabbit model with VX2 induced buccal carcinoma. METHODS Seven rabbits were inoculated with VX2 cells in the buccal mucosa and subjected to radiation. At selected time points, blood sampling was performed to monitor differing levels of ctDNA and CTC. Plasma ctDNA was measured with quantitative PCR for papillomavirus E6 while CTCs were quantified using an immunomagnetic nanoparticles within a microfluidic device. Comparisons of CTC detection with EpCAM compared to multiple surface markers (EGFR, HER2 and PSMA) was evaluated and correlated with the tumor size. RESULTS Plasma ctDNA reflects the overall tumor burden within the animal model. Analysis of correlations between ctDNA with tumor and lymph node volumes showed a positive correlation (R = 0.452 and R = 0.433 [p < 0.05]), respectively. Over the course of treatment, ctDNA levels declined and quickly becomes undetectable following tumor eradication. While during the course of treatment, ctDNA levels were noted to rise particularly upon initiation of radiation following scheduled treatment breaks. Levels of CTCs were observed to increase 1 week following inoculation of tumor to the primary site. For CTC detection, the use of multiple surface markers showed a greater sensitivity when compared to detection using only EpCAM. Plasma CTC levels remained elevated following radiation therapy which may account for an increased shedding of CTCs following radiation. CONCLUSION This study demonstrates the utility of ctDNA and CTCs detection in response to radiation treatment in a preclinical head and neck model, allowing for better understanding of liquid biopsy applications in both clinical practice and research development.
Collapse
Affiliation(s)
- Nidal Muhanna
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada.
- Department of Otolaryngology-Head and Neck Surgery-Surgical Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Otolaryngology-Head and Neck Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | - Donovan Eu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Harley H L Chan
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Catriona Douglas
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Jason L Townson
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
| | - Marco A Di Grappa
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jonathan C Irish
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- TECHNA Institute, Guided Therapeutic (GTx) Program, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery-Surgical Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Williams PS, Moore LR, Joshi P, Goodin M, Zborowski M, Fleischman A. Microfluidic chip for graduated magnetic separation of circulating tumor cells by their epithelial cell adhesion molecule expression and magnetic nanoparticle binding. J Chromatogr A 2021; 1637:461823. [PMID: 33385746 PMCID: PMC7827554 DOI: 10.1016/j.chroma.2020.461823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
The enumeration of circulating tumor cells (CTCs) in the peripheral bloodstream of metastatic cancer patients has contributed to improvements in prognosis and therapeutics. There have been numerous approaches to capture and counting of CTCs. However, CTCs have potential information beyond simple enumeration and hold promise as a liquid biopsy for cancer and a pathway for personalized cancer therapy by detecting the subset of CTCs having the highest metastatic potential. There is evidence that epithelial cell adhesion molecule (EpCAM) expression level distinguishes these highly metastatic CTCs. The few previous approaches to selective CTC capture according to EpCAM expression level are reviewed. A new two-stage microfluidic device for separation, enrichment and release of CTCs into subpopulations sorted by EpCAM expression level is presented here. It relies upon immunospecific magnetic nanoparticle labeling of CTCs followed by their field- and flow-based separation in the first stage and capture as discrete subpopulations in the second stage. To fine tune the separation, the magnetic field profile across the first stage microfluidic channel may be modified by bonding small Vanadium Permendur strips to its outer walls. Mathematical modeling of magnetic fields and fluid flows supports the soundness of the design.
Collapse
Affiliation(s)
- P Stephen Williams
- Cambrian Technologies Inc., 1772 Saratoga Avenue, Cleveland, OH 44109, USA.
| | - Lee R Moore
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | - Mark Goodin
- SimuTech Group, 1742 Georgetown Rd., Suite B, Hudson, OH 44236, USA
| | - Maciej Zborowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Investigation and comparison of pristine/doped BN, AlN, and CN nanotubes as drug delivery systems for Tegafur drug: a theoretical study. Struct Chem 2020. [DOI: 10.1007/s11224-020-01680-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Kumamoto S, Nakatake K, Fukuyama S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y, Nakashima Y. A dynamically deformable microfilter for selective separation of specific substances in microfluidics. BIOMICROFLUIDICS 2020; 14:064113. [PMID: 33425088 PMCID: PMC7772001 DOI: 10.1063/5.0025927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 05/08/2023]
Abstract
To study an environmental or biological solution, it is essential to separate its constituents. In this study, a 3D-deformable dynamic microfilter was developed to selectively separate the target substance from a solution. This microfilter is a fine metallic nickel structure fabricated using photolithography and electroplating techniques. It is gold-coated across its entire surface with multiple slits of 10-20 μm in width. Its two-dimensional shape is deformed into a three-dimensional shape when used for fluid separation due to hydrodynamic forces. By adjusting the pressure applied to the microfilter, the size of the gap created by deformation can be changed. To effectively isolate the target substance, the relationship between the solution flow rate and the extent of microfilter deformation was investigated. The filtration experiments demonstrated the microfilter's ability to isolate the target substance with elastic deformation without undergoing plastic deformation. Additionally, modification of the microfilter surface with nucleic acid aptamers resulted in the selective isolation of the target cell, which further demonstrates the potential application of microfilters in the isolation of specific components of heterogeneous solutions.
Collapse
Affiliation(s)
| | - Kenshiro Nakatake
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Souichiro Fukuyama
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Keiichiro Yasuda
- Ogic Technologies Co. Ltd., 2-9-9, Kamikumamoto, Nishi-ku, Kumamoto 860-0079, Japan
| | - Yusuke Kitamura
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaaki Iwatsuki
- Faculty of Life Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Faculty of Life Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshihiro Ihara
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | | | - Yuta Nakashima
- Author to whom correspondence should be addressed:. Tel./Fax: +81-96-342-3743
| |
Collapse
|
6
|
Künzel J, Gribko A, Lu Q, Stauber RH, Wünsch D. Nanomedical detection and downstream analysis of circulating tumor cells in head and neck patients. Biol Chem 2020; 400:1465-1479. [PMID: 30903749 DOI: 10.1515/hsz-2019-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
The establishment of novel biomarkers in liquid biopsies of cancer patients has come more into focus in prognostic and diagnostic research efforts. Due to their prognostic relevance disseminated tumor cells or circulating tumor cells are the subject of intensive research and are discussed as early diagnostic indicators for treatment failure and the formation of micrometastases. A potential association of this early-systemic tumor component with poor prognosis of cancer patients could be already demonstrated for various entities including breast, colon, lung, melanoma, ovarian and prostate cancers. Thus, the detection of circulating tumor cells seems to be also applicable for minimal-invasive monitoring of therapy progress in head and neck cancer patients. A major problem of the use in clinical routine is that circulating tumor cells could not be detected by modern imaging techniques. To overcome these limitations highly sensitive detection methods and techniques for their molecular characterization are urgently needed allowing mechanistic understanding and targeting of circulating tumor cells. Especially the medical application of nanotechnology (nanomedical methods) has made valuable contributions to the field. Here, we want to provide a comprehensive overview on (nanomedical) detection methods for circulating tumor cells and discuss their merits, pitfalls and future perspectives especially for head and neck solid squamous cell carcinoma (HNSCC) patients.
Collapse
Affiliation(s)
- Julian Künzel
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Alena Gribko
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| |
Collapse
|
7
|
Batth IS, Mitra A, Rood S, Kopetz S, Menter D, Li S. CTC analysis: an update on technological progress. Transl Res 2019; 212:14-25. [PMID: 31348892 PMCID: PMC6755047 DOI: 10.1016/j.trsl.2019.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
There is a growing need for a more accurate, real-time assessment of tumor status and the probability of metastasis, relapse, or response to treatment. Conventional means of assessment include imaging and tissue biopsies that can be highly invasive, may not provide complete information of the disease's heterogeneity, and not ideal for repeat analysis. Therefore, a less-invasive means of acquiring similar information at greater time points is necessary. Liquid biopsies are samples of a patients' peripheral blood and hold potential of addressing these criteria. Ongoing research has revealed that a tumor can release circulating cells, genetic materials (DNA or RNA), and exosomes into circulation. These potential biomarkers can be captured in a liquid biopsy and analyzed to determine disease status. To achieve these goals, numerous technologies have been developed. In this review, we discuss both prominent and newly developed technologies for circulating tumor cell capture and analysis and their clinical impact.
Collapse
Affiliation(s)
- Izhar S Batth
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhisek Mitra
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Menter
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shulin Li
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Green BJ, Nguyen V, Atenafu E, Weeber P, Duong BTV, Thiagalingam P, Labib M, Mohamadi RM, Hansen AR, Joshua AM, Kelley SO. Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking. Anal Chem 2019; 91:9348-9355. [DOI: 10.1021/acs.analchem.9b01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Vivian Nguyen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Eshetu Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Phillip Weeber
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Bill T. V. Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Punithan Thiagalingam
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Reza M. Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Aaron R. Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
- Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
9
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
10
|
Vatanparast M, Shariatinia Z. AlN and AlP doped graphene quantum dots as novel drug delivery systems for 5-fluorouracil drug: Theoretical studies. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14231-14247. [PMID: 29557165 DOI: 10.1021/acsami.7b17896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The circulation of tumor cells in peripheral blood is mostly recognized as a prerequisite for cancer progression or systemic invasion, and it correlates with the pivotal hallmark of malignancies known as metastasis. Multiple detection schemes for circulating tumor cells (CTCs) have emerged as the most discerning criteria for monitoring the outcome of anticancer therapy. Therefore, there has been a tremendous increase in the use of robust nanostructured platforms for observation of these mobile tumor cells through various simultaneous diagnosis and treatment regimens developed from conventional techniques. This review seeks to give detailed information about the nature of CTCs as well as techniques for exploiting specific biomarkers to help monitor cancer via detection, capturing, and analysis of unstable tumor cells. We will further discuss nanobased diagnostic interventions and novel platforms which have recently been developed from versatile nanomaterials such as polymer nanocomposites, metal organic frameworks, bioderived nanomaterials and other physically responsive particles with desirable intrinsic and external properties. Herein, we will also include in vivo nanotheranostic platforms which have received a lot of attention because of their enormous clinical potential. In all, this review sums up the general potential of key promising nanoinspired systems as well as other advanced strategies under research and those in clinical use.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology , The University of Queensland , St. Lucia , Brisbane, QLD 4072
| | - Assogba G Assanhou
- UFR Pharmacie, Falculté des Sciences de la Santé , Université d'Abomey-Calavi , 01BP188 Cotonou , Benin
| | | | | | | | | |
Collapse
|
12
|
Muhanna N, Di Grappa MA, Chan HHL, Khan T, Jin CS, Zheng Y, Irish JC, Bratman SV. Cell-Free DNA Kinetics in a Pre-Clinical Model of Head and Neck Cancer. Sci Rep 2017; 7:16723. [PMID: 29196748 PMCID: PMC5711859 DOI: 10.1038/s41598-017-17079-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/21/2017] [Indexed: 01/22/2023] Open
Abstract
In cancer patients, circulating tumour-derived DNA (ctDNA) levels imperfectly reflect disease burden apparent on medical imaging. Further evaluation of ctDNA levels over time is needed to better understand the correlation with tumour growth and therapeutic response. We describe ctDNA kinetics within an orthotopic, immunocompetent preclinical rabbit model of local-regionally advanced head and neck squamous cell carcinoma (HNSCC). Monitoring primary tumour and metastatic lymph node volume by computed tomography (CT), we observed a correlation between ctDNA levels and tumour burden. We found that ctDNA detection could precede evidence of tumour on CT. Sensitivity and specificity of ctDNA detection in this model was 90.2% (95% C.I.: 76.9–97.3%) and 85.7% (95% C.I.: 67.3–96.0%), respectively. Rapid tumour growth followed by auto-necrosis and tumour volume contraction produced a spike in ctDNA levels, suggesting that viable tumour cells may be required for sustained ctDNA release. Following surgical resection, both ctDNA and total plasma DNA were correlated with recurrent tumour volume. Our results reveal the complex kinetic behaviour of ctDNA and total plasma DNA upon tumour growth or surgery. This pre-clinical model could be useful for future studies focused on elucidating mechanisms of ctDNA release into the circulation from primary and metastatic sites.
Collapse
Affiliation(s)
- Nidal Muhanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Marco A Di Grappa
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Harley H L Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tahsin Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cheng S Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yangqiao Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan C Irish
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
14
|
Green BJ, Kermanshah L, Labib M, Ahmed SU, Silva PN, Mahmoudian L, Chang IH, Mohamadi RM, Rocheleau JV, Kelley SO. Isolation of Phenotypically Distinct Cancer Cells Using Nanoparticle-Mediated Sorting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20435-20443. [PMID: 28548481 DOI: 10.1021/acsami.7b05253] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Isolating subpopulations of heterogeneous cancer cells is an important capability for the meaningful characterization of circulating tumor cells at different stages of tumor progression and during the epithelial-to-mesenchymal transition. Here, we present a microfluidic device that can separate phenotypically distinct subpopulations of cancer cells. Magnetic nanoparticles coated with antibodies against the epithelial cell adhesion molecule (EpCAM) are used to separate breast cancer cells in the microfluidic platform. Cells are sorted into different zones on the basis of the levels of EpCAM expression, which enables the detection of cells that are losing epithelial character and becoming more mesenchymal. The phenotypic properties of the isolated cells with low and high EpCAM are then assessed using matrix-coated surfaces for collagen uptake analysis, and an NAD(P)H assay that assesses metabolic activity. We show that low-EpCAM expressing cells have higher collagen uptake and higher folate-induced NAD(P)H responses compared to those of high-EpCAM expressing cells. In addition, we tested SKBR3 cancer cells undergoing chemically induced hypoxia. The induced cells have reduced expression of EpCAM, and we find that these cells have higher collagen uptake and NAD(P)H metabolism relative to noninduced cells. This work demonstrates that nanoparticle-mediated binning facilitates the isolation of functionally distinct cell subpopulations and allows surface marker expression to be associated with invasiveness, including collagen uptake and metabolic activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto , Toronto M5S 1A8, Canada
| |
Collapse
|
15
|
Lowes LE, Bratman SV, Dittamore R, Done S, Kelley SO, Mai S, Morin RD, Wyatt AW, Allan AL. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation. Int J Mol Sci 2016; 17:ijms17091505. [PMID: 27618023 PMCID: PMC5037782 DOI: 10.3390/ijms17091505] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes.
Collapse
Affiliation(s)
- Lori E Lowes
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6K 4L6, Canada.
- Special Hematology/Flow Cytometry, London Health Sciences Centre, London, ON N6K 4L6, Canada.
| | - Scott V Bratman
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | | | - Susan Done
- Campbell Family Institute for Breast Cancer Research and Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada.
- Departments of Laboratory Medicine and Pathobiology, and Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada.
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada.
- Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Sabine Mai
- Manitoba Institute of Cell Biology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6K 4L6, Canada.
- Departments of Anatomy & Cell Biology and Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6K 4L6, Canada.
| |
Collapse
|
16
|
Recent insights into the development of nanotechnology to detect circulating tumor cells. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
18
|
Baird Z, Pirro V, Ayrton S, Hollerbach A, Hanau C, Marfurt K, Foltz M, Cooks RG, Pugia M. Tumor Cell Detection by Mass Spectrometry Using Signal Ion Emission Reactive Release Amplification. Anal Chem 2016; 88:6971-5. [PMID: 27351295 DOI: 10.1021/acs.analchem.6b02043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method is presented for the detection of circulating tumor cells (CTC) using mass spectrometry (MS), through reporter-ion amplification. Particles functionalized with short-chain peptides are bound to cells through antibody-antigen interactions. Selective release and MS detection of peptides is shown to detect as few as 690 cells isolated from a 10 mL blood sample. Here we present proof-of-concept results that pave the way for further investigations.
Collapse
Affiliation(s)
- Zane Baird
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States.,Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Valentina Pirro
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Stephen Ayrton
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Adam Hollerbach
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Cathleen Hanau
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - Karen Marfurt
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - Mary Foltz
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - R Graham Cooks
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Michael Pugia
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| |
Collapse
|
19
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew Chem Int Ed Engl 2015; 55:1252-65. [PMID: 26643151 DOI: 10.1002/anie.201505100] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Abstract
Over the last decade, significant progress has been made towards the development of approaches that enable the capture of rare circulating tumor cells (CTCs) from the blood of cancer patients, a critical capability for noninvasive tumor profiling. These advances have leveraged new insights in materials chemistry and microfluidics and allowed the capture and enumeration of CTCs with unprecedented sensitivity. However, it has become increasingly clear that simply capturing and counting tumor cells launched into the bloodstream may not provide the information needed to advance our understanding of the biology of these rare cells, or to allow us to better exploit them in medicine. A variety of advances have now emerged demonstrating that more information can be extracted from CTCs with next-generation devices and materials featuring tailored physical and chemical properties. In this Minireview, the last ten years of work in this area will be discussed, with an emphasis on the groundbreaking work of the last five years, during which the focus has moved beyond the simple capture of CTCs and gravitated towards approaches that enable in-depth analysis.
Collapse
Affiliation(s)
- Brenda J Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Profilierung zirkulierender Tumorzellen mit Apparaturen und Materialien der nächsten Generation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering; University of Toronto; Toronto ON Kanada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
- Department of Biochemistry; University of Toronto; Toronto ON Kanada
| |
Collapse
|