1
|
Chorazy N, Wojnar-Lason K, Sternak M, Pacia MZ. Vascular inflammation and biogenesis of lipid droplets; what is the link? Biochim Biophys Acta Mol Basis Dis 2024; 1870:167201. [PMID: 38677485 DOI: 10.1016/j.bbadis.2024.167201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Affiliation(s)
- Natalia Chorazy
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, Krakow, Poland; Jagiellonian University, Chair of Pharmacology, Grzegorzecka 16, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, Krakow, Poland.
| |
Collapse
|
2
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
3
|
Drożdż D, Drożdż M, Wójcik M. Endothelial dysfunction as a factor leading to arterial hypertension. Pediatr Nephrol 2023; 38:2973-2985. [PMID: 36409370 PMCID: PMC10432334 DOI: 10.1007/s00467-022-05802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Hypertension remains the main cause of cardiovascular complications leading to increased mortality. The discoveries of recent years underline the important role of endothelial dysfunction (ED) in initiating the development of arterial hypertension. The endothelium lines the interior of the entire vascular system in the body and acts as a physical barrier between blood and tissues. Substances and mediators produced by the endothelium exhibit antithrombotic and anti-inflammatory properties. Oxidative stress and inflammation are conditions that damage the endothelium and shift endothelial function from vasoprotective to vasoconstrictive, prothrombotic, and pro-apoptotic functions. A dysfunctional endothelium contributes to the development of hypertension and further cardiovascular complications. Reduced nitric oxide (NO) bioavailability plays an essential role in the pathophysiology of ED-associated hypertension. New technologies provide tools to identify pathological changes in the structure and function of the endothelium. Endothelial dysfunction (ED) contributes to the development of arterial hypertension and should be considered in therapeutic strategies for children with hypertension.
Collapse
Affiliation(s)
- Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Krakow, Poland.
| | - Monika Drożdż
- Department of Pediatric Nephrology and Hypertension, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Wójcik
- Deapartment of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Pacia MZ, Chorazy N, Sternak M, Wojnar-Lason K, Chlopicki S. Vascular lipid droplets formed in response to TNF, hypoxia or OA: biochemical composition and prostacyclin generation. J Lipid Res 2023; 64:100355. [PMID: 36934842 DOI: 10.1016/j.jlr.2023.100355] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Biogenesis of lipid droplets (LDs) in various cells plays an important role in various physiological and pathological processes. However, the function of LDs in endothelial physiology and pathology is not well understood. In the present work, we investigated the formation of LDs and prostacyclin (PGI2) generation in the vascular tissue of isolated murine aortas following activation by pro-inflammatory factors: tumor necrosis factor (TNF), lipopolysaccharides (LPS), angiotensin II (AngII), hypoxic conditions, or oleic acid (OA). The abundance, size, and biochemical composition of LDs was characterized based on Raman spectroscopy and fluorescence imaging. We found that blockade of lipolysis by the adipose triglyceride lipase (ATGL) delayed LDs degradation and simultaneously blunted PGI2 generation in aorta treated with all tested pro-inflammatory stimuli. Furthermore, the analysis of Raman spectra of LDs in the isolated vessels stimulated by TNF, LPS, AngII, or hypoxia uncovered that these LDs were all rich in highly unsaturated lipids and had a negligible content of phospholipids and cholesterols. Additionally, by comparing the Raman signature of endothelial LDs under hypoxic or OA-overload conditions in the presence or absence of ATGL inhibitor, atglistatin, we show that atglistatin does not affect the biochemical composition of LDs. Altogether, independent of whether LDs were induced by pro-inflammatory stimuli, hypoxia, or oleic acid, and of whether they were composed of highly unsaturated or less unsaturated lipids, we observed LDs formation invariably associated with ATGL-dependent PGI2 generation. In conclusion, vascular LDs formation and ATGL-dependent PGI2 generation represent a universal response to vascular pro-inflammatory insult.
Collapse
Affiliation(s)
- Marta Z Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Natalia Chorazy
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14, Bobrzynskiego Str., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Aging is an important risk factor for cardiovascular disease and is associated with increased vessel wall stiffness. Pathophysiological stiffening, notably in arteries, disturbs the integrity of the vascular endothelium and promotes permeability and transmigration of immune cells, thereby driving the development of atherosclerosis and related vascular diseases. Effective therapeutic strategies for arterial stiffening are still lacking. RECENT FINDINGS Here, we overview the literature on age-related arterial stiffening, from patient-derived data to preclinical in-vivo and in-vitro findings. First, we overview the common techniques that are used to measure stiffness and discuss the observed stiffness values in atherosclerosis and aging. Next, the endothelial response to stiffening and possibilities to attenuate this response are discussed. SUMMARY Future research that will define the endothelial contribution to stiffness-related cardiovascular disease may provide new targets for intervention to restore endothelial function in atherosclerosis and complement the use of currently applied lipid-lowering, antihypertensive, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences
- Amsterdam UMC, VU University Medical Center, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Olivia Klatt
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences
| |
Collapse
|
6
|
Kang H, Yan G, Zhang W, Xu J, Guo J, Yang J, Liu X, Sun A, Chen Z, Fan Y, Deng X. Impaired endothelial cell proliferative, migratory, and adhesive abilities are associated with the slow endothelialization of polycaprolactone vascular grafts implanted into a hypercholesterolemia rat model. Acta Biomater 2022; 149:233-247. [PMID: 35811068 DOI: 10.1016/j.actbio.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Most small diameter vascular grafts (inner diameter<6 mm) evaluation studies are performed in healthy animals that cannot represent the clinical situation. Herein, an hypercholesterolemia (HC) rat model with thickened intima and elevated expression of pro-inflammatory intercellular adhesion molecular-1 (ICAM-1) in the carotid branch is established. Electrospun polycaprolactone (PCL) vascular grafts (length: 1 cm; inner diameter: 2 mm) are implanted into the HC rat abdominal aortas in an end to end fashion and followed up to 43 days, showing a relative lower patency accompanied by significant neointima hyperplasia, abundant collagen deposition, and slower endothelialization than those implanted into healthy ones. Moreover, the proliferation, migration, and adhesion behavior of endothelial cells (ECs) isolated from the HC aortas are impaired as evaluated under both static and pulsatile flow conditions. DNA microarray studies of the HC aortic endothelium suggest genes involved in EC proliferation (Egr2), apoptosis (Zbtb16 and Mt1), and metabolism (Slc7a11 and Hamp) are down regulated. These results suggest the impaired proliferative, migratory, and adhesive abilities of ECs are associated with the bad performances of grafts in HC rat. Future pre-clinical evaluation of small diameter vascular grafts may concern more disease animal models with clinical complications. STATEMENT OF SIGNIFICANCE: During the development of small diameter vascular grafts (D<6 mm), young and healthy animal models from pigs, sheep, dogs, to rabbits and rats are preferred. However, it cannot represent the clinic situation, where most cardiovascular grafting procedures are performed in the elderly and age is the primary risk factor for disease development or death. Herein, the performance of electrospun polycaprolactone (PCL) vascular grafts implanted into hypercholesterolemia (HC) or healthy rats were evaluated. Results suggest the proliferative, migratory, and adhesive abilities of endothelial cells (ECs) are already impaired in HC rats, which contributes to the observed slower endothelialization of implanted PCL grafts. Future pre-clinical evaluation of small diameter vascular grafts may concern more disease animal models with clinical complications.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiali Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
7
|
Stanek E, Pacia MZ, Kaczor A, Czamara K. The distinct phenotype of primary adipocytes and adipocytes derived from stem cells of white adipose tissue as assessed by Raman and fluorescence imaging. Cell Mol Life Sci 2022; 79:383. [PMID: 35752714 PMCID: PMC9233632 DOI: 10.1007/s00018-022-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Spectroscopy-based analysis of chemical composition of cells is a tool still scarcely used in biological sciences, although it provides unique information about the cell identity accessible in vivo and in situ. Through time-lapse spectroscopic monitoring of adipogenesis in brown and white adipose tissue-derived stem cells we have demonstrated that considerable chemical and functional changes occur along with cells differentiation and maturation, yet yielding mature adipocytes with a similar chemical composition, independent of the cellular origin (white or brown adipose tissue). However, in essence, these stem cell-derived adipocytes have a markedly different chemical composition compared to mature primary adipocytes. The consequences of this different chemical (and, hence, functional) identity have great importance in the context of selecting a suitable methodology for adipogenesis studies, particularly in obesity-related research.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Marta Z Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Kraków, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland.
| |
Collapse
|
8
|
Achner L, Klersy T, Fels B, Reinberger T, Schmidt CX, Groß N, Hille S, Müller OJ, Aherrahrou Z, Kusche-Vihrog K, Raasch W. AFM-based nanoindentation indicates an impaired cortical stiffness in the AAV-PCSK9 DY atherosclerosis mouse model. Pflugers Arch 2022; 474:993-1002. [PMID: 35648220 PMCID: PMC9393126 DOI: 10.1007/s00424-022-02710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/22/2022] [Indexed: 12/23/2022]
Abstract
Investigating atherosclerosis and endothelial dysfunction has mainly become established in genetically modified ApoE−/− or LDL-R−/− mice transgenic models. A new AAV-PCSK9DYDY mouse model with no genetic modification has now been reported as an alternative atherosclerosis model. Here, we aimed to employ this AAV-PCSK9DY mouse model to quantify the mechanical stiffness of the endothelial surface, an accepted hallmark for endothelial dysfunction and forerunner for atherosclerosis. Ten-week-old male C57BL/6 N mice were injected with AAV-PCSK9DY (0.5, 1 or 5 × 1011 VG) or saline as controls and fed with Western diet (1.25% cholesterol) for 3 months. Total cholesterol (TC) and triglycerides (TG) were measured after 6 and 12 weeks. Aortic sections were used for atomic force microscopy (AFM) measurements or histological analysis using Oil-Red-O staining. Mechanical properties of in situ endothelial cells derived from ex vivo aorta preparations were quantified using AFM-based nanoindentation. Compared to controls, an increase in plasma TC and TG and extent of atherosclerosis was demonstrated in all groups of mice in a viral load-dependent manner. Cortical stiffness of controls was 1.305 pN/nm and increased (10%) in response to viral load (≥ 0.5 × 1011 VG) and positively correlated with the aortic plaque content and plasma TC and TG. For the first time, we show changes in the mechanical properties of the endothelial surface and thus the development of endothelial dysfunction in the AAV-PCSK9DY mouse model. Our results demonstrate that this model is highly suitable and represents a good alternative to the commonly used transgenic mouse models for studying atherosclerosis and other vascular pathologies.
Collapse
Affiliation(s)
- Leonie Achner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Tobias Klersy
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Benedikt Fels
- Institute for Physiology, University Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Institute for Cardiogenetics, University Lübeck, Lübeck, Germany
| | - Cosima X Schmidt
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Natalie Groß
- Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Zouhair Aherrahrou
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany.,Institute for Cardiogenetics, University Lübeck, Lübeck, Germany
| | - Kristina Kusche-Vihrog
- Institute for Physiology, University Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/, Lübeck, Germany. .,CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
9
|
Pacia MZ, Chorazy N, Sternak M, Fels B, Pacia M, Kepczynski M, Kusche-Vihrog K, Chlopicki S. Rac1 regulates lipid droplets formation, nanomechanical, and nanostructural changes induced by TNF in vascular endothelium in the isolated murine aorta. Cell Mol Life Sci 2022; 79:317. [PMID: 35622139 PMCID: PMC9142475 DOI: 10.1007/s00018-022-04362-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
Abstract
Endothelial inflammation is recognized as a critical condition in the development of cardiovascular diseases. TNF-induced inflammation of endothelial cells is linked to the formation of lipid droplets, augmented cortical stiffness, and nanostructural endothelial plasma membrane remodelling, but the insight into the mechanism linking these responses is missing. In the present work, we determined the formation of lipid droplets (LDs), nanomechanical, and nanostructural responses in the model of TNF-activated vascular inflammation in the isolated murine aorta using Raman spectroscopy, fluorescence imaging, atomic force microscopy (AFM), and scanning electron microscopy (SEM). We analysed the possible role of Rac1, a major regulator of cytoskeletal organization, in TNF-induced vascular inflammation. We demonstrated that the formation of LDs, polymerization of F-actin, alterations in cortical stiffness, and nanostructural protuberances in endothelial plasma membrane were mediated by the Rac1. In particular, we revealed a significant role for Rac1 in the regulation of the formation of highly unsaturated LDs formed in response to TNF. Inhibition of Rac1 also downregulated the overexpression of ICAM-1 induced by TNF, supporting the role of Rac1 in vascular inflammation. Altogether, our results demonstrate that LDs formation, an integral component of vascular inflammation, is activated by Rac1 that also regulates nanomechanical and nanostructural alterations linked to vascular inflammation.
Collapse
Affiliation(s)
- Marta Z Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland.
| | - Natalia Chorazy
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, 160 Ratzeburger Allee, 23562, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Michal Pacia
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, 160 Ratzeburger Allee, 23562, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
- Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531, Krakow, Poland
| |
Collapse
|
10
|
Rapid shear stress-dependent ENaC membrane insertion is mediated by the endothelial glycocalyx and the mineralocorticoid receptor. Cell Mol Life Sci 2022; 79:235. [PMID: 35397686 PMCID: PMC8995297 DOI: 10.1007/s00018-022-04260-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
The contribution of the shear stress-sensitive epithelial Na+ channel (ENaC) to the mechanical properties of the endothelial cell surface under (patho)physiological conditions is unclear. This issue was addressed in in vivo and in vitro models for endothelial dysfunction. Cultured human umbilical vein endothelial cells (HUVEC) were exposed to laminar (LSS) or non-laminar shear stress (NLSS). ENaC membrane insertion was quantified using Quantum-dot-based immunofluorescence staining and the mechanical properties of the cell surface were probed with the Atomic Force Microscope (AFM) in vitro and ex vivo in isolated aortae of C57BL/6 and ApoE/LDLR-/- mice. Flow- and acetylcholine-mediated vasodilation was measured in vivo using magnetic resonance imaging. Acute LSS led to a rapid mineralocorticoid receptor (MR)-dependent membrane insertion of ENaC and subsequent stiffening of the endothelial cortex caused by actin polymerization. Of note, NLSS stress further augmented the cortical stiffness of the cells. These effects strongly depend on the presence of the endothelial glycocalyx (eGC) and could be prevented by functional inhibition of ENaC and MR in vitro endothelial cells and ex vivo endothelial cells derived from C57BL/6, but not ApoE/LDLR-/- vessel. In vivo In C57BL/6 vessels, ENaC- and MR inhibition blunted flow- and acetylcholine-mediated vasodilation, while in the dysfunctional ApoE/LDLR-/- vessels, this effect was absent. In conclusion, under physiological conditions, endothelial ENaC, together with the glycocalyx, was identified as an important shear stress sensor and mediator of endothelium-dependent vasodilation. In contrast, in pathophysiological conditions, ENaC-mediated mechanotransduction and endothelium-dependent vasodilation were lost, contributing to sustained endothelial stiffening and dysfunction.
Collapse
|
11
|
Adamczyk A, Matuszyk E, Radwan B, Rocchetti S, Chlopicki S, Baranska M. Toward Raman Subcellular Imaging of Endothelial Dysfunction. J Med Chem 2021; 64:4396-4409. [PMID: 33821652 PMCID: PMC8154563 DOI: 10.1021/acs.jmedchem.1c00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Multiple diseases are at some point associated with altered endothelial
function, and endothelial dysfunction (ED) contributes to their pathophysiology.
Biochemical changes of the dysfunctional endothelium are linked to
various cellular organelles, including the mitochondria, endoplasmic
reticulum, and nucleus, so organelle-specific insight is needed for
better understanding of endothelial pathobiology. Raman imaging, which
combines chemical specificity with microscopic resolution, has proved
to be useful in detecting biochemical changes in ED at the cellular
level. However, the detection of spectroscopic markers associated
with specific cell organelles, while desirable, cannot easily be achieved
by Raman imaging without labeling. This critical review summarizes
the current advances in Raman-based analysis of ED, with a focus on
a new approach involving molecular Raman reporters that could facilitate
the study of biochemical changes in cellular organelles. Finally,
imaging techniques based on both conventional spontaneous Raman scattering
and the emerging technique of stimulated Raman scattering are discussed.
Collapse
Affiliation(s)
- Adriana Adamczyk
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Basseem Radwan
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.,Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| |
Collapse
|
12
|
Czamara K, Adamczyk A, Stojak M, Radwan B, Baranska M. Astaxanthin as a new Raman probe for biosensing of specific subcellular lipidic structures: can we detect lipids in cells under resonance conditions? Cell Mol Life Sci 2020; 78:3477-3484. [PMID: 33289850 PMCID: PMC8038953 DOI: 10.1007/s00018-020-03718-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 01/11/2023]
Abstract
Here we report a new Raman probe for cellular studies on lipids detection and distribution. It is (3S, 3'S)-astaxanthin (AXT), a natural xanthophyll of hydrophobic properties and high solubility in lipids. It contains a chromophore group, a long polyene chain of eleven conjugated C=C bonds including two in the terminal rings, absorbing light in the visible range that coincides with the excitation of lasers commonly used in Raman spectroscopy for studying of biological samples. Depending on the laser, resonance (excitation in the visible range) or pre-resonance (the near infrared range) Raman spectrum of astaxanthin is dominated by bands at ca. 1008, 1158, and 1520 cm−1 that now can be also a marker of lipids distribution in the cells. We showed that AXT accumulates in lipidic structures of endothelial cells in time-dependent manner that provides possibility to visualize e.g. endoplasmic reticulum, as well as nuclear envelope. As a non-toxic reporter, it has a potential in the future studies on e.g. nucleus membranes damage in live cells in a very short measuring time.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Adriana Adamczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland. .,Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland.
| |
Collapse
|
13
|
Distinct Chemical Changes in Abdominal but Not in Thoracic Aorta upon Atherosclerosis Studied Using Fiber Optic Raman Spectroscopy. Int J Mol Sci 2020; 21:ijms21144838. [PMID: 32650594 PMCID: PMC7402309 DOI: 10.3390/ijms21144838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Fiber optic Raman spectroscopy and Raman microscopy were used to investigate alterations in the aorta wall and the surrounding perivascular adipose tissue (PVAT) in the murine model of atherosclerosis (Apoe-/-/Ldlr-/- mice). Both abdominal and thoracic parts of the aorta were studied to account for the heterogenic chemical composition of aorta and its localization-dependent response in progression of atherosclerosis. The average Raman spectra obtained for both parts of aorta cross sections revealed that the chemical composition of intima-media layers along aorta remains relatively homogeneous while the lipid content in the adventitia layer markedly increases with decreasing distance to PVAT. Moreover, our results demonstrate that the increase of the lipid to protein ratio in the aorta wall correlates directly with the increased unsaturation level of lipids in PVAT and these changes occur only in the abdominal, but not in thoracic, aorta. In summary, distinct pathophysiological response in the aortic vascular wall could be uncovered by fiber optic Raman spectroscopy based on simple parameters detecting chemical contents of lipids in PVAT.
Collapse
|
14
|
Estimation of the content of lipids composing endothelial lipid droplets based on Raman imaging. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158758. [PMID: 32535237 DOI: 10.1016/j.bbalip.2020.158758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are dynamic organelles involved in intracellular lipid metabolism, and the biogenesis of LDs in endothelium is triggered by the excess of lipids in the environment. In this paper we present the methodology aimed to define the composition of endothelial LDs formed upon stimulation with oleic acid (OA) in two models: endothelial cells cultured in vitro and in isolated blood vessel ex vivo. The biochemical composition of LDs was determined using Raman imaging, followed by the lipid unsaturation calibration analysis and modelling of spectral bands based on individual spectra of selected lipids. Among LDs formed in response to OA in vitro or ex vivo conditions there were two types of LDs; those with more unsaturated (average number of CC bonds equalled 1.40) or saturated (average number of CC bonds equalled 0.95) lipids. The modelling of endothelial LDs composition revealed the OA represented a major component of LDs (80.6-91.3%) with an important content of arachidonic acid (8.7-19.4%). In conclusion, endothelial LDs consist of exogenous oleic acid uptaken from the extracellular space, and the endogenous arachidonic acid released from plasma membranes.
Collapse
|
15
|
Heterogeneity of chemical composition of lipid droplets in endothelial inflammation and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118681. [DOI: 10.1016/j.bbamcr.2020.118681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
|
16
|
Mechanical and structural properties of different types of human aortic atherosclerotic plaques. J Mech Behav Biomed Mater 2020; 109:103837. [PMID: 32543403 DOI: 10.1016/j.jmbbm.2020.103837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/23/2022]
Abstract
Atherosclerotic plaques are characterized by structural heterogeneity affecting aortic behaviour under mechanical loading. There is evidence of direct connections between the structural plaque arrangement and the risk of plaque rupture. As a consequence of aortic plaque rupture, plaque components are transferred by the bloodstream to smaller vessels, resulting in acute cardiovascular events with a poor prognosis, such as heart attacks or strokes. Hence, evaluation of the composition, structure, and biochemical profile of atherosclerotic plaques seems to be of great importance to assess the properties of a mechanically induced failure, indicating the strength and rupture vulnerability of plaque. The main goal of the research was to determine experimentally under uniaxial loading the mechanical properties of different types of the human abdominal aorta and human aortic atherosclerotic plaques identified based on vibrational spectra (ATR-FTIR and FT-Raman spectroscopy) analysis and validated by histological staining. The potential of spectroscopic techniques as a useful histopathological tool was demonstrated. Three types of atherosclerotic plaques - predominantly calcified (APC), lipid (APL), and fibrotic (APF) - were distinguished and confirmed by histopathological examinations. Compared to the normal aorta, fibrotic plaques were stiffer (median of EH for circumferential and axial directions, respectively: 8.15 MPa and 6.56 MPa) and stronger (median of σM for APLc = 1.57 MPa and APLa = 1.64 MPa), lipidic plaques were the weakest (median of σM for APLc = 0.76 MPa and APLa = 0.51 MPa), and calcified plaques were the stiffest (median of EH for circumferential and axial directions, respectively: 13.23 MPa and 6.67 MPa). Therefore, plaques detected as predominantly lipid and calcified are most prone to rupture; however, the failure process reflected by the simplification of the stress-stretch characteristics seems to vary depending on the plaque composition.
Collapse
|
17
|
Visser MJ, Pretorius E. Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology. Curr Top Med Chem 2020; 19:2958-2973. [DOI: 10.2174/1568026619666191121143240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
:
Proteins are versatile macromolecules that perform a variety of functions and participate in
virtually all cellular processes. The functionality of a protein greatly depends on its structure and alterations
may result in the development of diseases. Most well-known of these are protein misfolding disorders,
which include Alzheimer’s and Parkinson’s diseases as well as type 2 diabetes mellitus, where
soluble proteins transition into insoluble amyloid fibrils. Atomic Force Microscopy (AFM) is capable of
providing a topographical map of the protein and/or its aggregates, as well as probing the nanomechanical
properties of a sample. Moreover, AFM requires relatively simple sample preparation, which presents
the possibility of combining this technique with other research modalities, such as confocal laser
scanning microscopy, Raman spectroscopy and stimulated emission depletion microscopy. In this review,
the basic principles of AFM are discussed, followed by a brief overview of how it has been applied
in biological research. Finally, we focus specifically on its use as a characterisation method to
study protein structure at the nanoscale in pathophysiological conditions, considering both molecules
implicated in disease pathogenesis and the plasma protein fibrinogen. In conclusion, AFM is a userfriendly
tool that supplies multi-parametric data, rendering it a most valuable technique.
Collapse
Affiliation(s)
- Maria J.E. Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
18
|
Nguyen KTT, Frijlink HW, Hinrichs WLJ. Inhomogeneous Distribution of Components in Solid Protein Pharmaceuticals: Origins, Consequences, Analysis, and Resolutions. J Pharm Sci 2019; 109:134-153. [PMID: 31606540 DOI: 10.1016/j.xphs.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Successful development of stable solid protein formulations usually requires the addition of one or several excipients to achieve optimal stability. In these products, there is a potential risk of an inhomogeneous distribution of the various ingredients, specifically the ratio of protein and stabilizer may vary. Such inhomogeneity can be detrimental for stability but is mostly neglected in literature. In the past, it was challenging to analyze inhomogeneous component distribution, but recent advances in analytical techniques have revealed new options to investigate this phenomenon. This paper aims to review fundamental aspects of the inhomogeneous distribution of components of freeze-dried and spray-dried protein formulations. Four key topics will be presented and discussed, including the sources of component inhomogeneity, its consequences on protein stability, the analytical methods to reveal component inhomogeneity, and possible solutions to prevent or mitigate inhomogeneity.
Collapse
Affiliation(s)
- Khanh T T Nguyen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|