1
|
Weiss GS, Silva FRO, Garcia RM, Sakae LO, Viana ÍEL, Hara AT, Lima LC, Scaramucci T. Experimental toothpastes containing β-TCP nanoparticles functionalized with fluoride and tin to prevent Erosive Tooth Wear. J Dent 2024; 149:105273. [PMID: 39084548 DOI: 10.1016/j.jdent.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES The present study aimed to synthesize toothpastes containing Beta- TriCalcium Phosphate (β-TCP) nanoparticles, functionalized with fluoride and tin, and test their ability to reduce erosive tooth wear (ETW). METHODS Toothpastes were synthesized with the following active ingredients: 1100 ppm of fluoride (as sodium fluoride, F-), 3500 ppm of tin (as stannous chloride, Sn2+), and 800 ppm of β-TCP (Sizes a - 20 nm; and b - 100 nm). Enamel specimens were randomly assigned into the following groups (n = 10): 1. Commercial toothpaste; 2. Placebo; 3 F-; 4. F- + β-TCPa; 5. F- + β-TCPb; 6. F- + Sn2+; 7. F- + Sn2+ + β-TCPa and 8. F- + Sn2+ + β-TCPb. Specimens were subjected to erosion-abrasion cycling. Surface loss (in µm) was measured by optical profilometry. Toothpastes pH and available F- were also assessed. RESULTS Brushing with placebo toothpaste resulted in higher surface loss than brushing with F- (p = 0.005) and F- + β-TCPb (p = 0.007); however, there was no difference between F- and F- + β-TCPb (p = 1.00). Commercial toothpaste showed no difference from Placebo (p = 0.279). The groups F-, F- + β-TCPa, F- + β-TCPb, F- + Sn2+, F- + Sn2+ + β-TCPa and F- + Sn2+ + β-TCPb were not different from the commercial toothpaste (p > 0.05). Overall, the addition of β-TCP reduced the amount of available fluoride in the experimental toothpastes. The pH of toothpastes ranged from 4.97 to 6.49. CONCLUSIONS Although toothpaste containing β-TCP nanoparticles protected enamel against dental erosion-abrasion, this effect was not superior to the standard fluoride toothpaste (commercial). In addition, the functionalization of β-TCP nanoparticles with fluoride and tin did not enhance their protective effect. CLINICAL SIGNIFICANCE Although β-TCP nanoparticles have some potential to control Erosive Tooth Wear, their incorporation into an experimental toothpaste appears to have a protective effect that is similar to a commercial fluoride toothpaste.
Collapse
Affiliation(s)
- Guilherme Stangler Weiss
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Flávia Rodrigues Oliveira Silva
- Material Science and Technology Center, Nuclear and Energy Research Institute (IPEN-CNEN), Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000, Brazil
| | - Raíssa Manoel Garcia
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Letícia Oba Sakae
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| | - Ítallo Emídio Lira Viana
- Department of Comprehensive Care, Division of Operative Dentistry - Tufts University School of Dental Medicine, Boston, MA, USA
| | - Anderson T Hara
- Department of Cariology and Operative Dentistry, Indiana University School of Dentistry (IUSD), Indianapolis, IN, USA
| | - Leonardo Custódio Lima
- Department of Dentistry, Federal University of Juiz de Fora (UFJF), Campus Governador Valadares, MG, 35010-180, Brazil.
| | - Taís Scaramucci
- Department of Restorative Dentistry, University of São Paulo (USP), School of Dentistry, Av. Prof Lineu Prestes 2227, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
2
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
3
|
Naguib G, Mously H, Mazhar J, Alkanfari I, Binmahfooz A, Zahran M, Hamed MT. Bond strength and surface roughness assessment of novel antimicrobial polymeric coated dental cement. DISCOVER NANO 2024; 19:123. [PMID: 39105979 PMCID: PMC11303365 DOI: 10.1186/s11671-024-04074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Resin cement integrated with zein-incorporated magnesium oxide nanoparticles has previously been found to inhibit oral microbes and decrease bacterial biofilm. However, the bond strength and surface features of this biomaterial have yet to be investigated. The objective of this study was to evaluate the shear bond strength, mode of fracture, and surface roughness of resin cement modified with zein-incorporated magnesium oxide nanoparticles. Characterization of the cement was performed by X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. 126 human teeth were divided into 3 groups and cemented to lithium disilicate ceramic using resin cement with zein-incorporated magnesium oxide nanoparticles at concentrations of 0%, 1%, and 2% (n = 42). 21 samples of each group were subjected to the shear bond strength test, while the other 21 underwent thermocycling for 10,000 cycles before the test, after which all samples were evaluated for the mode of fracture. To assess surface roughness, resin cement disks were analyzed by a profilometer before and after undergoing thermocycling for 10,000 cycles. The shear bond strength of the cement with 1% and 2% nanoparticles was significantly higher than the control before thermocycling. The mode of fracture was found to be mainly adhesive with all groups, with the unmodified cement presenting the highest cohesive failure. There was no significant difference in surface roughness between the groups before or after thermocycling. The addition of zein-incorporated magnesium oxide nanoparticles to resin cement improved or maintained the shear bond strength and surface roughness of the resin cement.
Collapse
Affiliation(s)
- Ghada Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt.
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ibrahim Alkanfari
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulelah Binmahfooz
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Zahran
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
4
|
Elmarsafy SM. A Comprehensive Narrative Review of Nanomaterial Applications in Restorative Dentistry: Demineralization Inhibition and Remineralization Applications (Part I). Cureus 2024; 16:e58544. [PMID: 38644945 PMCID: PMC11027030 DOI: 10.7759/cureus.58544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Nanotechnology is extensively employed in various aspects of dentistry, including restorative dentistry, because of its substantial improvement and promising potential in the clinical efficacy of restorative materials and procedures. The main purpose of this review is to explore the different uses of nanomaterials in restorative dentistry. The review is divided into two parts: the current review (Part 1) focuses on the prevention of demineralization and promotion of remineralization, while the upcoming review (Part 2) will discuss the reinforcement of restorative materials and their therapeutic applications. Nanofillers are added to dental materials to boost their antibacterial, anticaries, and demineralization inhibitory capabilities. Additionally, they improve remineralization and enhance both mechanical properties and therapeutic features. The nanoparticles (NPs) used to increase antibacterial and remineralization inhibitions can be classified into two main groups: inorganic and organic NPs. Examples of inorganic NPs include silver, zinc oxide, titanium oxide, and gold. Examples of organic NPs include silica, quaternary ammonium salt monomers, and chitosan NPs. Furthermore, the nanofillers utilized to enhance the process of remineralization include various types such as metals, nano-hydroxyapatite, nano-amorphous calcium phosphate (ACP), dicalcium phosphate NPs, casein phosphopeptide-ACP (CPP-ACP), and calcium fluoride NPs. These uses underscore the potential applications of NPs in restorative dentistry, although there are still some limitations to address.
Collapse
Affiliation(s)
- Sahar M Elmarsafy
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
- Department of Conservative Dentistry, Faculty of Dental Medicine for Girls, Al-Azhar University, Cario, EGY
| |
Collapse
|
5
|
Fallahzadeh F, Pirmoradian M, Ghasemi SM, Mortazavi M. Evaluation of flexural strength, degree of conversion, and demineralization-prevention properties in adjacent tooth structures of an experimental fissure sealant containing nano-calcium-phosphate compounds. BMC Oral Health 2023; 23:906. [PMID: 37990312 PMCID: PMC10664666 DOI: 10.1186/s12903-023-03617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The present study aimed to evaluate the flexural strength, degree of conversion, and demineralization-prevention ability of an experimental fissure sealant containing nano-calcium-phosphate compounds. METHODS An experimental sealant was formulated using silica and nano hydroxyapatite filler particles. The control group consisted of the DENU Seal (n = 10, each group). The flexural bond strength was evaluated by UTM. DC was evaluated by FTIR. To evaluate the demineralization-prevention ability, Cl V cavities in 10 third molar teeth restored with two sealant products, followed by an acid challenge then the Vickers microhardness test was carried out. RESULTS The mean flexural strength in the commercial group was higher than the experimental group. However, the mean flexural modulus was not significantly different between the two groups. In the experimental group, DC was significantly higher than the commercial group. Adjacent to the interface, the decrease in microhardness in the experimental group was significantly less than the commercial group. However, on the tooth surface, there were no significant differences between the two groups. In the experimental group, the decrease in microhardness at the interface was less than at the tooth surface, however the situation was opposite in the commercial group. CONCLUSIONS Incorporating hydroxyapatite into the sealant structure might prevent demineralization, without adverse effects on flexural modulus and degree of conversion.
Collapse
Affiliation(s)
- Farnoosh Fallahzadeh
- Department of Operative Dentistry, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Pirmoradian
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, University of Medical Sciences, Tehran, Iran
| | | | - Maryam Mortazavi
- Department of Restorative Dentistry, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Naguib G, Maghrabi AA, Mira AI, Mously HA, Hajjaj M, Hamed MT. Influence of inorganic nanoparticles on dental materials' mechanical properties. A narrative review. BMC Oral Health 2023; 23:897. [PMID: 37990196 PMCID: PMC10662115 DOI: 10.1186/s12903-023-03652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Inorganic nanoparticles have been widely incorporated in conventional dental materials to help in improving their properties. The literature has shown that incorporating nanoparticles in dental materials in different specialties could have a positive effect on reinforcing the mechanical properties of those materials; however, there was no consensus on the effectiveness of using nanoparticles in enhancing the mechanical properties of dental materials, due to the variety of the properties of nanoparticles itself and their effect on the mechanical properties. This article attempted to analytically review all the studies that assessed the effect of different types of inorganic nanoparticles on the most commonly used dental materials in dental specialties such as polymethyl methacrylate, glass ionomer cement, resin composite, resin adhesive, orthodontic adhesive, and endodontic sealer. The results had shown that those inorganic nanoparticles demonstrated positive potential in improving those mechanical properties in most of the dental materials studied. That potential was attributed to the ultra-small sizes and unique physical and chemical qualities that those inorganic nanoparticles possess, together with the significant surface area to volume ratio. It was concluded from this comprehensive analysis that while a definitive recommendation cannot be provided due to the variety of nanoparticle types, shapes, and incorporated dental material, the consensus suggests using nanoparticles in low concentrations less than 1% by weight along with a silane coupling agent to minimize agglomeration issues and benefit from their properties.
Collapse
Affiliation(s)
- Ghada Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt.
| | | | - Abdulghani I Mira
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham A Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maher Hajjaj
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
7
|
Tavasolikejani S, Farazin A. Explore the most recent advancements in the domain of self-healing intelligent composites specifically designed for use in dentistry. J Mech Behav Biomed Mater 2023; 147:106123. [PMID: 37742596 DOI: 10.1016/j.jmbbm.2023.106123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Dental composites are commonly utilized in dental treatments because they have the ability to preserve the natural appearance of teeth, are minimally invasive and conservative, and enhance the overall physical and mechanical attributes. Dental composites can experience damage, like small cracks, due to factors like temperature changes and physical strain, which can reduce their effectiveness. Detecting these tiny cracks in dental composites can be quite challenging, and in certain situations, it may even be impossible. In addition, it is not possible to repair these damages in situ by using conventional materials and methods. Therefore, the self-healing ability in dental composites is necessary. In recent years, the spontaneous repair of damages such as micro-cracking in dental composite materials has been developed without any type of human intervention and the replacement of new components. The most widely used approach to create self-healing dental composites involves encapsulating a healing agent within polymer shells and dispersing these microcapsules within the acrylate matrix of the dental composite. To assess the self-healing abilities of these composites, researchers can examine changes in their fracture toughness before and after the healing process using a test called the Single Edge V-notch beam test. In the present article we reviewed the latest findings in the field of self-healing intelligent composites for application in dentistry, and also in the present study, the studies on self-healing smart dental composites will be reviewed.
Collapse
Affiliation(s)
| | - Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| |
Collapse
|
8
|
Naguib G, Mously H, Magdy W, Binmahfooz A, Qutub O, Hajjaj M, Hamed MT. Color behavior of composite resin enhanced with different shapes of new antimicrobial polymer coated nanoparticles. BMC Oral Health 2023; 23:771. [PMID: 37858112 PMCID: PMC10588037 DOI: 10.1186/s12903-023-03495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Zein-coated magnesium oxide nanoparticles (zMgO NPs) demonstrate a potent antimicrobial effect, endorsing it as a compelling additive to dental materials formulations for oral health care advances. However, currently there is no data on the imprint of zMgO NPs on the color permanence of dental composites. The objective of this study is to evaluate the color stability of different types of composite enhanced with antimicrobial zein-coated magnesium oxide nanoparticles (zMgO NPs) of different shapes before and after thermocycling. METHODS Two hundred composite samples were divided into four groups: Gp1: Tetric N-Flow with zMgO nanowires, Gp2: Tetric N-Flow with zMgO nanospheres, Gp3: Tetric N-Ceram with zMgO nanowires; Gp4: Tetric N-Ceram with zMgO nanospheres. Each group was subdivided into 5 subgroups (n = 10) with concentrations of zMgO NPs 0%, 0.3%, 0.5%, 1% and 2%. The characterization of the modified composite containing the zMgO was done via X-ray Diffraction, Field Emission Scanning Electron Microscopy (FESEM), and Fourier Transform Infrared Spectroscopy (FTIR). Colorimetric evaluation was performed through spectrophotometry with a white background. Samples underwent color assessment using a spectrophotometer, followed by thermocycling, and then another color assessment. RESULTS FESEM analysis showed a uniform distribution of the zMgO nanoparticles in the composite and FTIR illustrated no change in the spectra. However, the XRD spectra exhibited an amorphous pattern in the composite enhanced with zMgO NPs. There was no compelling discrepancy in color variation ΔE among the different groups before and after thermocycling (p > 0.05). A statistically notable variation in ΔL was found amid the control and N-Flow and N-Ceram with 2% zMgO nanospheres before and after thermocycling respectively (p < 0.05). While after thermocycling, there was a statistically significant difference in Δa in N-Flow and N-Ceram wires amid the control and the different groups (p < 0.05). Additionally, after thermocycling there was a statistically significant difference in Δb in N-Flow and N-Ceram wires between the control and the different groups (p < 0.05). The Tukey test exhibited no variation among the groups with different zMgO concentrations (p > 0.05). CONCLUSION Enhancing N-Flow and N-Ceram composite with antimicrobial zMgO nanowires and nanospheres did not alter the total color stability of the materials before and after thermocycling.
Collapse
Affiliation(s)
- Ghada Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa Magdy
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulelah Binmahfooz
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Qutub
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maher Hajjaj
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Tharwat Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, P.O Box 80209, 21589, Jeddah, Saudi Arabia.
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt.
| |
Collapse
|
9
|
Ren J, Guo X. The germicidal effect, biosafety and mechanical properties of antibacterial resin composite in cavity filling. Heliyon 2023; 9:e19078. [PMID: 37662807 PMCID: PMC10474440 DOI: 10.1016/j.heliyon.2023.e19078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, dental resin materials have become increasingly popular for cavity filling. However, these materials can shrink during polymerization, leading to microleakages that enable bacteria to erode tooth tissue and cause secondary caries. As a result, there is great clinical demand for the development of antibacterial resins. The principle of antibacterial resin includes contact killing and filler-release killing of bacteria. For contact killing, quaternary ammonium salts (QACs) and antibacterial peptides (AMPs) can be added. For filler-release killing, chlorhexidine (CHX) and nanoparticles are used. These antibacterial agents are effective against gram-positive bacteria, gram-negative bacteria, fungi, and more. Among them, QACs has a lasting antibacterial effect, and silver nanoparticles even have a certain ability to kill viruses. Biocompatibility-wise, QACs, AMPs, and CHX have low cytotoxicity to cells when added into the resin. However, nanoparticles with smaller particle sizes have higher cytotoxicity. In terms of mechanical properties, QACs, AMPs, and CHX do not negatively affect the resin. However, the addition of magnesium oxide can have a negative impact. This paper reviews the types and antibacterial principles of commonly used antibacterial resins in recent years, evaluates their antibacterial effect, biological safety, and mechanical properties, and provides references for selecting clinical filling materials.
Collapse
Affiliation(s)
- Jiamu Ren
- Yanbian University, Jilin, 133002, China
| | - Xinwei Guo
- Peking University, Haidian District, Beijing, 100871, China
| |
Collapse
|
10
|
Klimek L, Kopacz K, Śmielak B, Kula Z. An Evaluation of the Mechanical Properties of a Hybrid Composite Containing Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4548. [PMID: 37444862 DOI: 10.3390/ma16134548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
There is currently a lack of scientific reports on the use of composites based on UDMA resin containing HAp in conservative dentistry. The aim of this study was therefore to determine the effect of hydroxyapatite content on the properties of a hybrid composite used in conservative dentistry. This paper compares a commercial hybrid composite with experimental composites treated with 2% by weight (b/w), 5% b/w, and 8% b/w hydroxyapatite. The composites were subjected to bending strength, compression, and diametrical compression tests, as well as those for impact strength, hardness, and tribological wear. The obtained results were subjected to statistical analysis. Increased hydroxyapatite was found to weaken the mechanical properties; however, 2% b/w and 5% b/w hydroxyapatite powder was found to achieve acceptable results. The statistical analysis showed no significant differences. HAp is an effective treatment for composites when applied at a low concentration. Further research is needed to identify an appropriate size of HAp particles that can be introduced into a composite to adequately activate the surface and modification its composition.
Collapse
Affiliation(s)
- Leszek Klimek
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. B. Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Karolina Kopacz
- "Dynamo Lab" Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Beata Śmielak
- Department of Dental Prosthodontics, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Zofia Kula
- Department of Dental Technology, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
11
|
Nasarudin NA, Razali M, Goh V, Chai WL, Muchtar A. Expression of Interleukin-1β and Histological Changes of the Three-Dimensional Oral Mucosal Model in Response to Yttria-Stabilized Nanozirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2027. [PMID: 36903142 PMCID: PMC10003861 DOI: 10.3390/ma16052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Over the years, advancement in ceramic-based dental restorative materials has led to the development of monolithic zirconia with increased translucency. The monolithic zirconia fabricated from nano-sized zirconia powders is shown to be superior in physical properties and more translucent for anterior dental restorations. Most in vitro studies on monolithic zirconia have focused mainly on the effect of surface treatment or the wear of the material, while the nanotoxicity of this material is yet to be explored. Hence, this research aimed to assess the biocompatibility of yttria-stabilized nanozirconia (3-YZP) on the three-dimensional oral mucosal models (3D-OMM). The 3D-OMMs were constructed using human gingival fibroblast (HGF) and immortalized human oral keratinocyte cell line (OKF6/TERT-2), co-cultured on an acellular dermal matrix. On day 12, the tissue models were exposed to 3-YZP (test) and inCoris TZI (IC) (reference material). The growth media were collected at 24 and 48 h of exposure to materials and assessed for IL-1β released. The 3D-OMMs were fixed with 10% formalin for the histopathological assessments. The concentration of the IL-1β was not statistically different between the two materials for 24 and 48 h of exposure (p = 0.892). Histologically, stratification of epithelial cells was formed without evidence of cytotoxic damage and the epithelial thickness measured was the same for all model tissues. The excellent biocompatibility of nanozirconia, as evidenced by the multiple endpoint analyses of the 3D-OMM, may indicate the potential of its clinical application as a restorative material.
Collapse
Affiliation(s)
- Naziratul Adirah Nasarudin
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Victor Goh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andanastuti Muchtar
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
12
|
Hamdy TM, Abdelnabi A, Othman MS, Bayoumi RE, Abdelraouf RM. Effect of Different Mouthwashes on the Surface Microhardness and Color Stability of Dental Nanohybrid Resin Composite. Polymers (Basel) 2023; 15:polym15040815. [PMID: 36850099 PMCID: PMC9961015 DOI: 10.3390/polym15040815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Surface microhardness and color stability of dental restorative material should be sustained throughout its functional lifetime to maintain the esthetic quality of the restoration. However, the frequent application of mouthwash may affect their surface microhardness and color stability. The aim of this study was to evaluate the effects of different types of mouthwashes with different contents on surface microhardness and color stability of dental nanohybrid resin-based composite. METHODS Disc specimens of nanohybrid resin composite (Luna Nano-Hybrid Composite) were prepared according to manufacturing instructions; specimens were incubated for 24 h in three types of mouthwash (Chlorohexidine, Listerine Green Tea, and Colgate Optic White Whitening Mouthwash). Artificial saliva was used as a control group. Surface microhardness was evaluated using Vickers microhardness device. Color stability after and before immersion in the different mouthwashes was evaluated using extra-oral spectrophotometer; the values of color change (ΔE00) were subsequently calculated. Data were analyzed using one-way ANOVA and post hoc test (p ≤ 0.05). RESULTS There was no significant difference between microhardness of resin composite immersed in artificial saliva, CHX, and Green Tea mouthwashes (78.5, 78.4, and 73.5, respectively) (p ≥ 0.1), while the bleaching mouthwash led to the lowest microhardness of resin composite, with significant difference compared to the three previous immersion media (p = 0.002). Moreover, there were significant differences in the color changes (ΔE00) of resin composite exposed to the various immersion media (p = 0.0001). CONCLUSIONS The bleaching mouthwash led to a significant reduction in nanohybrid resin composite's microhardness compared to the chlorohexidine and Green Tea containing mouthwashes. The resin composite's color change was accepted in bleaching mouthwash but unaccepted in chlorohexidine and Green Tea containing mouthwashes.
Collapse
Affiliation(s)
- Tamer M. Hamdy
- Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), Giza 12622, Egypt
| | - Ali Abdelnabi
- Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), Giza 12622, Egypt
| | - Maha S. Othman
- Operative Dentistry Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Rania E. Bayoumi
- Biomaterials Department, Faculty of Dentistry (Girls), Azhar University, Cairo 11754, Egypt
| | - Rasha M. Abdelraouf
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| |
Collapse
|
13
|
Chokkattu JJ, Neeharika S, Rameshkrishnan M. Applications of Nanomaterials in Dentistry: A Review. J Int Soc Prev Community Dent 2023; 13:32-41. [PMID: 37153931 PMCID: PMC10155882 DOI: 10.4103/jispcd.jispcd_175_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 05/10/2023] Open
Abstract
Aim and Objective Currently, the major priority in the field of nanotechnology or nanoscience is research and development at the atomic- or molecular-level sciences. Almost every aspects of human health, including pharmaceutical, clinical research and analysis, and supplemental immunological systems, are significantly impacted by it. Diverse dental applications to the realm of nanotechnology, which also reflect developments in material sciences, have given rise to the field of nanodentistry and nanocatalytic drug development, especially in oral nanozyme research and application. This review is aimed to provide readers an in-depth analysis of nanotechnology's characteristics, varied qualities, and applications toward dentistry. Materials and Methods A query was carried out in PubMed and Google Scholar databases for the articles published from 2007 to 2022 using the keywords/MESH term nanomaterials, dentistry, nanoenzymes, metals, and antibacterial activity. Data extraction and evidence synthesis have been performed by three researchers individually. Results A total of 901 articles have been extracted, out of which 108 have been removed due to repetitions and overlapping. After further screening following exclusion and inclusion criteria, 74 papers were considered to be pertinent and that primarily addressed dental nanotechnology were chosen. Further, the data havebeen extracted and interpreted for the review. The results of the review indicated that the development of multifunctional nanozymes has been continuously assessed in relation to oro-dental illnesses to show the significant impact that nanozymes have on oral health. Conclusion As evidenced by the obtained results, with the advent of ongoing breakthroughs in nanotechnology, dental care could be improved with advanced preventive measures.
Collapse
Affiliation(s)
- Jerry Joe Chokkattu
- Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
- Address for correspondence: Dr. Jerry Joe Chokkattu, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India. ,
| | - Singamsetty Neeharika
- Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mahesh Rameshkrishnan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Kula Z, Klimek L, Kopacz K, Śmielak B. Evaluation of the Effect of the Addition of Hydroxyapatite on Selected Mechanical and Tribological Properties of a Flow-Type Composite. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9016. [PMID: 36556822 PMCID: PMC9787188 DOI: 10.3390/ma15249016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: The aim of the study was to determine the effect of modification with sintered hydroxyapatite (HAp) on selected mechanical and tribological properties of a flow-type composite. (2) Methods: Samples in the shapes of cuboidal beams (n = 120) and cylinders (n = 120) with the proper dimensions were prepared from a standard flow-type composite and others with the addition of 2% wt., 5% wt., and 8% wt. sintered hydroxyapatite. The bending strength, compression strength, diametral compression strength, impact resistance, hardness, and tribological properties were compared. (3) Results: In all cases, it was established that an increase in the amount of HAp caused a reduction in the bending, compression, and diametral compression strength. Increasing the amount of added HAp also reduced the impact strength, hardness, and wear resistance. However, the differences were statistically insignificant. (4) Conclusions: The addition of hydroxyapatite to a flow-type composite material worsened its mechanical and tribological properties; however, the obtained values were acceptable with 2% wt. and 5% wt. HAp.
Collapse
Affiliation(s)
- Zofia Kula
- Department of Dental Technology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| | - Leszek Klimek
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-924 Lodz, Poland
| | - Karolina Kopacz
- “Dynamo Lab” Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Pomorska Str. 251, 92-215 Lodz, Poland
| | - Beata Śmielak
- Department of Prosthodontics, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| |
Collapse
|
15
|
Characterization of Physical and Biological Properties of a Caries-Arresting Liquid Containing Copper Doped Bioglass Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14061137. [PMID: 35745710 PMCID: PMC9227760 DOI: 10.3390/pharmaceutics14061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Silver diamine fluoride (SDF) is an outstanding dental material for arresting and preventing caries, but some drawbacks, such as high flowability due to low viscosity and cytotoxicity to the pulp, have been reported. To overcome these problems, copper-doped bioactive glass nanoparticles (CuBGns) were combined with SDF. After synthesis, CuBGns were examined by physical analysis and added in SDF at different weight/volume% (SDF@CuBGn). After assessing physical properties (viscosity and flowability) of SDF@CuBGn, physicochemical properties (morphology before and after simulated body fluid (SBF) immersion and ion release) of SDF@CuBGn-applied hydroxyapatite (HA) discs were evaluated. Biological properties were further evaluated by cytotoxicity test to pulp stem cells and antibacterial effect on cariogenic organisms (Streptococcus mutans and Staphylococcus aureus). Combining CuBGns in SDF increased the viscosity up to 3 times while lowering the flowability. More CuBGns and functional elements in SDF (Ag and F) were deposited on the HA substrate, even after SBF immersion test for 14 days, and they showed higher Cu, Ca, and Si release without changing F and Ag release. Cell viability test suggested lower cytotoxicity in SDF@CuBGn-applied HA, while CuBGns in SDF boosted antibacterial effect against S. aureus, ~27% in diameter of agar diffusion test. In conclusion, the addition of CuBGn to SDF enhances viscosity, Ag and F deposition, and antibacterial effects while reducing cell toxicity, highlighting the role of bioactive CuBGns for regulating physical and biological effects of dental materials.
Collapse
|
16
|
HONGBO Z, HASEBE A, ALAM A, YUNQING L, HOSHIKA S, YAMAUTI M, SANO H. Antibacterial potential of colloidal platinum nanoparticles against Streptococcus mutans . Dent Mater J 2022; 41:368-375. [DOI: 10.4012/dmj.2021-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhang HONGBO
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Akira HASEBE
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
| | - Arefin ALAM
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Liu YUNQING
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Shuhei HOSHIKA
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Monica YAMAUTI
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Hidehiko SANO
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| |
Collapse
|
17
|
Zalite V, Lungevics J, Vecstaudza J, Stipniece L, Locs J. Nanosized calcium deficient hydroxyapatites for tooth enamel protection. J Biomed Mater Res B Appl Biomater 2021; 110:1354-1367. [PMID: 34965008 PMCID: PMC9306847 DOI: 10.1002/jbm.b.35005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
Calcium phosphates (CaP) are extensively studied as additives to dental care products for tooth enamel protection against caries. However, it is not clear yet whether substituted CaP could provide better enamel protection. In this study we produced, characterized and tested in vitro substituted and co‐substituted calcium deficient hydroxyapatite (CDHAp) with Sr2+ and F− ions. X‐ray powder diffractometry, Fourier transformation infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, Brunauer–Emmett–Teller were used to characterize synthesized powders and also cytotoxicity was evaluated. pH = f(t) test was performed to estimate, weather synthesized CDHAp suspensions are able to increase pH of experimental media after acid addition. Synthesis products were incorporated into paste to perform in vitro remineralization on the bovine enamel. In addition to mentioned instrumental methods, profilometry was used for evaluation of remineralised enamel samples. The obtained results confirmed formation of CDHAp substituted with 1.5–1.6 wt% of fluoride and 7.4–7.8 wt% of strontium. pH = f(t) experiment pointed out that pH increased by approximately 0.3 within 10 min after acid addition for all CDHAp suspensions. A new layer of the corresponding CDHAp was formed on the enamel. Its thickness increased by 0.8 ± 0.1 μm per day and reached up to 5.8 μm after 7 days. Additionally, octa calcium phosphates were detected on the surface of control samples. In conclusion, we can assume that CDHAp substituted with Sr2+ and/or F− could be used as an effective additive to dental care products promoting formation of protecting layer on the enamel, but there was no significant difference among sample groups.
Collapse
Affiliation(s)
- Vita Zalite
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Janis Lungevics
- Department of Mechanical Engineering and Mechatronics, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Riga, Latvia
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia.,Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
18
|
Fadia P, Tyagi S, Bhagat S, Nair A, Panchal P, Dave H, Dang S, Singh S. Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 2021; 11:457. [PMID: 34631356 PMCID: PMC8497680 DOI: 10.1007/s13205-021-02995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium carbonate micro- and nanoparticles are considered as chemically inert materials. Therefore, they are widely considered in the field of biosensing, drug delivery, and as filler material in plastic, paper, paint, sealant, and adhesive industries. The unusual properties of calcium carbonate-based nanomaterials, such as biocompatibility, high surface-to-volume ratio, robust nature, easy synthesis, and surface functionalization, and ability to exist in a variety of morphologies and polymorphs, make them an ideal candidate for both industrial and biomedical applications. Significant research efforts have been devoted for developing novel synthesis methods of calcium carbonate particles in micrometer and nanometer dimensions. This review highlights different approaches of the synthesis of calcium carbonate micro- and nanoparticles, such as precipitation, slow carbonation, emulsion, polymer-mediated method, including in-situ polymerization, mechano-chemical, microwave-assisted method, and biological methods. The applications of these versatile calcium carbonate micro- and nanoparticles in the biomedical field (such as in drug delivery, therapeutics, tissue engineering, antimicrobial activity, biosensing applications), in industries, and environmental sector has also been comprehensively covered.
Collapse
Affiliation(s)
- Preksha Fadia
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Simona Tyagi
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Stuti Bhagat
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| | - Abhishek Nair
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Pooja Panchal
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Harsh Dave
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sadev Dang
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| |
Collapse
|
19
|
Hydroxyapatite-Based Solution as Adjunct Treatment for Biofilm Management: An In Situ Study. NANOMATERIALS 2021; 11:nano11092452. [PMID: 34578769 PMCID: PMC8467207 DOI: 10.3390/nano11092452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023]
Abstract
Synthetic hydroxyapatite-based solution is a bioinspired material that may present anti-adhesive properties, restraining the dental biofilm formation without causing adverse effects. This in situ study aims to evaluate the effects of three different hydroxyapatite (HAP) watery solutions as a mouthwash against biofilm adhesion on different dental material surfaces under oral conditions. Hence, four volunteers carried maxillary splints containing enamel, titanium, ceramics, and polymethyl-methacrylate resin (PMMA) samples. Three HAP watery solutions (5%) were prepared with HAP particles presenting different shapes and sizes (HAP I, HAP II, HAP III). During 24 h, the volunteers rinsed two times with one of the following selected tested solution: HAP I, HAP II, HAP III, water, or chlorhexidine 0.2% (CHX). The first rinse was performed 3 min after pellicle formation; the second rinse occurred after a 12 h interval. The surface analysis was performed by scanning electron microscopy (SEM), fluorescence microscopy (FM), and transmission electron microscopy (TEM). Statistical and microscopic analysis showed that most samples treated with any HAP solution revealed reduced biofilm coverage presenting comparable results to CHX treated samples, however without altering the microorganisms' viability. In conclusion, the results of this investigation showed that a pure hydroxyapatite-based mouthrinse could be a promising bioinspired adjunct solution for biofilm management.
Collapse
|
20
|
Enrich-Essvein T, Rodríguez-Navarro AB, Álvarez-Lloret P, Cifuentes-Jiménez C, Bolaños-Carmona MV, González-López S. Proanthocyanidin-functionalized hydroxyapatite nanoparticles as dentin biomodifier. Dent Mater 2021; 37:1437-1445. [PMID: 34353622 DOI: 10.1016/j.dental.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study evaluated the potential combined effects of nanohydroxyapatite and proanthocyanidin on the remineralization and collagen stabilization of demineralized dentin. METHODS Seventy-five coronal dentin beams (6 × 1 × 1 mm3) were randomly allocated into five experimental groups (n = 15): Sound (no treatment), Control (pH-cycling), nHAp (nanohydroxyapatite), nHAp_PA (Proanthocyanidin-functionalized nanohydroxyapatite), and PA (proanthocyanidin) treatments. The sound group (negative control) were immersed in distilled water over the experimental period. The remaining groups were submitted to a pH-cycling process for 14 days. Following the de-re mineralization process, specimens corresponding to the control group (positive control) were immersed in distilled water whereas the test groups were immersed in 1 mL of respective solution treatment (nHAp, nHAp_PA, or PA) for 1 min. The dentin samples were analyzed to determine their chemical composition (ATR-FTIR and Thermogravimetric) and mineralogical (XRD) characteristics as well as their mechanical response, obtained by three-point bending test. RESULTS Higher phosphate content (v4 PO4: ATR-FTIR) and amount of mineral (XRD) was observed in the nHAp_PA group. Furthermore, a larger induction of collagen cross-links (ATR-FTIR) and %Organic Matter (TGA) would indicate the PA incorporation and the achievement of dentin matrix stability. These effects on dentin properties were related to increasing flexural strength (MPa), demonstrating that 15% w/v nHAp_PA treatment improved the mechanical properties of the samples. SIGNIFICANCE nHAp_PA shows significant potential for promoting remineralization while improving collagen stability into demineralized dentin in a clinically feasible period of 1 min.
Collapse
|
21
|
Najafi H, Jafari M, Farahavar G, Abolmaali SS, Azarpira N, Borandeh S, Ravanfar R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes Manuf 2021; 4:735-756. [PMID: 34306798 PMCID: PMC8294290 DOI: 10.1007/s42242-021-00149-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Abstract The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance, especially in societies with a large elderly population. Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility, tunable mechanical stability, injectability, trigger capability, lack of immunogenic reactions, and the ability to load cells and active pharmaceutical agents for tissue regeneration. Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals, which can mimic the extracellular matrix. Thus, peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods. This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration, including ionic self-complementary peptides, amphiphilic (surfactant-like) peptides, and triple-helix (collagen-like) peptides. Special attention is given to the main bioactive peptides, the role and importance of self-assembled peptide hydrogels, and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration. Graphic abstract
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, 7193711351 Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Polymer Technology Research Group, Department of Chemical and Metallurgical Engineering, Aalto University, 02152 Espoo, Finland
| | - Raheleh Ravanfar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
22
|
Traini T. Advances in Dental Materials "at a Glance.". MATERIALS 2021; 14:ma14071750. [PMID: 33918225 PMCID: PMC8038128 DOI: 10.3390/ma14071750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/14/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Tonino Traini
- Innovative Technologies in Medicine & Dentistry Department, University "G. D'annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
23
|
Chen H, Gu L, Liao B, Zhou X, Cheng L, Ren B. Advances of Anti-Caries Nanomaterials. Molecules 2020; 25:molecules25215047. [PMID: 33143140 PMCID: PMC7662703 DOI: 10.3390/molecules25215047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Caries is the most common and extensive oral chronic disease. Due to the lack of anti-caries properties, traditional caries filling materials can easily cause secondary caries and lead to treatment failure. Nanomaterials can interfere with the bacteria metabolism, inhibit the formation of biofilm, reduce demineralization, and promote remineralization, which is expected to be an effective strategy for caries management. The nanotechnology in anti-caries materials, especially nano-adhesive and nano-composite resin, has developed fast in recent years. In this review, the antibacterial nanomaterials, remineralization nanomaterials, and nano-drug delivery systems are reviewed. We are aimed to provide a theoretical basis for the future development of anti-caries nanomaterials.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (H.C.); (B.L.); (X.Z.)
- Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (H.C.); (B.L.); (X.Z.)
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (H.C.); (B.L.); (X.Z.)
- Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (H.C.); (B.L.); (X.Z.)
- Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China
- Correspondence: (L.C.); (B.R.)
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (H.C.); (B.L.); (X.Z.)
- Correspondence: (L.C.); (B.R.)
| |
Collapse
|
24
|
Porter G, Tompkins G, Schwass D, Li K, Waddell J, Meledandri C. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent Mater 2020; 36:1096-1107. [DOI: 10.1016/j.dental.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/29/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
|
25
|
Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int J Nanomedicine 2020; 15:3181-3191. [PMID: 32440117 PMCID: PMC7212989 DOI: 10.2147/ijn.s253833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this concise review is to summarize the use of silver nanomaterials for caries prevention. Methods Two researchers independently performed a literature search of publications in English using Embase, Medline, PubMed, and Scopus databases. The keywords used were (silver nanoparticles OR AgNPs OR nano silver OR nano-silver) AND (caries OR tooth decay OR remineralisation OR remineralization). They screened the title and abstract to identify potentially eligible publications. They then retrieved the full texts of the identified publications to select original research reporting silver nanomaterials for caries prevention. Results The search identified 376 publications, and 66 articles were included in this study. The silver nanomaterials studied were categorized as resin with silver nanoparticles (n=31), silver nanoparticles (n=21), glass ionomer cement with silver nanoparticles (n=7), and nano silver fluoride (n=7). Most (59/66, 89%) studies investigated the antibacterial properties, and they all found that silver nanomaterials inhibited the adhesion and growth of cariogenic bacteria, mainly Streptococcus mutans. Although silver nanomaterials were used as anti-caries agents, only 11 (11/66, 17%) studies reported the effects of nanomaterials on the mineral content of teeth. Eight of them are laboratory studies, and they found that silver nanomaterials prevented the demineralization of enamel and dentin under an acid or cariogenic biofilm challenge. The remaining three are clinical trials that reported that silver nanomaterials prevented and arrested caries in children. Conclusion Silver nanoparticles have been used alone or with resin, glass ionomer, or fluoride for caries prevention. Silver nanomaterials inhibit the adhesion and growth of cariogenic bacteria. They also impede the demineralization of enamel and dentin.
Collapse
Affiliation(s)
- Iris Xiaoxue Yin
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, People's Republic of China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, People's Republic of China.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Otago, New Zealand
| | - Quanli Li
- College of Stomatology, Anhui Medical University, Hefei, People's Republic of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Chun Hung Chu
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, People's Republic of China.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
26
|
Jardim RN, Rocha AA, Rossi AM, de Almeida Neves A, Portela MB, Lopes RT, Pires Dos Santos TM, Xing Y, Moreira da Silva E. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J Mech Behav Biomed Mater 2020; 109:103817. [PMID: 32543392 DOI: 10.1016/j.jmbbm.2020.103817] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to fabricate and characterize dental composites containing hydroxyapatite nanoparticles (HApNPs). Four dental composites were produced from the same organic matrix (70 wt% Bis-GMA and 30 wt% TEGDMA), with partial replacement of BaBSi particles (65 wt%) by HApNPs in the following concentrations (wt%): E0 (0) - control, E10 (10), E20 (20) and E30 (30). Ca2+ and PO43- release was evaluated in solutions with different pHs (4, 5.5, and 7) using atomic emission spectroscopy with microwave-induced nitrogen plasma while the enamel remineralization potential was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), microhardness (KHN), flexural strength (FS), elastic modulus (EM) and translucency (TP). The higher the HApNPs content, the higher the Ca2+ and PO43- release. The ions release was influenced by pH (4 > 5.5 > 7) (p < 0.05). All composites loaded with HApNPs were able to remineralize the enamel (E30 = E20 > E10) (p < 0.05). Contrarily, E0 was not able of recovering the enamel mineral loss. E0 and E10 presented highest DC%, while E20 and E30 showed similar and lowest DC%. KHN and FS were decreased with the addition of HApNPs, while EM was not influenced by the incorporation of HApNPs. E10 presented statistically similar TP to E0, while this property decreased for E20 and E30 (p < 0.05). Incorporation of HApNPs into dental composites promoted enamel remineralization, mainly at potentially cariogenic pH (= 4), while maintained their overall performance in terms of physicomechanical properties.
Collapse
Affiliation(s)
- Renata Nunes Jardim
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Anderson Araújo Rocha
- Department of Analytical Chemistry and NAB - Nucleus of Biomass Studies and Water Management - Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | | | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Paediatric Dentistry, King's College London, London, UK
| | - Maristela Barbosa Portela
- Odontopediatric Division, School of Dentistry, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory for Nuclear Instrumentation, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Yutao Xing
- High-resolution Electron Microscopy Lab, Advanced Characterization Center for Petroleum Industry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020; 10:15430-15460. [PMID: 35495474 PMCID: PMC9052824 DOI: 10.1039/d0ra00762e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Research and development in the applied sciences at the atomic or molecular level is the order of the day under the domain of nanotechnology or nano-science with enormous influence on nearly all areas of human health and activities comprising diverse medical fields such as pharmacological studies, clinical diagnoses, and supplementary immune system. The field of nano-dentistry has emerged due to the assorted dental applications of nano-technology. This review provides a brief introduction to the general nanotechnology field and a comprehensive overview of the synthesis features and dental uses of nano-materials including current innovations and future expectations with general comments on the latest advancements in the mechanisms and the most significant toxicological dimensions.
Collapse
Affiliation(s)
- Loke Kok Foong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
| | | | - Armita Forutan Mirhosseini
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
| | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Maryam Mostafavi
- Tehran Dental Branch, Islamic Azad University Tehran Iran
- Craniomaxilofacial Resarch Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Nasser Ebrahimpoor
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Maryam Sharifi
- Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences Kerman Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
28
|
Ferrando-Magraner E, Bellot-Arcís C, Paredes-Gallardo V, Almerich-Silla JM, García-Sanz V, Fernández-Alonso M, Montiel-Company JM. Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis. ACTA ACUST UNITED AC 2020; 56:medicina56020055. [PMID: 32013103 PMCID: PMC7073742 DOI: 10.3390/medicina56020055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Nanotechnology has become a significant area of research focused mainly on increasing the antibacterial and mechanical properties of dental materials. The aim of the present systematic review and meta-analysis was to examine and quantitatively analyze the current evidence for the addition of different nanoparticles into dental restorative materials, to determine whether their incorporation increases the antibacterial/antimicrobial properties of the materials. Materials and Methods: A literature search was performed in the Pubmed, Scopus, and Embase databases, up to December 2018, following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines for systematic reviews and meta-analyses. Results: A total of 624 papers were identified in the initial search. After screening the texts and applying inclusion criteria, only 11 of these were selected for quantitative analysis. The incorporation of nanoparticles led to a significant increase (p-value <0.01) in the antibacterial capacity of all the dental materials synthesized in comparison with control materials. Conclusions: The incorporation of nanoparticles into dental restorative materials was a favorable option; the antibacterial activity of nanoparticle-modified dental materials was significantly higher compared with the original unmodified materials, TiO2 nanoparticles providing the greatest benefits. However, the high heterogeneity among the articles reviewed points to the need for further research and the application of standardized research protocols.
Collapse
Affiliation(s)
- Elena Ferrando-Magraner
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
| | - Carlos Bellot-Arcís
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
| | - Vanessa Paredes-Gallardo
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
- Correspondence:
| | - José Manuel Almerich-Silla
- Preventive Dentistry Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (J.M.A.-S.); (J.M.M.-C.)
| | - Verónica García-Sanz
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (E.F.-M.); (C.B.-A.); (V.G.-S.)
| | | | - José María Montiel-Company
- Preventive Dentistry Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (J.M.A.-S.); (J.M.M.-C.)
| |
Collapse
|
29
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
30
|
Nobre CMG, Pütz N, Hannig M. Adhesion of Hydroxyapatite Nanoparticles to Dental Materials under Oral Conditions. SCANNING 2020; 2020:6065739. [PMID: 32454927 PMCID: PMC7222588 DOI: 10.1155/2020/6065739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
Hydroxyapatite nanoparticles (nano-HAP) are receiving considerable attention for dental applications, and their adhesion to enamel is well established. However, there are no reports concerning the effects of HAP on other dental materials, and most of the studies in this field are based on in vitro designs, neglecting the salivary pellicle-apatite interactions. Thus, this in situ pilot study aims to evaluate the effects of three hydroxyapatite-based solutions and their interactions with different dental material surfaces under oral conditions. Hence, two volunteers carried intraoral splints with mounted samples from enamel and from three dental materials: titanium, ceramics, and polymethyl-methacrylate (PMMA). Three HAP watery solutions (5%) were prepared with different shapes and sizes of nano-HAP (HAP I, HAP II, HAP III). After 3 min of pellicle formation, 10 ml rinse was performed during 30 sec. Rinsing with water served as control. Samples were accessed immediately after rinsing, 30 min and 2 h after rinsing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the particles, and SEM evaluated the pellicle-HAP interactions. SEM and TEM results showed a high variation in the size range of the particles applied. A heterogeneous HAP layer was present after 2 h on enamel, titanium, ceramics, and PMMA surfaces under oral conditions. Bridge-like structures were visible between the nano-HAP and the pellicle formed on enamel, titanium, and PMMA surfaces. In conclusion, nano-HAP can adhere not only to enamel but also to artificial dental surfaces under oral conditions. The experiment showed that the acquired pellicle act as a bridge between the nano-HAP and the materials' surface.
Collapse
Affiliation(s)
- Cíntia Mirela Guimarães Nobre
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, D-66421 Homburg, Saarland, Germany
| |
Collapse
|
31
|
Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers. J Mech Behav Biomed Mater 2020; 101:103447. [DOI: 10.1016/j.jmbbm.2019.103447] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
|
32
|
Kuang Z, Dai G, Wan R, Zhang D, Zhao C, Chen C, Li J, Gu H, Huang W. Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold. Genes Dis 2019; 8:193-202. [PMID: 33997166 PMCID: PMC8099691 DOI: 10.1016/j.gendis.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022] Open
Abstract
Lev/MSNs/n-HA/PU has been proved to be a novel scaffold material to treat bone defect caused by chronic osteomyelitis. We have previously identified that this material can effectively treat chronic osteomyelitis caused by Staphylococcus aureusin vivo. However, the potential mechanisms of antibacterial and osteogenic induction properties remain unclear. Thus, for osteogenesis property, immunohistochemistry, PCR, and Western blot were performed to detect the expression of osteogenic markers. Furthermore, flow cytometry and TUNEL were applied to analyze MC3T3-E1 proliferation and apoptosis. For antibacterial property, the material was co-cultivated with bacteria, bacterial colony forming units was counted and the release time of the effective levofloxacin was assayed by agar disc-diffusion test. Moreover, scanning electron microscope was applied to observe adhesion of bacteria. In terms of osteogenic induction, we found BMSCs adherently grew more prominently on Lev/MSNs/n-HA/PU. Lev/MSNs/n-HA/PU also enhanced the expression of osteogenic markers including OCN and COL1α1, as well as effectively promoted the transition from G1 phase to G2 phase. Furthermore, Lev/MSNs/n-HA/PU could reduce apoptosis of MC3T3-E1. Besides, both Lev/MSNs/n-HA/PU and n-HA/PU materials could inhibit bacterial colonies, while Lev/MSNs/n-HA/PU possessed a stronger antibacterial activities, and lower bacterial adhesion than n-HA/PU. These results illustrated that Lev/MSNs/n-HA/PU composite scaffold possess favorable compatibility in vitro, which induce osteogenic differentiation of MSCs, promote proliferation and differentiation of MC3T3-E1, and inhibit apoptosis. Moreover, clear in vitro antibacterial effect of Lev/MSNs/n-HA/PU was also observed. In summary, this study replenishes the potential of Lev/MSNs/n-HA/PU composite scaffold possess dual functions of anti-infection and enhanced osteogenesis for future clinical application.
Collapse
Affiliation(s)
- Zhiping Kuang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China
| | - Guangming Dai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Ruijie Wan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China
| | - Dongli Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Chen Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Cheng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan Province, 610065, PR China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Wei Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
33
|
Ardekani SM, Dehghani A, Ye P, Nguyen KA, Gomes VG. Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens. J Colloid Interface Sci 2019; 552:378-387. [DOI: 10.1016/j.jcis.2019.05.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
|
34
|
phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
36
|
Morin-Crini N, Lichtfouse E, Torri G, Crini G. Fundamentals and Applications of Chitosan. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Kumar V, Choudhary AK, Kumar P, Sharma S. Nanotechnology: Nanomedicine, Nanotoxicity and Future Challenges. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/2210681208666180125143953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction:
This review gives an overview of interesting properties of nanoparticles
finding potential applications in nanomedicines and their considerations that need to be made such
as toxicity while developing a nanomedicine by providing an understanding of a relationship between
nanocarrier, targeting moieties and drugs with optical and magnetic properties. Here, we correlate
the interesting properties of nanomaterials to their applications in living cells/body simultaneously
promises, prospects and toxicity challenges of nanomedicines have also been discussed in
detail. Exemplifying the usage of gold nanoparticles and its derivatives such as hetero and homo
hybrid nanostructures that allow their use as contrast agents, therapeutic entities and supports to attach
functional molecules and targeting ligand along with molecular framework structures. Here,
we present the future prospects for potential applications in nanomedicines. These nanomaterials
have been used for varieties of biomedical applications such as targeted drug delivery, photothermal
cancer therapies, MRI, optical imaging, etc. in vitro and in vivo.
Conclusion:
In summary, this review provides innumerable aspects in the emerging field of
nanomedicine and possible nanotoxicity.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
| | | | - Prashant Kumar
- Metallurgical Engineering and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Saurabh Sharma
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
| |
Collapse
|
38
|
Wang Z, Ouyang Y, Wu Z, Zhang L, Shao C, Fan J, Zhang L, Shi Y, Zhou Z, Pan H, Tang R, Fu B. A novel fluorescent adhesive-assisted biomimetic mineralization. NANOSCALE 2018; 10:18980-18987. [PMID: 30191236 DOI: 10.1039/c8nr02078g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a novel fluorescent adhesive-assisted biomimetic mineralization strategy, based on which 1 wt% of sodium fluorescein and 25 wt% of polyacrylic acid stabilized amorphous calcium phosphate (PAA-ACP) nanoparticles were incorporated into a mild self-etch adhesive (Clearfil S3 Bond) as a fluorescent mineralizing adhesive. The characterization of the PAA-ACP nanoparticles indicates that they were spherical particles clustered together, each particle with a diameter of approximately 20-50 nm, in a metastable phase with two characteristic absorption peaks (1050 cm-1 and 580 cm-1). Our results suggest that the fluorescent mineralizing adhesive was non-cytotoxic with minimal esthetic interference and its fluorescence intensity did not significantly decrease within 6 months. Our data reveal that the fluorescent mineralizing adhesive could induce the extra- and intra-fibrillar remineralization of the reconstituted type I collagen, the demineralized enamel and dentin substrate. Our data demonstrate that a novel fluorescent adhesive-assisted biomimetic mineralization strategy will pave the way to design and produce anti-carious materials for the prevention of dental caries.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Degrazia FW, Leitune VCB, Visioli F, Samuel SMW, Collares FM. Long-term stability of dental adhesive incorporated by boron nitride nanotubes. Dent Mater 2018; 34:427-433. [DOI: 10.1016/j.dental.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/29/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
|
40
|
Sanavia C, Tatullo M, Bassignani J, Cotellessa S, Fantozzi G, Acito G, Iommiello A, Chiavistelli L, Iommiello A, Sabatini S, Nardi GM. Remineralization Strategies in Oral Hygiene: A Position Paper of Italian Society of Oral Hygiene Sciences-S.I.S.I.O. Working Group. Open Dent J 2017; 11:527-538. [PMID: 29238413 PMCID: PMC5712655 DOI: 10.2174/1874210601711010527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/25/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022] Open
Abstract
Background/Objective: The clinical conditions that lead to an alteration of the enamel structure are numerous. The diet high in sugars and acidifying substances, psychological stress that triggers parafunctional behaviors, the reduced intake of fiber-rich foods or alkalizing substances, together with other factors, contribute to demineralization of the tooth enamel. Dental mineralizing products on the current market are distinguished according to the dosage form, the active ingredient, the release technology, clinical indications and patient choice. Currently, it is necessary to propose to oral health professionals a guide to orient themselves in this chaotic choice, in order to prefer the most effective product for their own clinical target. Methods: Italian Society of Oral Hygiene Sciences-S.I.S.I.O. is one of the leading scientific Italian societies representing those dental hygienists working with high-quality standards and in agreement with scientific evidence: in the last year, the SISIO working group has carried out a study focused on remineralizing agents in dentistry, in order to give an authoritative point of view to indicate a guideline in the decision process of the choice of a remineralizing agent. We will report the results pointed out from the last consensus meeting in 2017. Results: We have reported the good the bad and the ugly have been discussed in a critical discussion of such topic. Conclusion: The SISIO experience has been reported in this position paper with the aim to serve as a useful aid in the daily choice of the clinical steps to perform, when dental professionals need to treat demineralized teeth.
Collapse
Affiliation(s)
- Consuelo Sanavia
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | | | - Jessica Bassignani
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | - Silvia Cotellessa
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | - Giulia Fantozzi
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | - Giovanna Acito
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | - Alessia Iommiello
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | | | - Alessia Iommiello
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | - Silvia Sabatini
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy
| | - Gianna Maria Nardi
- Italian Society of Oral Hygiene Sciences-S.I.S.I.O. working group, Pisa, Italy.,Department of Oral and Maxillofacial Science, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
41
|
Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol 2017; 109:780-796. [PMID: 28705729 DOI: 10.1016/j.fct.2017.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required.
Collapse
Affiliation(s)
- Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Maria Dusinska
- Health Effects Laboratory MILK, NILU- Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|