1
|
Wang Y, Bucher E, Rocha H, Jadhao V, Metzcar J, Heiland R, Frieboes HB, Macklin P. Drug-loaded nanoparticles for cancer therapy: a high-throughput multicellular agent-based modeling study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588498. [PMID: 38645004 PMCID: PMC11030335 DOI: 10.1101/2024.04.09.588498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Interactions between biological systems and engineered nanomaterials have become an important area of study due to the application of nanomaterials in medicine. In particular, the application of nanomaterials for cancer diagnosis or treatment presents a challenging opportunity due to the complex biology of this disease spanning multiple time and spatial scales. A system-level analysis would benefit from mathematical modeling and computational simulation to explore the interactions between anticancer drug-loaded nanoparticles (NPs), cells, and tissues, and the associated parameters driving this system and a patient's overall response. Although a number of models have explored these interactions in the past, few have focused on simulating individual cell-NP interactions. This study develops a multicellular agent-based model of cancer nanotherapy that simulates NP internalization, drug release within the cell cytoplasm, "inheritance" of NPs by daughter cells at cell division, cell pharmacodynamic response to the intracellular drug, and overall drug effect on tumor dynamics. A large-scale parallel computational framework is used to investigate the impact of pharmacokinetic design parameters (NP internalization rate, NP decay rate, anticancer drug release rate) and therapeutic strategies (NP doses and injection frequency) on the tumor dynamics. In particular, through the exploration of NP "inheritance" at cell division, the results indicate that cancer treatment may be improved when NPs are inherited at cell division for cytotoxic chemotherapy. Moreover, smaller dosage of cytostatic chemotherapy may also improve inhibition of tumor growth when cell division is not completely inhibited. This work suggests that slow delivery by "heritable" NPs can drive new dimensions of nanotherapy design for more sustained therapeutic response.
Collapse
|
2
|
Grundler J, Shin K, Suh HW, Whang CH, Fulgoni G, Pierce RW, Saltzman WM. Nanoscale Surface Topography of Polyethylene Glycol-Coated Nanoparticles Composed of Bottlebrush Block Copolymers Prolongs Systemic Circulation and Enhances Tumor Uptake. ACS NANO 2024; 18:2815-2827. [PMID: 38227820 DOI: 10.1021/acsnano.3c05921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings. Specifically, nanoparticles with rough surface topography achieve high tumor cell uptake in vivo due to superior tumor extravasation and distribution compared to conventional smooth-surfaced nanoparticles based on linear block copolymers. Furthermore, surface topography profoundly impacts the interaction with serum proteins, resulting in the adsorption of fundamentally different proteins onto the surface of rough-surfaced nanoparticles formed from BBCPs. We envision that controlling the nanoparticle surface topography of PEGylated nanoparticles will enable the design of improved nanocarriers in various biomedical applications.
Collapse
Affiliation(s)
| | - Kwangsoo Shin
- Department of Polymer Science & Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | | | | | | | | | | |
Collapse
|
3
|
M Morris N, A Blee J, Hauert S. Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics and pharmacodynamics. Toxicon 2023; 232:107206. [PMID: 37356552 DOI: 10.1016/j.toxicon.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In recent years it has become possible to design snakebite antivenoms with diverse pharmacokinetic properties. Owing to the pharmacokinetic variability of venoms, the choice of antivenom scaffold may influence a treatment's neutralisation coverage. Computation offers a useful medium through which to assess the pharmacokinetics and pharmacodynamics of envenomation-treatment systems, as antivenoms with identical neutralising capacities can be simulated. In this study, we simulate envenomation and treatment with a variety of antivenoms, to define the properties of effective antivenoms. Systemic envenomation and treatment were described using a two-compartment pharmacokinetic model. Treatment of Naja sumatrana and Cryptelytrops purpureomaculatus envenomation was simulated with a set of 200,000 theoretical antivenoms across 10 treatment time delays. These two venoms are well-characterised and have differing pharmacokinetic properties. The theoretical antivenom set varied across molecular weight, dose, kon, koff, and valency. The best and worst treatments were identified using an area under the curve metric, and a global sensitivity analysis was performed to quantify the influence of the input parameters on treatment outcome. The simulations show that scaffolds of diverse molecular formats can be effective. Molecular weight and valency have a negligible direct impact on treatment outcome, however low molecular weight scaffolds offer more flexibility across the other design parameters, particularly when treatment is delayed. The simulations show kon to primarily mediate treatment efficacy, with rates above 105 M-1s-1 required for the most effective treatments. koff has the greatest impact on the performance of less effective scaffolds. While the same scaffold preferences for improved treatment are seen for both model snakes, the parameter bounds for C. purpureomaculatus envenomation are more constrained. This paper establishes a computational framework for the optimisation of antivenom design.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
4
|
Andhari S, Khutale G, Gupta R, Patil Y, Khandare J. Chemical tunability of advanced materials used in the fabrication of micro/nanobots. J Mater Chem B 2023. [PMID: 37163210 DOI: 10.1039/d2tb02743g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Micro and nanobots (MNBs) are unprecedented in their ability to be chemically tuned for autonomous tasks with enhanced targeting and functionality while maintaining their mobility. A myriad of chemical modifications involving a large variety of advanced materials have been demonstrated to be effective in the design of MNBs. Furthermore, they can be controlled for their autonomous motion, and their ability to carry chemical or biological payloads. In addition, MNBs can be modified to achieve targetability with specificity for biological implications. MNBs by virtue of their chemical compositions may be limited by their biocompatibility, tissue accumulation, poor biodegradability and toxicity. This review presents a note on artificial intelligence materials (AIMs), their importance, and the dimensional scales at which intrinsic autonomy can be achieved for diverse utility. We briefly discuss the evolution of such systems with a focus on their advancements in nanomedicine. We highlight MNBs covering their contemporary traits and the emergence of a few start-ups in specific areas. Furthermore, we showcase various examples, demonstrating that chemical tunability is an attractive primary approach for designing MNBs with immense capabilities both in biology and chemistry. Finally, we cover biosafety and ethical considerations in designing MNBs in the era of artificial intelligence for varied applications.
Collapse
Affiliation(s)
- Saloni Andhari
- OneCell Diagnostics, Pune 411057, India
- OneCell Diagnostics, Cupertino, California 95014, USA
| | - Ganesh Khutale
- OneCell Diagnostics, Pune 411057, India
- OneCell Diagnostics, Cupertino, California 95014, USA
| | - Rituja Gupta
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune 411038, India.
| | - Yuvraj Patil
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune 411038, India.
| | - Jayant Khandare
- OneCell Diagnostics, Pune 411057, India
- OneCell Diagnostics, Cupertino, California 95014, USA
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune 411038, India.
- Actorius Innovations and Research, Pune, 411057, India
- Actorius Innovations and Research, Simi Valley, CA 93063, USA
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune 411038, India
| |
Collapse
|
5
|
Nagesetti A, Dulikravich GS, Orlande HRB, Colaco MJ, McGoron AJ. Computational model of silica nanoparticle penetration into tumor spheroids: Effects of methoxy and carboxy PEG surface functionalization and hyperthermia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3504. [PMID: 34151543 DOI: 10.1002/cnm.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Drug delivery to tumors suffers from poor solubility, specificity, diffusion through the tumor micro-environment and nonoptimal interactions with components of the extracellular matrix and cell surface receptors. Nanoparticles and drug-polymer complexes address many of these problems. However, large size exasperates the problem of slow diffusion through the tumor. Three-dimensional tumor spheroids are good models to evaluate approaches to mitigate these difficulties and aid in design strategies to improve the delivery of drugs to treat cancer effectively. Diffusion of drug carriers is highly dependent on cell uptake rate parameters (association/dissociation) and temperature. Hyperthermia increases molecular transport and is known to act synergistically with chemotherapy to improve treatment. This study presents a new inverse estimation approach based on Bayesian probability for estimating nanoparticle cell uptake rates from experiments. The parameters were combined with a finite element computational model of nanoparticle transport under hyperthermia conditions to explore its effect on tumor porosity, diffusion and particle binding (association and dissociation) at cell surfaces. Carboxy-PEG-silane (cPEGSi) nanoparticles showed higher cell uptake compared to methoxy-PEG-silane (mPEGSi) nanoparticles. Simulations were consistent with experimental results from Skov-3 ovarian cancer spheroids. Amorphous silica (cPEGSi) nanoparticles (58 nm) concentrated at the periphery of the tumor spheroids at 37°C but mild hyperthermia (43°C) increased nanoparticle penetration. Thus, hyperthermia may enhance cancer treatment by improving blood delivery to tumors, enhancing extravasation and penetration into tumors, trigger release of drug from the carrier at the tumor site and possibly lead to synergistic anti-cancer activity with the drug.
Collapse
Affiliation(s)
- Abhignyan Nagesetti
- Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - George S Dulikravich
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida, USA
| | - Helcio R B Orlande
- Department of Mechanical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo J Colaco
- Department of Mechanical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anthony J McGoron
- Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
6
|
Johnston ST, Faria M, Crampin EJ. Understanding nano-engineered particle-cell interactions: biological insights from mathematical models. NANOSCALE ADVANCES 2021; 3:2139-2156. [PMID: 36133772 PMCID: PMC9417320 DOI: 10.1039/d0na00774a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Understanding the interactions between nano-engineered particles and cells is necessary for the rational design of particles for therapeutic, diagnostic and imaging purposes. In particular, the informed design of particles relies on the quantification of the relationship between the physicochemical properties of the particles and the rate at which cells interact with, and subsequently internalise, particles. Quantitative models, both mathematical and computational, provide a powerful tool for elucidating this relationship, as well as for understanding the mechanisms governing the intertwined processes of interaction and internalisation. Here we review the different types of mathematical and computational models that have been used to examine particle-cell interactions and particle internalisation. We detail the mathematical methodology for each type of model, the benefits and limitations associated with the different types of models, and highlight the advances in understanding gleaned from the application of these models to experimental observations of particle internalisation. We discuss the recent proposal and ongoing community adoption of standardised experimental reporting, and how this adoption is an important step toward unlocking the full potential of modelling approaches. Finally, we consider future directions in quantitative models of particle-cell interactions and highlight the need for hybrid experimental and theoretical investigations to address hitherto unanswered questions.
Collapse
Affiliation(s)
- Stuart T Johnston
- School of Mathematics and Statistics, University of Melbourne Parkville Victoria 3010 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
| | - Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
| | - Edmund J Crampin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne Parkville Victoria 3010 Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, Department of Biomedical Engineering, University of Melbourne Parkville Victoria 3010 Australia
- School of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
7
|
McCormick SC, Stillman N, Hockley M, Perriman AW, Hauert S. Measuring Nanoparticle Penetration Through Bio-Mimetic Gels. Int J Nanomedicine 2021; 16:2585-2595. [PMID: 33833513 PMCID: PMC8020455 DOI: 10.2147/ijn.s292131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background In cancer nanomedicine, drugs are transported by nanocarriers through a biological system to produce a therapeutic effect. The efficacy of the treatment is affected by the ability of the nanocarriers to overcome biological transport barriers to reach their target. In this work, we focus on the process of nanocarrier penetration through tumour tissue after extravasation. Visualising the dynamics of nanocarriers in tissue is difficult in vivo, and in vitro assays often do not capture the spatial and physical constraints relevant to model tissue penetration. Methods We propose a new simple, low-cost method to observe the transport dynamics of nanoparticles through a tissue-mimetic microfluidic chip. After loading a chip with triplicate conditions of gel type and loading with microparticles, microscopic analysis allows for tracking of fluorescent nanoparticles as they move through hydrogels (Matrigel and Collagen I) with and without cell-sized microparticles. A bespoke image-processing codebase written in MATLAB allows for statistical analysis of this tracking, and time-dependent dynamics can be determined. Results To demonstrate the method, we show size-dependence of transport mechanics can be observed, with diffusion of fluorescein dye throughout the channel in 8 h, while 20 nm carboxylate FluoSphere diffusion was hindered through both Collagen I and Matrigel™. Statistical measurements of the results are generated through the software package and show the significance of both size and presence of microparticles on penetration depth. Conclusion This provides an easy-to-understand output for the end user to measure nanoparticle tissue penetration, enabling the first steps towards future automated experimentation of transport dynamics for rational nanocarrier design.
Collapse
Affiliation(s)
- Scott C McCormick
- Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Namid Stillman
- Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Matthew Hockley
- Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Adam W Perriman
- Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Sabine Hauert
- Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| |
Collapse
|
8
|
Balaz I, Petrić T, Kovacevic M, Tsompanas MA, Stillman N. Harnessing adaptive novelty for automated generation of cancer treatments. Biosystems 2020; 199:104290. [PMID: 33217377 DOI: 10.1016/j.biosystems.2020.104290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022]
Abstract
Nanoparticles have the potential to modulate both the pharmacokinetic and pharmacodynamic profiles of drugs, thereby enhancing their therapeutic effect. The versatility of nanoparticles allows for a wide range of customization possibilities. However, it also leads to a rich design space which is difficult to investigate and optimize. An additional problem emerges when they are applied to cancer treatment. A heterogeneous and highly adaptable tumour can quickly become resistant to primary therapy, making it inefficient. To automate the design of potential therapies for such complex cases, we propose a computational model for fast, novelty-based machine learning exploration of the nanoparticle design space. In this paper, we present an evolvable, open-ended agent-based model, where the exploration of an initially small portion of the given state space can be expanded by an ongoing generation of adaptive novelties, whenever the simulated tumour makes an adaptive leap. We demonstrate that the nano-agents can continuously reshape themselves and create a heterogeneous population of specialized groups of individuals optimized for tracking and killing different phenotypes of cancer cells. In the conclusion, we outline further development steps so this model could be used in real-world research and clinical practice.
Collapse
Affiliation(s)
- Igor Balaz
- Laboratory of Meteorology, Biophysics and Physics, Faculty of Agriculture, University of Novi Sad, Serbia.
| | - Tara Petrić
- Laboratory of Meteorology, Biophysics and Physics, Faculty of Agriculture, University of Novi Sad, Serbia
| | - Marina Kovacevic
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Serbia
| | | | | |
Collapse
|
9
|
Gorochowski TE, Hauert S, Kreft JU, Marucci L, Stillman NR, Tang TYD, Bandiera L, Bartoli V, Dixon DOR, Fedorec AJH, Fellermann H, Fletcher AG, Foster T, Giuggioli L, Matyjaszkiewicz A, McCormick S, Montes Olivas S, Naylor J, Rubio Denniss A, Ward D. Toward Engineering Biosystems With Emergent Collective Functions. Front Bioeng Biotechnol 2020; 8:705. [PMID: 32671054 PMCID: PMC7332988 DOI: 10.3389/fbioe.2020.00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales.
Collapse
Affiliation(s)
| | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jan-Ulrich Kreft
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Namid R. Stillman
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - T.-Y. Dora Tang
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Lucia Bandiera
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Vittorio Bartoli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Alex J. H. Fedorec
- Division of Biosciences, University College London, London, United Kingdom
| | - Harold Fellermann
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander G. Fletcher
- Bateson Centre and School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Tim Foster
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Luca Giuggioli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Scott McCormick
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jonathan Naylor
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Rubio Denniss
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Daniel Ward
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS NANO 2020; 14:3075-3095. [PMID: 32078303 PMCID: PMC7098057 DOI: 10.1021/acsnano.9b08142] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
Numerous studies have engineered nanoparticles with different physicochemical properties to enhance the delivery efficiency to solid tumors, yet the mean and median delivery efficiencies are only 1.48% and 0.70% of the injected dose (%ID), respectively, according to a study using a nonphysiologically based modeling approach based on published data from 2005 to 2015. In this study, we used physiologically based pharmacokinetic (PBPK) models to analyze 376 data sets covering a wide range of nanomedicines published from 2005 to 2018 and found mean and median delivery efficiencies at the last sampling time point of 2.23% and 0.76%ID, respectively. Also, the mean and median delivery efficiencies were 2.24% and 0.76%ID at 24 h and were decreased to 1.23% and 0.35%ID at 168 h, respectively, after intravenous administration. While these delivery efficiencies appear to be higher than previous findings, they are still quite low and represent a critical barrier in the clinical translation of nanomedicines. We explored the potential causes of this poor delivery efficiency using the more mechanistic PBPK perspective applied to a subset of gold nanoparticles and found that low delivery efficiency was associated with low distribution and permeability coefficients at the tumor site (P < 0.01). We also demonstrate how PBPK modeling and simulation can be used as an effective tool to investigate tumor delivery efficiency of nanomedicines.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jim E. Riviere
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- 1Data
Consortium, Kansas State University, Manhattan, Kansas 66506, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhoumeng Lin
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
11
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
12
|
Abstract
Cancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but also better drug delivery methods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior in biological systems. Here, we present a comprehensive review of literature on mathematical modeling works that have been and are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy.
Collapse
|
13
|
Schuerle S, Soleimany AP, Yeh T, Anand GM, Häberli M, Fleming HE, Mirkhani N, Qiu F, Hauert S, Wang X, Nelson BJ, Bhatia SN. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. SCIENCE ADVANCES 2019; 5:eaav4803. [PMID: 31032412 PMCID: PMC6486269 DOI: 10.1126/sciadv.aav4803] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/08/2019] [Indexed: 05/09/2023]
Abstract
Nanoparticles (NPs) have emerged as an advantageous drug delivery platform for the treatment of various ailments including cancer and cardiovascular and inflammatory diseases. However, their efficacy in shuttling materials to diseased tissue is hampered by a number of physiological barriers. One hurdle is transport out of the blood vessels, compounded by difficulties in subsequent penetration into the target tissue. Here, we report the use of two distinct micropropellers powered by rotating magnetic fields to increase diffusion-limited NP transport by enhancing local fluid convection. In the first approach, we used a single synthetic magnetic microrobot called an artificial bacterial flagellum (ABF), and in the second approach, we used swarms of magnetotactic bacteria (MTB) to create a directable "living ferrofluid" by exploiting ferrohydrodynamics. Both approaches enhance NP transport in a microfluidic model of blood extravasation and tissue penetration that consists of microchannels bordered by a collagen matrix.
Collapse
Affiliation(s)
- S. Schuerle
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - A. P. Soleimany
- Harvard Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - T. Yeh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - G. M. Anand
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - M. Häberli
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - H. E. Fleming
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - N. Mirkhani
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - F. Qiu
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S. Hauert
- Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - X. Wang
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - B. J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S. N. Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
14
|
Saravanan M, Barabadi H, Ramachandran B, Venkatraman G, Ponmurugan K. Emerging plant-based anti-cancer green nanomaterials in present scenario. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/bs.coac.2019.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. NANO RESEARCH 2018; 11:4999-5016. [PMID: 31772723 PMCID: PMC6879063 DOI: 10.1007/s12274-018-2083-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall, bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery, and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.
Collapse
Affiliation(s)
- Danielle M Valcourt
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jenna Harris
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rachel S Riley
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan Dang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jianxin Wang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
- 4701 Ogletown Stanton Road, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
16
|
Aires A, Cadenas JF, Guantes R, Cortajarena AL. An experimental and computational framework for engineering multifunctional nanoparticles: designing selective anticancer therapies. NANOSCALE 2017; 9:13760-13771. [PMID: 28884769 DOI: 10.1039/c7nr04475e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A key challenge in the treatment of cancer with nanomedicine is to engineer and select nanoparticle formulations that lead to the desired selectivity between tumorigenic and non-tumorigenic cells. To this aim, novel designed nanomaterials, deep biochemical understanding of the mechanisms of interaction between nanomaterials and cells, and computational models are emerging as very useful tools to guide the design of efficient and selective nanotherapies. This works shows, using a combination of detailed experimental approaches and simulations, that the specific targeting of cancer cells in comparison to non-tumorigenic cells can be achieved through the custom design of multivalent nanoparticles. A theoretical model that provides simple yet quantitative predictions to tune the nanoparticles targeting and cytotoxic properties by their degree of functionalization is developed. As a case study, a system that included a targeting agent and a drug and is amenable to controlled experimental manipulation and theoretical analysis is used. This study shows how at defined functionalization levels multivalent nanoparticles can selectively kill tumor cells, while barely affecting non-tumorigenic cells. This work opens a way to the rational design of multifunctionalized nanoparticles with defined targeting and cytotoxic properties for practical applications.
Collapse
Affiliation(s)
- A Aires
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastian, Spain
| | | | | | | |
Collapse
|
17
|
Khalid A, Persano S, Shen H, Zhao Y, Blanco E, Ferrari M, Wolfram J. Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opin Drug Deliv 2017; 14:865-877. [PMID: 27690153 PMCID: PMC5584706 DOI: 10.1080/17425247.2017.1243527] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ultimate goal in the field of drug delivery is to exclusively direct therapeutic agents to pathological tissues in order to increase therapeutic efficacy and eliminate side effects. This goal is challenging due to multiple transport obstacles in the body. Strategies that improve drug transport exploit differences in the characteristics of normal and pathological tissues. Within the field of oncology, these concepts have laid the groundwork for a new discipline termed transport oncophysics. Areas covered: Efforts to improve drug biodistribution have mainly focused on nanocarriers that enable preferential accumulation of drugs in diseased tissues. A less common approach to enhance drug transport involves priming strategies that modulate the biological environment in ways that favor localized drug delivery. This review discusses a variety of priming and nanoparticle design strategies that have been used for drug delivery. Expert opinion: Combinations of priming agents and nanocarriers are likely to yield optimal drug distribution profiles. Although priming strategies have yet to be widely implemented, they represent promising solutions for overcoming biological transport barriers. In fact, such strategies are not restricted to priming the tumor microenvironment but can also be directed toward healthy tissue in order to reduce nanoparticle uptake.
Collapse
Affiliation(s)
- Ayesha Khalid
- Medical Program, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Stefano Persano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Hubbard ME, Jove M, Loadman PM, Phillips RM, Twelves CJ, Smye SW. Drug delivery in a tumour cord model: a computational simulation. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170014. [PMID: 28573005 PMCID: PMC5451806 DOI: 10.1098/rsos.170014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/25/2017] [Indexed: 05/17/2023]
Abstract
The tumour vasculature and microenvironment is complex and heterogeneous, contributing to reduced delivery of cancer drugs to the tumour. We have developed an in silico model of drug transport in a tumour cord to explore the effect of different drug regimes over a 72 h period and how changes in pharmacokinetic parameters affect tumour exposure to the cytotoxic drug doxorubicin. We used the model to describe the radial and axial distribution of drug in the tumour cord as a function of changes in the transport rate across the cell membrane, blood vessel and intercellular permeability, flow rate, and the binding and unbinding ratio of drug within the cancer cells. We explored how changes in these parameters may affect cellular exposure to drug. The model demonstrates the extent to which distance from the supplying vessel influences drug levels and the effect of dosing schedule in relation to saturation of drug-binding sites. It also shows the likely impact on drug distribution of the aberrant vasculature seen within tumours. The model can be adapted for other drugs and extended to include other parameters. The analysis confirms that computational models can play a role in understanding novel cancer therapies to optimize drug administration and delivery.
Collapse
Affiliation(s)
- M. E. Hubbard
- School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Author for correspondence: M. E. Hubbard e-mail:
| | - M. Jove
- Department of Medical Oncology, Leeds Teaching Hospitals NHS Trust, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - P. M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - R. M. Phillips
- School of Applied Sciences, University of Hudderfield, Queensgate, Huddersfield HD1 3DH, UK
| | - C. J. Twelves
- Leeds Institute of Cancer and Pathology, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - S. W. Smye
- Academic Division of Medical Physics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Siegel RA, Kirtane AR, Panyam J. Assessing the Benefits of Drug Delivery by Nanocarriers: A Partico/Pharmacokinetic Framework. IEEE Trans Biomed Eng 2016; 64:2176-2185. [PMID: 27913319 DOI: 10.1109/tbme.2016.2632733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE An in vivo kinetic framework is introduced to analyze and predict the quantitative advantage of using nanocarriers to deliver drugs, especially anticancer agents, compared to administering the same drugs in their free form. METHODS This framework recognizes three levels of kinetics. First is the particokinetics associated with deposition of nanocarriers into tissues associated with drug effect and toxicity, their residence inside those tissues, and elimination of the nanocarriers from the body. Second is the release pattern in time of free drug from the nanocarriers. Third is the pharmacokinetics of free drug, as it relates to deposition and elimination processes in the target and toxicity associated tissues, and total body clearance. A figure of merit, the drug targeting index (DTI), is used to quantitate the benefit of nanocarrier-based drug delivery by considering the effects of preferential deposition of nanoparticles into target tissues and relative avoidance of tissues associated with drug toxicity, compared to drug that is administered in its free form. RESULTS General methods are derived for calculating DTI when appropriate particokinetic, pharmacokinetic, and drug release rate information is available, and it is shown that relatively simple algebraic forms result when some common assumptions are made. CONCLUSION This approach may find use in developing and selecting nanocarrier formulations, either for populations or for individuals.
Collapse
|
20
|
Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016; 111:577-591. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer is defined as one of the utmost prevailing breast cancers worldwide, possessing an inadequate prognosis and treatment option limited to chemotherapy and radiotherapy, creating a challenge for researchers as far as developing a specific targeted therapy is concerned. The past research era has shown several promising outcomes for TNBC such as nano-formulations of the chemotherapeutic agents already used for the management of the malignant tumor. Taking a glance at paclitaxel nano formulations, it has been proven beneficial in several researches in the past decade; nevertheless its solubility is often a challenge to scientists in achieving success. We have henceforth discussed the basic heterogeneity of triple negative breast cancer along with the current management options as well as a brief outlook on pros and cons of paclitaxel, known as the most widely used chemotherapeutic agent for the treatment of the disease. We further analyzed the need of nanotechnology pertaining to the problems encountered with the current paclitaxel formulations available discussing the strategic progress in various nano-formulations till date taking into account the basic research strategies required in terms of solubility, permeability, physicochemical properties, active and passive targeting. A thorough review in recent advances in active targeting for TNBC was carried out whereby the various ligands which are at present finding its way into TNBC research such as hyaluronic acid, folic acid, transferrin, etc. were discussed. These ligands have specific receptor affinity to TNBC tumor cells hence can be beneficial for novel drug targeting approaches. Conversely, there are currently several novel strategies in the research pipeline whose targeting ligands have not yet been studied. Therefore, we reviewed upon the numerous novel receptor targets along with the respective nano-formulation aspects which have not yet been fully researched upon and could be exemplified as outstanding target strategies for TNBC which is currently an urgent requirement.
Collapse
|
21
|
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design. Sci Rep 2016; 6:25424. [PMID: 27147293 PMCID: PMC4857130 DOI: 10.1038/srep25424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
Collapse
|
22
|
Shargh VH, Hondermarck H, Liang M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine (Lond) 2016; 11:63-79. [DOI: 10.2217/nnm.15.186] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanotechnology has great potentials to revolutionize the future cancer diagnosis and therapy. In this context, various nanoparticles (NPs) have been developed for targeted delivery of diagnostic/therapeutic agents to the tumor sites, which thus result in greater efficacy and much less side effects. The targeting property of NPs is often achieved by functionalizing their surface with tumor-specific ligands, such as antibodies, peptides, small molecules and oligonucleotides. In this review, we will discuss recent progress in the multifunctional design of antibody-targeted NPs with a special focus on liposomal, polymeric and protein-based delivery systems.
Collapse
Affiliation(s)
- Vahid Heravi Shargh
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
23
|
Cao X, Zhou X, Wang Y, Gong T, Zhang ZR, Liu R, Fu Y. Diblock- and triblock-copolymer based mixed micelles with high tumor penetration in vitro and in vivo. J Mater Chem B 2016; 4:3216-3224. [PMID: 32263257 DOI: 10.1039/c6tb00508j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of self-assembled mixed micelles composed of TPGS and Pluronics were fabricated and their cellular uptake and exocytosis behaviors were studied in 2D cell and 3D tumor spheroid models.
Collapse
Affiliation(s)
- Xi Cao
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xu Zhou
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yu Wang
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Tao Gong
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Renhe Liu
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Yao Fu
- Key Laboratory of Drug Targeting and Delivery
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
24
|
Kunjachan S, Detappe A, Kumar R, Ireland T, Cameron L, Biancur DE, Motto-Ros V, Sancey L, Sridhar S, Makrigiorgos GM, Berbeco RI. Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy. NANO LETTERS 2015; 15:7488-96. [PMID: 26418302 PMCID: PMC5507193 DOI: 10.1021/acs.nanolett.5b03073] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular disruption substantially improved the therapeutic outcome and subsidized the radiation/nanoparticle toxicity, extending its utility to intransigent or nonresectable tumors that barely respond to standard therapies.
Collapse
Affiliation(s)
- Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
- Institut Lumière Matière, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69007 Lyon, France
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Boston University, Boston, Massachusetts 02215, United States
| | - Lisa Cameron
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Douglas E. Biancur
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Vincent Motto-Ros
- Institut Lumière Matière, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69007 Lyon, France
| | - Lucie Sancey
- Institut Lumière Matière, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69007 Lyon, France
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
- Nanomedicine Science and Technology Center and Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ross I. Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Abstract
Advances in nanomedicine are providing sophisticated functions to precisely control the behavior of nanoscale drugs and diagnostics. Strategies that coopt protease activity as molecular triggers are increasingly important in nanoparticle design, yet the pharmacokinetics of these systems are challenging to understand without a quantitative framework to reveal nonintuitive associations. We describe a multicompartment mathematical model to predict strategies for ultrasensitive detection of cancer using synthetic biomarkers, a class of activity-based probes that amplify cancer-derived signals into urine as a noninvasive diagnostic. Using a model formulation made of a PEG core conjugated with protease-cleavable peptides, we explore a vast design space and identify guidelines for increasing sensitivity that depend on critical parameters such as enzyme kinetics, dosage, and probe stability. According to this model, synthetic biomarkers that circulate in stealth but then activate at sites of disease have the theoretical capacity to discriminate tumors as small as 5 mm in diameter-a threshold sensitivity that is otherwise challenging for medical imaging and blood biomarkers to achieve. This model may be adapted to describe the behavior of additional activity-based approaches to allow cross-platform comparisons, and to predict allometric scaling across species.
Collapse
|
26
|
Jeong CJ, Roy AK, Kim SH, Lee JE, Jeong JH, In I, Park SY. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. NANOSCALE 2014; 6:15196-202. [PMID: 25375199 DOI: 10.1039/c4nr04805a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.
Collapse
Affiliation(s)
- Chan Jin Jeong
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Hauert S, Bhatia SN. Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol 2014; 32:448-55. [PMID: 25086728 PMCID: PMC4295824 DOI: 10.1016/j.tibtech.2014.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 02/07/2023]
Abstract
Nanoparticles are designed to deliver therapeutics and diagnostics selectively to tumors. Their size, shape, charge, material, coating, and cargo determine their individual functionalities. A systems approach could help predict the behavior of trillions of nanoparticles interacting in complex tumor environments. Engineering these nanosystems may lead to biomimetic strategies where interactions between nanoparticles and their environment give rise to cooperative behaviors typically seen in natural self-organized systems. Examples include nanoparticles that communicate the location of a tumor to amplify tumor homing or self-assemble and disassemble to optimize nanoparticle transport. The challenge is to discover which nanoparticle designs lead to a desired system behavior. To this end, novel nanomaterials, deep understanding of biology, and computational tools are emerging as the next frontier.
Collapse
Affiliation(s)
- Sabine Hauert
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Bhatnagar S, Deschenes E, Liao J, Cilliers C, Thurber GM. Multichannel imaging to quantify four classes of pharmacokinetic distribution in tumors. J Pharm Sci 2014; 103:3276-86. [PMID: 25048378 DOI: 10.1002/jps.24086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/31/2023]
Abstract
Low and heterogeneous delivery of drugs and imaging agents to tumors results in decreased efficacy and poor imaging results. Systemic delivery involves a complex interplay of drug properties and physiological factors, and heterogeneity in the tumor microenvironment makes predicting and overcoming these limitations exceptionally difficult. Theoretical models have indicated that there are four different classes of pharmacokinetic behavior in tissue, depending on the fundamental steps in distribution. In order to study these limiting behaviors, we used multichannel fluorescence microscopy and stitching of high-resolution images to examine the distribution of four agents in the same tumor microenvironment. A validated generic partial differential equation model with a graphical user interface was used to select fluorescent agents exhibiting these four classes of behavior, and the imaging results agreed with predictions. BODIPY-FL exhibited higher concentrations in tissue with high blood flow, cetuximab gave perivascular distribution limited by permeability, high plasma protein and target binding resulted in diffusion-limited distribution for Hoechst 33342, and Integrisense 680 was limited by the number of binding sites in the tissue. Together, the probes and simulations can be used to investigate distribution in other tumor models, predict tumor drug distribution profiles, and design and interpret in vivo experiments.
Collapse
Affiliation(s)
- Sumit Bhatnagar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | |
Collapse
|