1
|
Francisco AF, Sousa GR, Vaughan M, Langston H, Khan A, Jayawardhana S, Taylor MC, Lewis MD, Kelly JM. Cardiac Abnormalities in a Predictive Mouse Model of Chagas Disease. Pathogens 2023; 12:1364. [PMID: 38003828 PMCID: PMC10674564 DOI: 10.3390/pathogens12111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) results from infection with the protozoan parasite Trypanosoma cruzi and is a prevalent cause of heart disease in endemic countries. We previously found that cardiac fibrosis can vary widely in C3H/HeN mice chronically infected with T. cruzi JR strain, mirroring the spectrum of heart disease in humans. In this study, we examined functional cardiac abnormalities in this host:parasite combination to determine its potential as an experimental model for CCC. We utilised electrocardiography (ECG) to monitor T. cruzi-infected mice and determine whether ECG markers could be correlated with cardiac function abnormalities. We found that the C3H/HeN:JR combination frequently displayed early onset CCC indicators, such as sinus bradycardia and right bundle branch block, as well as prolonged PQ, PR, RR, ST, and QT intervals in the acute stage. Our model exhibited high levels of cardiac inflammation and enhanced iNOS expression in the acute stage, but denervation did not appear to have a role in pathology. These results demonstrate the potential of the C3H/HeN:JR host:parasite combination as a model for CCC that could be used for screening new compounds targeted at cardiac remodelling and for examining the potential of antiparasitic drugs to prevent or alleviate CCC development and progression.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Giovane R. Sousa
- Harvard Medical School, Section on Immunobiology, Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA
| | - Mhairi Vaughan
- Research Department of Haematology, Cancer Institute, Faculty of Medical Sciences, University College London, London WC1E 6DD, UK
| | - Harry Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Archie Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
2
|
The Colombian Strain of Trypanosoma cruzi Induces a Proinflammatory Profile, Neuronal Death, and Collagen Deposition in the Intestine of C57BL/6 Mice Both during the Acute and Early Chronic Phase. Mediators Inflamm 2022; 2022:7641357. [PMID: 35069009 PMCID: PMC8769873 DOI: 10.1155/2022/7641357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the histopathological changes caused by infection with the Colombian strain of Trypanosoma cruzi (T. cruzi) in the acute and chronic experimental phases. C57Bl/6 mice were infected with 1000 trypomastigote forms of the Colombian strain of T. cruzi. After 30 days (acute phase) and 90 days (early chronic phase) of infection, the animals were euthanized, and the colon was collected and divided into two parts: proximal and distal. The distal portion was used for histopathological analysis, whereas the proximal portion was used for quantification of pro- and anti-inflammatory cytokines. In addition, the weight of the animals and parasitemia were assessed. The infection induced gradual weight loss in the animals. In addition, the infection induced an increase in interferon gamma (IFNγ) and tumor necrosis factor-alpha (TNF-α) in the intestine in the acute phase, in which this increase continued until the early chronic phase. The same was observed in relation to the presence of intestinal inflammatory infiltrates. In relation to interleukin (IL)-10, there was an increase only in the early chronic phase. The Colombian strain infection was also able to induce neuronal loss in the myenteric plexus and deposition of the collagen fibers during the acute phase. The Colombian strain of T. cruzi is capable of causing histopathological changes in the intestine of infected mice, especially in inducing neuronal destructions. Thus, this strain can also be used to study the intestinal form of Chagas disease in experimental models.
Collapse
|
3
|
de Souza Marques F, Duarte THC, Xavier VF, Ferraz AT, das Mercês AC, Silva TVC, Mendes LC, da Fonseca Medeiros L, Perin L, Mathias FAS, da Silva Fonseca K, Nogueira-Paiva NC, Carneiro CM, de Abreu Vieira PM. Different infective forms trigger distinct lesions in the colon during experimental Chagas disease. Parasitol Res 2021; 120:3475-3486. [PMID: 34476583 DOI: 10.1007/s00436-021-07236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022]
Abstract
With the control of vectorial transmission of Chagas disease caused by metacyclic trypomastigotes (MT) in endemic countries, other pathways of infection have become important. The infection caused by blood trypomastigotes (BT) is relevant in places where the blood transfusion and organ transplantation are poorly controlled. This study aimed to evaluate immunopathogenic parameters in the colon during the acute and chronic phases of experimental infection in Swiss mice infected with BT or MT forms of VL-10 strain of Trypanosoma cruzi. We have found that animals infected with MT forms presented lower survival rate, and higher tissue parasitism in the acute phase of the disease, which may be associated with the exacerbated activation of the immune system with the production of pro-inflammatory cytokines even in the chronic phase of infection. Taken together, these results can also be associated to the maintenance of the inflammatory process in chronic phase and an earlier denervation of myenteric plexus in colon. These findings emphasized the importance of the inoculum source and the strain, once different forms of different strains seem to promote distinct diseases.
Collapse
Affiliation(s)
- Flávia de Souza Marques
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Thays Helena Chaves Duarte
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Viviane Flores Xavier
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Aline Tonhela Ferraz
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Aline Coelho das Mercês
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Thaís Vieira Carvalho Silva
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lívia Carvalho Mendes
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luciana da Fonseca Medeiros
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luísa Perin
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernando Augusto Siqueira Mathias
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Kátia da Silva Fonseca
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nivia Carolina Nogueira-Paiva
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
5
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
6
|
do Carmo Neto JR, Vinicius da Silva M, Braga YLL, Florencio da Costa AW, Fonseca SG, Nagib PRA, Nunes Celes MR, Oliveira MAP, Machado JR. Correlation between intestinal BMP2, IFNγ, and neural death in experimental infection with Trypanosoma cruzi. PLoS One 2021; 16:e0246692. [PMID: 33561140 PMCID: PMC7872263 DOI: 10.1371/journal.pone.0246692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Megacolon is one of the main late complications of Chagas disease, affecting approximately 10% of symptomatic patients. However, studies are needed to understand the mechanisms involved in the progression of this condition. During infection by Trypanosoma cruzi (T. cruzi), an inflammatory profile sets in that is involved in neural death, and this destruction is known to be essential for megacolon progression. One of the proteins related to the maintenance of intestinal neurons is the type 2 bone morphogenetic protein (BMP2). Intestinal BMP2 homeostasis is directly involved in the maintenance of organ function. Thus, the aim of this study was to correlate the production of intestinal BMP2 with immunopathological changes in C57Bl/6 mice infected with the T. cruzi Y strain in the acute and chronic phases. The mice were infected with 1000 blood trypomastigote forms. After euthanasia, the colon was collected, divided into two fragments, and a half was used for histological analysis and the other half for BMP2, IFNγ, TNF-α, and IL-10 quantification. The infection induced increased intestinal IFNγ and BMP2 production during the acute phase as well as an increase in the inflammatory infiltrate. In contrast, a decreased number of neurons in the myenteric plexus were observed during this phase. Collagen deposition increased gradually throughout the infection, as demonstrated in the chronic phase. Additionally, a BMP2 increase during the acute phase was positively correlated with intestinal IFNγ. In the same analyzed period, BMP2 and IFNγ showed negative correlations with the number of neurons in the myenteric plexus. As the first report of BMP2 alteration after infection by T. cruzi, we suggest that this imbalance is not only related to neuronal damage but may also represent a new route for maintaining the intestinal proinflammatory profile during the acute phase.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Arthur Wilson Florencio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Patricia Resende Alô Nagib
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Milton Adriano Pelli Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Ricci MF, Béla SR, Moraes MM, Bahia MT, Mazzeti AL, Oliveira ACS, Andrade LO, Radí R, Piacenza L, Arantes RME. Neuronal Parasitism, Early Myenteric Neurons Depopulation and Continuous Axonal Networking Damage as Underlying Mechanisms of the Experimental Intestinal Chagas' Disease. Front Cell Infect Microbiol 2020; 10:583899. [PMID: 33178632 PMCID: PMC7597600 DOI: 10.3389/fcimb.2020.583899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
There is a growing consensus that the balance between the persistence of infection and the host immune response is crucial for chronification of Chagas heart disease. Extrapolation for chagasic megacolon is hampered because research in humans and animal models that reproduce intestinal pathology is lacking. The parasite-host relationship and its consequence to the disease are not well-known. Our model describes the temporal changes in the mice intestine wall throughout the infection, parasitism, and the development of megacolon. It also presents the consequence of the infection of primary myenteric neurons in culture with Trypanosoma cruzi (T. cruzi). Oxidative neuronal damage, involving reactive nitrogen species induced by parasite infection and cytokine production, results in the denervation of the myenteric ganglia in the acute phase. The long-term inflammation induced by the parasite's DNA causes intramuscular axonal damage, smooth muscle hypertrophy, and inconsistent innervation, affecting contractility. Acute phase neuronal loss may be irreversible. However, the dynamics of the damages revealed herein indicate that neuroprotection interventions in acute and chronic phases may help to eradicate the parasite and control the inflammatory-induced increase of the intestinal wall thickness and axonal loss. Our model is a powerful approach to integrate the acute and chronic events triggered by T. cruzi, leading to megacolon.
Collapse
Affiliation(s)
- Mayra Fernanda Ricci
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Samantha Ribeiro Béla
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Michele Macedo Moraes
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Terezinha Bahia
- Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana Lia Mazzeti
- Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | | | - Rafael Radí
- Departament of Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de La Republica Montevideo, Montevideo, Uruguay
| | - Lucía Piacenza
- Departament of Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de La Republica Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
8
|
Lucchetti BFC, Boaretto N, Lopes FNC, Malvezi AD, Lovo-Martins MI, Tatakihara VLH, Fattori V, Pereira RS, Verri WA, de Almeida Araujo EJ, Pinge-Filho P, Martins-Pinge MC. Metabolic syndrome agravates cardiovascular, oxidative and inflammatory dysfunction during the acute phase of Trypanosoma cruzi infection in mice. Sci Rep 2019; 9:18885. [PMID: 31827186 PMCID: PMC6906468 DOI: 10.1038/s41598-019-55363-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 102 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice. We observed higher parasitaemia in the infected obese group (IOG) than in the infected control group (ICG) 13 and 15 days post-infection. All IOG animals died by 19 days post-infection (dpi), whereas 87.5% of the ICG survived to 30 days. Increased plasma nitrite levels in adipose tissue and the aorta were observed in the IOG. Higher INF-γ and MCP-1 concentrations and lower IL-10 concentrations were observed in the IOG compared to those in the ICG. Decreased insulin sensitivity was observed in obese animals, which was accentuated after infection. Higher parasitic loads were found in adipose and hepatic tissue, and increases in oxidative stress in cardiac, hepatic, and adipose tissues were characteristics of the IOG group. Thus, MS exacerbates experimental Chagas disease, resulting in greater damage and decreased survival in infected animals, and might be a warning sign that MS can influence other pathologies.
Collapse
Affiliation(s)
- Bruno Fernando Cruz Lucchetti
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Department of Physiotherapy, University Center of Araguaia Valley, Barra do Garças, MT, Brazil
| | - Natalia Boaretto
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Aparecida Donizette Malvezi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rito Santo Pereira
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
9
|
Massier J, Eitner A, Segond von Banchet G, Schaible HG. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol 2015; 67:2263-72. [PMID: 25833104 DOI: 10.1002/art.39134] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/24/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE In arthritis, macrophages invade the affected joint. Experimental arthritis models have shown that macrophages also invade the dorsal root ganglia (DRGs) of the inflamed segments in which the perikarya of sensory neurons are located. It is unclear whether this macrophage invasion contributes to arthritis pain and/or furthers neuronal damage. The present study was undertaken to investigate how differently activated macrophages affect DRG neurons. METHODS We determined the phenotype of macrophages in the DRGs of rats with antigen-induced arthritis (AIA). In a DRG neuron-macrophage coculture system, we investigated whether differently activated macrophages (stimulated with either lipopolysaccharide [LPS]/interferon-γ [IFNγ], tumor necrosis factor [TNF], or interleukin-4) damage DRG neurons and/or stimulate them to release the mediator calcitonin gene-related peptide (CGRP), which promotes pain and neurogenic inflammation. RESULTS Macrophages in the DRGs of rats with AIA showed the phenotype of TNF-stimulated macrophages but did not express inducible nitric oxide synthase, which was found in cultured macrophages only after LPS/IFNγ activation. In neuron-macrophage cocultures, activation of macrophages stimulated DRG neurons to release CGRP within 1 hour, indicating neuronal activation by macrophages. Only 48-hour activation of macrophages with LPS/IFNγ increased the neuronal cell death rate in culture, provided that the macrophages were in direct contact with DRG neurons. This effect was dependent on nitric oxide. CONCLUSION Macrophages have the potential to stimulate sensory neurons in the DRGs, and this may contribute to arthritis pain. If they are classically activated, such as after LPS/IFNγ stimulation, this may also further neuronal cell death. This is not the case in AIA but may occur in models involving damage of sensory neurons.
Collapse
Affiliation(s)
- Julia Massier
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Annett Eitner
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | | | - Hans-Georg Schaible
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
10
|
de Almeida-Leite CM, Silva ICC, Galvão LMDC, Arantes RME. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation. Mem Inst Oswaldo Cruz 2015; 109:459-65. [PMID: 25075784 PMCID: PMC4155848 DOI: 10.1590/0074-0276130492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 06/16/2014] [Indexed: 01/17/2023] Open
Abstract
Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas
disease and the proximity of parasitised glial cells and neurons in damaged myenteric
ganglia is a frequent finding. Glial cells have crucial roles in many
neuropathological situations and are potential sources of NO. Here, we investigate
peripheral glial cell response to Trypanosoma cruzi infection to
clarify the role of these cells in the neuronal lesion pathogenesis of Chagas
disease. We used primary glial cell cultures from superior cervical ganglion to
investigate cell activation and NO production after T. cruzi
infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal
macrophages. T. cruzi infection was greater in glial cells, despite
similar levels of NO production in both cell types. Glial cells responded similarly
to T. cruzi and LPS, but were less responsive to LPS than
macrophages were. Our observations contribute to the understanding of Chagas disease
pathogenesis, as based on the high susceptibility of autonomic glial cells to
T. cruzi infection with subsequent NO production. Moreover, our findings
will facilitate future research into the immune responses and activation mechanisms
of peripheral glial cells, which are important for understanding the paradoxical
responses of this cell type in neuronal lesions and neuroprotection.
Collapse
Affiliation(s)
- Camila Megale de Almeida-Leite
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
11
|
Chuenkova MV, Pereiraperrin M. Neurodegeneration and neuroregeneration in Chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:195-233. [PMID: 21884893 DOI: 10.1016/b978-0-12-385895-5.00009-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autonomic dysfunction plays a significant role in the development of chronic Chagas disease (CD). Destruction of cardiac parasympathetic ganglia can underlie arrhythmia and heart failure, while lesions of enteric neurons in the intestinal plexuses are a direct cause of aperistalsis and megasyndromes. Neuropathology is generated by acute infection when the parasite, though not directly damaging to neuronal cells, elicits immune reactions that can become cytotoxic, inducing oxidative stress and neurodegeneration. Anti-neuronal autoimmunity may further contribute to neuropathology. Much less clear is the mechanism of subsequent neuronal regeneration in patients that survive acute infection. Morphological and functional recovery of the peripheral neurons in these patients correlates with the absence of CD clinical symptoms, while persistent neuronal deficiency is observed for the symptomatic group. The discovery that Trypanosoma cruzi trans-sialidase can moonlight as a parasite-derived neurotrophic factor (PDNF) suggests that the parasite might influence the balance between neuronal degeneration and regeneration. PDNF functionally mimics mammalian neurotrophic factors in that it binds and activates neurotrophin Trk tyrosine kinase receptors, a mechanism which prevents neurodegeneration. PDNF binding to Trk receptors triggers PI3K/Akt/GSK-3β and MAPK/Erk/CREB signalling cascades which in neurons translates into resistance to oxidative and nutritional stress, and inhibition of apoptosis, whereas in the cytoplasm of infected cells, PDNF represents a substrate-activator of the host Akt kinase, enhancing host-cell survival until completion of the intracellular cycle of the parasite. Such dual activity of PDNF provides sustained activation of survival mechanisms which, while prolonging parasite persistence in host tissues, can underlie distinct outcomes of CD.
Collapse
Affiliation(s)
- Marina V Chuenkova
- Department of Pathology and Sackler School of Graduate Students, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
12
|
Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology. J Neurosci Methods 2010; 194:81-6. [PMID: 20888862 DOI: 10.1016/j.jneumeth.2010.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/12/2010] [Accepted: 09/22/2010] [Indexed: 11/22/2022]
Abstract
Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.
Collapse
|
13
|
Didier ES, Bowers LC, Martin AD, Kuroda MJ, Khan IA, Didier PJ. Reactive nitrogen and oxygen species, and iron sequestration contribute to macrophage-mediated control of Encephalitozoon cuniculi (Phylum Microsporidia) infection in vitro and in vivo. Microbes Infect 2010; 12:1244-51. [PMID: 20888426 DOI: 10.1016/j.micinf.2010.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/02/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Encephalitozoon cuniculi (Phylum Microsporidia) infects a wide range of mammals, and replicates within resting macrophages. Activated macrophages, conversely, inhibit replication and destroy intracellular organisms. These studies were performed to assess mechanisms of innate immune responses expressed by macrophages to control E. cuniculi infection. Addition of reactive oxygen and nitrogen species inhibitors to activated murine peritoneal macrophages statistically significantly, rescued E. cuniculi infection ex vivo. Mice deficient in reactive oxygen species, reactive nitrogen species, or both survived ip inoculation of E. cuniculi, but carried significantly higher peritoneal parasite burdens than wild-type mice at 1 and 2 weeks post inoculation. Infected peritoneal macrophages could still be identified 4 weeks post inoculation in mice deficient in reactive nitrogen species. L-tryptophan supplementation of activated murine peritoneal macrophage cultures ex vivo failed to rescue microsporidia infection. Addition of ferric citrate to supplement iron, however, did significantly rescue E. cuniculi infection in activated macrophages and further increased parasite replication in non-activated macrophages over non-treated resting control macrophages. These results demonstrate the contribution of reactive oxygen and nitrogen species, as well as iron sequestration, to innate immune responses expressed by macrophages to control E. cuniculi infection.
Collapse
Affiliation(s)
- Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Brunn A, Utermöhlen O, Carstov M, Ruiz MS, Miletic H, Schlüter D, Deckert M. CD4 T cells mediate axonal damage and spinal cord motor neuron apoptosis in murine p0106-125-induced experimental autoimmune neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:93-105. [PMID: 18535178 DOI: 10.2353/ajpath.2008.071101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenesis of inflammatory autoimmune diseases of the peripheral nervous system, leading to demyelination and/or axonal damage, remains incompletely understood. In particular, it is controversial regarding the extent to which (i) autoimmune-mediated destruction of peripheral nerves results in secondary damage of the central nervous system, and (ii) CD4 and CD8 T cells contribute to disease. To address these issues, we applied the murine model of P0(106-125)-induced experimental autoimmune neuritis. Immunization of C57BL/6 mice with P0(106-125) resulted in severe axonal damage and mild demyelination. Importantly, these mice developed a "dying-back" axonopathy with apoptosis of a large fraction of neurons in the anterior horn of the lumbar and thoracic spinal cord and a progressive neurogenic muscular atrophy. T cell-depletion experiments identified CD4, but not CD8, T cells as important mediators of experimental autoimmune neuritis. CD4 T cells represented the major cellular source of antigen-specific interferon-gamma and interleukin-17 production, regulated the number of tumor necrosis factor-positive and inducible nitric oxide synthase-positive macrophages in the diseased sciatic nerve, and mediated axonal damage and subsequent neuronal apoptosis and neurogenic muscular atrophy. In contrast, the demyelination of peripheral nerves was only slightly ameliorated in CD4 T cell-depleted mice. In conclusion, P0(106-125)-induced experimental autoimmune neuritis is a CD4 T cell-mediated autoimmune disease that affects both the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Anna Brunn
- Abteilung für Neuropathologie, Universitätsklinikum Köln, Kerpener Str. 62, D-50924 Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Marinho CRF, Nuñez-Apaza LN, Martins-Santos R, Bastos KRB, Bombeiro AL, Bucci DZ, Sardinha LR, Lima MRD, Alvarez JM. IFN-gamma, but not nitric oxide or specific IgG, is essential for the in vivo control of low-virulence Sylvio X10/4 Trypanosoma cruzi parasites. Scand J Immunol 2007; 66:297-308. [PMID: 17635807 DOI: 10.1111/j.1365-3083.2007.01958.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly virulent strains of Trypanosoma cruzi are frequently used as murine models of Chagas' disease. However, these strains do not fully represent the spectrum of parasites involved in the human infection. In this paper, we analysed parasitaemia, mortality, tissue pathology and parasite-specific IgG serum levels in immune-deficient mice infected with Sylvio X10/4 parasites, a T. cruzi derived from a chagasic patient that yields very low parasitaemias and in C3H/HePAS mice induces a chronic cardiopathy resembling the human disease. IFN-gamma was identified as a crucial element for parasite control as its absence determined a drastic increase in parasitaemia, tissue parasitism, leukocyte infiltrates at the heart and striated muscles and mortality. The lack of IFN-gamma or IL-12p40, a molecule shared by IL-12 and IL-23, also resulted in spinal cord lesions and a progressive paralysis syndrome. Whereas IgG2a was the main Ig isotype in infected C57BL/6 mice, IL-12p40-KO mice produced IgG2a and IgG1 and IFN-gamma-KO mice produced only IgG1. The IFN-gamma-protective effect was not essentially mediated by nitric oxide (NO), inasmuch as infected iNOS-KO mice showed no parasitaemia and low tissue damage. Mice deficient in CD4(+) or CD8(+) T cells showed an intermediate phenotype with increased mortality and tissue pathology but no parasitaemia. Interestingly, CD28-KO mice were unable to produce anti-T. cruzi IgG antibodies but presented moderate tissue pathology and managed to control the infection. Thus, differently from infections with high virulence parasites, neither IgG, NO nor CD28-mediated signalling are essential for the non-sterile control of Sylvio X10/4 parasites.
Collapse
Affiliation(s)
- C R F Marinho
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|