1
|
Nakayama Y, Chambers JK, Takaichi Y, Uchida K. Cytoplasmic aggregation of TDP43 and topographic correlation with tau and α-synuclein accumulation in the rTg4510 mouse model of tauopathy. J Neuropathol Exp Neurol 2024; 83:833-842. [PMID: 38879441 DOI: 10.1093/jnen/nlae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
In patients with TDP43 proteinopathy, phosphorylated TDP43 (p-TDP43) accumulates in the cytoplasm of neurons. The accumulation of p-TDP43 has also been reported in patients with tauopathy and α-synucleinopathy. We investigated spatiotemporal changes in p-TDP43 accumulation in the brains of rTg4510 mice that overexpressed human mutant tau (P301L) and exhibited hyperphosphorylated tau (hp-tau) and phosphorylated αSyn (p-αSyn) accumulation. Immunohistochemically, p-TDP43 aggregates were observed in the cytoplasm of neurons, which increased with age. A significant positive correlation was observed between the number of cells with p-TDP43 aggregates and hp-tau and p-αSyn aggregates. Suppression of the human mutant tau (P301L) expression by doxycycline treatment reduces the accumulation of p-TDP43, hp-tau, and p-αSyn. Proteinase K-resistant p-TDP43 aggregates were found in regions with high hp-tau, and p-αSyn accumulation. Western blotting of the sarkosyl-insoluble fraction revealed bands of monomeric TDP43 and p-TDP43. These results indicate that the accumulation of mouse p-TDP43 is associated with the accumulation of human mutant tau (P301L) in rTg4510 mouse brains. The accumulation of hp-tau and p-αSyn may promote sarkosyl-insoluble p-TDP43 aggregates that are resistant to proteinase K. The synergistic effects of tau, TDP43, and αSyn may be involved in the pathology of proteinopathies, leading to the accumulation of multiple abnormal proteins.
Collapse
Affiliation(s)
- Yutaro Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
3
|
Carmen-Orozco RP, Tsao W, Ye Y, Sinha IR, Chang K, Trinh VT, Chung W, Bowden K, Troncoso JC, Blackshaw S, Hayes LR, Sun S, Wong PC, Ling JP. Elevated nuclear TDP-43 induces constitutive exon skipping. Mol Neurodegener 2024; 19:45. [PMID: 38853250 PMCID: PMC11163724 DOI: 10.1186/s13024-024-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Rogger P Carmen-Orozco
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Tsao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Irika R Sinha
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Vickie T Trinh
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - William Chung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kyra Bowden
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Xin J, Huang S, Wen J, Li Y, Li A, Satyanarayanan SK, Yao X, Su H. Drug Screening and Validation Targeting TDP-43 Proteinopathy for Amyotrophic Lateral Sclerosis. Aging Dis 2024:AD.2024.0440. [PMID: 38739934 DOI: 10.14336/ad.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.
Collapse
Affiliation(s)
- Jiaqi Xin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
5
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Maksimovic K, Youssef M, You J, Sung HK, Park J. Evidence of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis (ALS) Patients and Animal Models. Biomolecules 2023; 13:biom13050863. [PMID: 37238732 DOI: 10.3390/biom13050863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventual death. Research from the past few decades has appreciated that ALS is not only a disease of the motor neurons but also a disease that involves systemic metabolic dysfunction. This review will examine the foundational research of understanding metabolic dysfunction in ALS and provide an overview of past and current studies in ALS patients and animal models, spanning from full systems to various metabolic organs. While ALS-affected muscle tissue exhibits elevated energy demand and a fuel preference switch from glycolysis to fatty acid oxidation, adipose tissue in ALS undergoes increased lipolysis. Dysfunctions in the liver and pancreas contribute to impaired glucose homeostasis and insulin secretion. The central nervous system (CNS) displays abnormal glucose regulation, mitochondrial dysfunction, and increased oxidative stress. Importantly, the hypothalamus, a brain region that controls whole-body metabolism, undergoes atrophy associated with pathological aggregates of TDP-43. This review will also cover past and present treatment options that target metabolic dysfunction in ALS and provide insights into the future of metabolism research in ALS.
Collapse
Affiliation(s)
- Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohieldin Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Carmen-Orozco RP, Tsao W, Ye Y, Sinha IR, Chang K, Trinh V, Chung W, Bowden K, Troncoso JC, Blackshaw S, Hayes LR, Sun S, Wong PC, Ling JP. Elevated nuclear TDP-43 induces constitutive exon skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540291. [PMID: 37215013 PMCID: PMC10197708 DOI: 10.1101/2023.05.11.540291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. Our findings emphasize the need for caution in interpreting TDP-43 overexpression data, and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy. Understanding the subtle aspects of TDP-43 toxicity within different subcellular locations is essential for the development of therapies targeting neurodegenerative disease.
Collapse
Affiliation(s)
- Rogger P Carmen-Orozco
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - William Tsao
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Yingzhi Ye
- Department of Physiology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Irika R Sinha
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Koping Chang
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Vickie Trinh
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - William Chung
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Kyra Bowden
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Juan C Troncoso
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Seth Blackshaw
- Department of Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Ophthalmology Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neurology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Lindsey R Hayes
- Department of Neurology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Shuying Sun
- Department of Physiology Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Philip C Wong
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Jonathan P Ling
- Department of Pathology Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
8
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
9
|
Yusuff T, Chang YC, Sang TK, Jackson GR, Chatterjee S. Codon-optimized TDP-43 mediates neurodegeneration in a Drosophila model of ALS/FTLD. Front Genet 2023; 14:881638. [PMID: 36968586 PMCID: PMC10034021 DOI: 10.3389/fgene.2023.881638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Transactive response DNA binding protein-43 (TDP-43) is known to mediate neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The exact mechanism by which TDP-43 exerts toxicity in the brains, spinal cord, and lower motor neurons of affected patients remains unclear. In a novel Drosophila melanogaster model, we report gain-of-function phenotypes due to misexpression of insect codon-optimized version of human wild-type TDP-43 (CO-TDP-43) using both the binary GAL4/UAS system and direct promoter fusion constructs. The CO-TDP-43 model showed robust tissue specific phenotypes in the adult eye, wing, and bristles in the notum. Compared to non-codon optimized transgenic flies, the CO-TDP-43 flies produced increased amount of high molecular weight protein, exhibited pathogenic phenotypes, and showed cytoplasmic aggregation with both nuclear and cytoplasmic expression of TDP-43. Further characterization of the adult retina showed a disruption in the morphology and function of the photoreceptor neurons with the presence of acidic vacuoles that are characteristic of autophagy. Based on our observations, we propose that TDP-43 has the propensity to form toxic protein aggregates via a gain-of-function mechanism, and such toxic overload leads to activation of protein degradation pathways such as autophagy. The novel codon optimized TDP-43 model is an excellent resource that could be used in genetic screens to identify and better understand the exact disease mechanism of TDP-43 proteinopathies and find potential therapeutic targets.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| | - Ya-Chu Chang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - George R. Jackson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
- National Parkinson’s Disease Research Education and Clinical Center, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Shreyasi Chatterjee
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| |
Collapse
|
10
|
Sustained therapeutic benefits by transient reduction of TDP-43 using ENA-modified antisense oligonucleotides in ALS/FTD mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:353-366. [PMID: 36817728 PMCID: PMC9925842 DOI: 10.1016/j.omtn.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
The abnormal aggregation of TDP-43 into cytoplasmic inclusions in affected neurons is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although how TDP-43 forms cytoplasmic aggregates and causes neurodegeneration in patients with ALS/FTD remains unclear, reducing cellular TDP-43 levels is likely to prevent aggregation and to rescue neurons from TDP-43 toxicity. To address this issue, here we developed gapmer-type antisense oligonucleotides (ASOs) against human TDP-43 using 2'-O,4'-C-ethylene nucleic acids (ENAs), which are modified nucleic acids with high stability, and tested the therapeutic potential of lowering TDP-43 levels using ENA-modified ASOs. We demonstrated that intracerebroventricular administration of ENA-modified ASOs into a mouse model of ALS/FTD expressing human TDP-43 results in the efficient reduction of TDP-43 levels in the brain and spinal cord. Surprisingly, a single injection of ENA-modified ASOs into TDP-43 mice led to long-lasting improvement of behavioral abnormalities and the suppression of cytoplasmic TDP-43 aggregation, even after TDP-43 levels had returned to the initial levels. Our results demonstrate that transient reduction of TDP-43 using ENA-modified ASOs leads to sustained therapeutic benefits in vivo, indicating the possibility of a disease-modifying therapy by lowering TDP-43 levels for the treatment of the TDP-43 proteinopathies, including ALS/FTD.
Collapse
|
11
|
Togai S, Hamamichi S, Kazuki Y, Hiratsuka M. Pathological Comparison of TDP-43 Between Motor Neurons and Interneurons Expressed by a Tetracycline Repressor System on the Mouse Artificial Chromosome. Yonago Acta Med 2023; 66:24-35. [PMID: 36820298 PMCID: PMC9937957 DOI: 10.33160/yam.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 01/17/2023]
Abstract
Background Cytoplasmic mislocalization of TAR-DNA binding protein of 43 kDa (TDP-43) is a major hallmark of amyotrophic lateral sclerosis (ALS). TDP-43 aggregation is detected in the cortical and spinal motor neurons in most ALS cases; however, pathological mechanism of this mislocalized TDP-43 remains unknown. Methods We generated a tetracycline-inducible TDP-43 A315T system on a mouse artificial chromosome (MAC) vector to avoid transgene-insertional mutagenesis, established a mouse embryonic stem (ES) cell line holding this MAC vector system, and investigated whether overexpressed exogenous TDP-43 A315T was mislocalized in the cytoplasm of the ES cell-derived neurons and triggered the neurotoxic effects on these cells. Results Inducible TDP-43 A315T system was successfully loaded onto the MAC and introduced into the mouse ES cells. These ES cells could differentiate into motor neurons and interneurons. Overexpression of TDP-43 A315T by addition of doxycycline in both neurons resulted in mislocalization to cytoplasm. Mislocalized TDP-43 caused cell death of motor neurons, but not interneurons. Conclusion Vulnerability to cytoplasmic mislocalized TDP-43 is selective on neuronal types, whereas mislocalization of overexpressed TDP-43 occurs in even insusceptible neurons. This inducible gene expression system using MAC remains useful for providing critical insights into appearance of TDP-43 pathology.
Collapse
Affiliation(s)
- Shota Togai
- Department of Chromosome Biomedical Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago 683-8503, Japan
| | - Shusei Hamamichi
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago 683-8503, Japan,Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan,Department of Chromosome Biomedical Engineering, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan,Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Masaharu Hiratsuka
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan,Department of Chromosome Biomedical Engineering, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
12
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
13
|
Liang B, Thapa R, Zhang G, Moffitt C, Zhang Y, Zhang L, Johnston A, Ruby HP, Barbera G, Wong PC, Zhang Z, Chen R, Lin DT, Li Y. Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Prog Neurobiol 2022; 215:102297. [PMID: 35667630 PMCID: PMC9258405 DOI: 10.1016/j.pneurobio.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Mislocalization of TAR DNA binding protein 43 kDa (TARDBP, or TDP-43) is a principal pathological hallmark identified in cases of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As an RNA binding protein, TDP-43 serves in the nuclear compartment to repress non-conserved cryptic exons to ensure the normal transcriptome. Multiple lines of evidence from animal models and human studies support the view that loss of TDP-43 leads to neuron loss, independent of its cytosolic aggregation. However, the underlying pathogenic pathways driven by the loss-of-function mechanism are still poorly defined. We employed a genetic approach to determine the impact of TDP-43 loss in pyramidal neurons of the prefrontal cortex (PFC). Using a custom-built miniscope imaging system, we performed repetitive in vivo calcium imaging from freely behaving mice for up to 7 months. By comparing calcium activity in PFC pyramidal neurons between TDP-43 depleted and TDP-43 intact mice, we demonstrated remarkably increased numbers of pyramidal neurons exhibiting hyperactive calcium activity after short-term TDP-43 depletion, followed by rapid activity declines prior to neuron loss. Our results suggest aberrant neural activity driven by loss of TDP-43 as the pathogenic pathway at early stage in ALS and FTD.
Collapse
Affiliation(s)
- Bo Liang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA.
| | - Rashmi Thapa
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Gracie Zhang
- Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA.
| | - Casey Moffitt
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Lifeng Zhang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA; Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA; Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA; Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Amanda Johnston
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Hyrum P Ruby
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| |
Collapse
|
14
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
15
|
Yang C, Qiao T, Yu J, Wang H, Guo Y, Salameh J, Metterville J, Parsi S, Yusuf I, Brown RH, Cai H, Xu Z. Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice. PLoS One 2022; 17:e0255710. [PMID: 35113871 PMCID: PMC8812852 DOI: 10.1371/journal.pone.0255710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Modestly increased expression of transactive response DNA binding protein (TDP-43) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.
Collapse
Affiliation(s)
- Chunxing Yang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tao Qiao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Yu
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Hongyan Wang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yansu Guo
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Issa Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
16
|
Ferrer-Donato A, Contreras A, Fernandez P, Fernandez-Martos CM. The potential benefit of leptin therapy against amyotrophic lateral sclerosis (ALS). Brain Behav 2022; 12:e2465. [PMID: 34935299 PMCID: PMC8785645 DOI: 10.1002/brb3.2465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Targeting leptin could represent a rational strategy to treat amyotrophic lateral sclerosis (ALS), as previously clinical studies have shown its levels to be associated with a lower risk of ALS disease. However, very little is known about the potential influence of leptin in altering disease progression in ALS, as it has thus far been correlated with the protection exerted by increased fat mass stores. METHODS We studied the impact of leptin treatment beginning at 42-days of age (asymptomatic stage of disease) in the TDP-43 (TDP43A315T ) transgenic (Tg) ALS mouse model. RESULTS Our study shows that leptin treatment was associated with altered expression of adipokines and metabolic proteins in TDP43A315T mice. We also observed that weight loss decline was less prominent after leptin treatment in TDP43A315T mice relative to vehicle-treated animals. In TDP43A315T mice treated with leptin the disease duration lasted longer along with an improvement in motor performance relative to vehicle-treated animals. CONCLUSIONS Collectively, our results support leptin as a potential novel treatment approach for ALS.
Collapse
Affiliation(s)
- Agueda Ferrer-Donato
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ana Contreras
- Centro de Investigación en Salud (CEINSA), Universidad de Almería, Almería, Spain
| | - Paloma Fernandez
- Institute of Applied Molecular Medicine (IMMA), Faculty of Medicine, Universidad San Pablo CEU, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
17
|
D’Antona S, Caramenti M, Porro D, Castiglioni I, Cava C. Amyotrophic Lateral Sclerosis: A Diet Review. Foods 2021; 10:foods10123128. [PMID: 34945679 PMCID: PMC8702143 DOI: 10.3390/foods10123128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and β-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.
Collapse
Affiliation(s)
- Salvatore D’Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Martina Caramenti
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Isabella Castiglioni
- Department of Physics “G. Occhialini”, University of Milan-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy;
| | - Claudia Cava
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
- Correspondence:
| |
Collapse
|
18
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
19
|
Azpurua J, El-Karim EG, Tranquille M, Dubnau J. A behavioral screen for mediators of age-dependent TDP-43 neurodegeneration identifies SF2/SRSF1 among a group of potent suppressors in both neurons and glia. PLoS Genet 2021; 17:e1009882. [PMID: 34723963 PMCID: PMC8584670 DOI: 10.1371/journal.pgen.1009882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic aggregation of Tar-DNA/RNA binding protein 43 (TDP-43) occurs in 97 percent of amyotrophic lateral sclerosis (ALS), ~40% of frontotemporal dementia (FTD) and in many cases of Alzheimer's disease (AD). Cytoplasmic TDP-43 inclusions are seen in both sporadic and familial forms of these disorders, including those cases that are caused by repeat expansion mutations in the C9orf72 gene. To identify downstream mediators of TDP-43 toxicity, we expressed human TDP-43 in a subset of Drosophila motor neurons. Such expression causes age-dependent deficits in negative geotaxis behavior. Using this behavioral readout of locomotion, we conducted an shRNA suppressor screen and identified 32 transcripts whose knockdown was sufficient to ameliorate the neurological phenotype. The majority of these suppressors also substantially suppressed the negative effects on lifespan seen with glial TDP-43 expression. In addition to identification of a number of genes whose roles in neurodegeneration were not previously known, our screen also yielded genes involved in chromatin regulation and nuclear/import export- pathways that were previously identified in the context of cell based or neurodevelopmental suppressor screens. A notable example is SF2, a conserved orthologue of mammalian SRSF1, an RNA binding protein with roles in splicing and nuclear export. Our identification SF2/SRSF1 as a potent suppressor of both neuronal and glial TDP-43 toxicity also provides a convergence with C9orf72 expansion repeat mediated neurodegeneration, where this gene also acts as a downstream mediator.
Collapse
Affiliation(s)
- Jorge Azpurua
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, New York, United States of America
| | - Enas Gad El-Karim
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, New York, United States of America
| | - Marvel Tranquille
- Department of Physiology and Biophysics, M.S. Program, Stony Brook School of Medicine, Stony Brook, New York, United States of America
| | - Josh Dubnau
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
20
|
Extensive phenotypic characterisation of a human TDP-43 Q331K transgenic mouse model of amyotrophic lateral sclerosis (ALS). Sci Rep 2021; 11:16659. [PMID: 34404845 PMCID: PMC8370970 DOI: 10.1038/s41598-021-96122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
The majority of preclinical studies in ALS have relied on transgenic models with overexpression of mutant human superoxide dismutase 1 (SOD1), widely regarded to have failed in terms of translation of therapeutic effects. However, there are still no widely accepted models of other genetic subtypes of ALS. The majority of patients show ubiquitinated cytoplasmic inclusions of TAR DNA binding protein of 43 kilodaltons (TDP-43) in spinal motor neurons at the end stage of disease and a small proportion have mutations in TARDBP, the gene encoding TDP-43. TDP-43 transgenic mouse models have been produced, but have not been widely adopted. Here, we characterised one of these models available from the Jackson Laboratory in detail. Compared to TDP-43WT mice, TDP-43Q331K mice had 43% less hindlimb muscle mass at 6 months and a 73% reduction in hindlimb compound muscle action potential at 8 months of age. Rotarod and gait analysis indicated motor system decline with elevated weight gain. At the molecular level, the lack of TDP-43 cellular pathology was confirmed with a surprising increase in nuclear TDP-43 in motor neurons. Power analysis indicated group sizes of 12–14 mice are needed to detect 10–20% changes in measured parameters with a power of 80%, providing valid readouts for preclinical testing. Overall, this model may represent a useful component of multi-model pre-clinical therapeutic studies for ALS.
Collapse
|
21
|
Diabetes Mellitus and Amyotrophic Lateral Sclerosis: A Systematic Review. Biomolecules 2021; 11:biom11060867. [PMID: 34200812 PMCID: PMC8230511 DOI: 10.3390/biom11060867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder which affects the motor neurons. Growing evidence suggests that ALS may impact the metabolic system, including the glucose metabolism. Several studies investigated the role of Diabetes Mellitus (DM) as risk and/or prognostic factor. However, a clear correlation between DM and ALS has not been defined. In this review, we focus on the role of DM in ALS, examining the different hypotheses on how perturbations of glucose metabolism may interact with the pathophysiology and the course of ALS. METHODS We undertook an independent PubMed literature search, using the following search terms: ((ALS) OR (Amyotrophic Lateral Sclerosis) OR (Motor Neuron Disease)) AND ((Diabetes) OR (Glucose Intolerance) OR (Hyperglycemia)). Review and original articles were considered. RESULTS DM appears not to affect ALS severity, progression, and survival. Contrasting data suggested a protective role of DM on the occurrence of ALS in elderly and an opposite effect in younger subjects. CONCLUSIONS The actual clinical and pathophysiological correlation between DM and ALS is unclear. Large longitudinal prospective studies are needed. Achieving large sample sizes comparable to those of common complex diseases like DM is a challenge for a rare disease like ALS. Collaborative efforts could overcome this specific issue.
Collapse
|
22
|
Braems E, Tziortzouda P, Van Den Bosch L. Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neurosci Lett 2021; 759:136041. [PMID: 34118308 DOI: 10.1016/j.neulet.2021.136041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries. We conclude that small animal models will not replace rodent models, yet they clearly represent an important asset for preclinical studies.
Collapse
Affiliation(s)
- Elke Braems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paraskevi Tziortzouda
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
23
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Chhangani D, Martín-Peña A, Rincon-Limas DE. Molecular, functional, and pathological aspects of TDP-43 fragmentation. iScience 2021; 24:102459. [PMID: 34013172 PMCID: PMC8113996 DOI: 10.1016/j.isci.2021.102459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transactive response DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in transcriptional regulation and RNA processing. It is linked to sporadic and familial amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is predominantly nuclear, but it translocates to the cytoplasm under pathological conditions. Cytoplasmic accumulation, phosphorylation, ubiquitination and truncation of TDP-43 are the main hallmarks of TDP-43 proteinopathies. Among these processes, the pathways leading to TDP-43 fragmentation remain poorly understood. We review here the molecular and biochemical properties of several TDP-43 fragments, the mechanisms and factors mediating their production, and their potential role in disease progression. We also address the presence of TDP-43 C-terminal fragments in several neurological disorders, including Alzheimer's disease, and highlight their respective implications. Finally, we discuss features of animal models expressing TDP-43 fragments as well as recent therapeutic strategies to approach TDP-43 truncation.
Collapse
Affiliation(s)
- Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Alfonso Martín-Peña
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Baralle M, Romano M. Characterization of the human TARDBP gene promoter. Sci Rep 2021; 11:10438. [PMID: 34002018 PMCID: PMC8129075 DOI: 10.1038/s41598-021-89973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The expression of TDP-43, the main component of neuronal intracellular inclusions across a broad spectrum of ALS and FTD disorders, is developmentally regulated and studies in vivo have shown that TDP-43 overexpression can be toxic, even before observation of pathological aggregates. Starting from these observations, the regulation of its expression at transcriptional level might represent a further key element for the pathogenesis of neurodegenerative diseases. Therefore, we have characterized the human TARDBP promoter, in order to study the transcriptional mechanisms of expression. Mapping of cis-acting elements by luciferase assays in different cell outlined that the activity of the promoter seems to be higher in SH-SY5Y, Neuro2A, and HeLa than in HEK293. In addition, we tested effects of two SNPs found in the promoter region of ALS patients and observed no significant effect on transcription levels in all tested cell lines. Lastly, while TDP-43 overexpression did not affect significantly the activity of its promoter (suggesting that TDP-43 does not influence its own transcription), the presence of the 5'UTR sequence and of intron-1 splicing seem to impact positively on TDP-43 expression without affecting transcript stability. In conclusion, we have identified the region spanning nucleotides 451-230 upstream from the transcription start site as the minimal region with a significant transcription activity. These results lay an important foundation for exploring the regulation of the TARDBP gene transcription by exogenous and endogenous stimuli and the implication of transcriptional mechanisms in the pathogenesis of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Marco Baralle
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Maurizio Romano
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
26
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
27
|
Low YH, Asi Y, Foti SC, Lashley T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol Neurobiol 2021; 58:631-646. [PMID: 33000450 PMCID: PMC7843550 DOI: 10.1007/s12035-020-02137-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
Collapse
Affiliation(s)
- Yi-Hua Low
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Duke-NUS Medical School, Singapore, Singapore
| | - Yasmine Asi
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
28
|
Dyer MS, Reale LA, Lewis KE, Walker AK, Dickson TC, Woodhouse A, Blizzard CA. Mislocalisation of TDP-43 to the cytoplasm causes cortical hyperexcitability and reduced excitatory neurotransmission in the motor cortex. J Neurochem 2020; 157:1300-1315. [PMID: 33064315 DOI: 10.1111/jnc.15214] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease pathologically characterised by mislocalisation of the RNA-binding protein TAR-DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm. Changes to neuronal excitability and synapse dysfunction in the motor cortex are early pathological changes occurring in people with ALS and mouse models of disease. To investigate the effect of mislocalised TDP-43 on the function of motor cortex neurons we utilised mouse models that express either human wild-type (TDP-43WT ) or nuclear localisation sequence-deficient TDP-43 (TDP-43ΔNLS ) on an inducible promoter that enriches expression to forebrain neurons. Pathophysiology was investigated through immunohistochemistry and whole-cell patch-clamp electrophysiology. Thirty days expression of TDP-43ΔNLS in adult mice did not cause any changes in the number of CTIP2-positive neurons in the motor cortex. However, at this time-point, the expression of TDP-43ΔNLS drives intrinsic hyperexcitability in layer V excitatory neurons of the motor cortex. This hyperexcitability occurs concomitantly with a decrease in excitatory synaptic input to these cells and fluctuations in both directions of ionotropic glutamate receptors. This pathophysiology is not present with TDP-43WT expression, demonstrating that the localisation of TDP-43 to the cytoplasm is crucial for the altered excitability phenotype. This study has important implications for the mechanisms of toxicity of one of the most notorious proteins linked to ALS, TDP-43. We provide the first evidence that TDP-43 mislocalisation causes aberrant synaptic function and a hyperexcitability phenotype in the motor cortex, linking some of the earliest dysfunctions to arise in people with ALS to mislocalisation of TDP-43.
Collapse
Affiliation(s)
- Marcus S Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Katherine E Lewis
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
29
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
30
|
Romano G, Klima R, Feiguin F. TDP-43 prevents retrotransposon activation in the Drosophila motor system through regulation of Dicer-2 activity. BMC Biol 2020; 18:82. [PMID: 32620127 PMCID: PMC7334854 DOI: 10.1186/s12915-020-00816-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mutations in the small RNA-binding protein TDP-43 lead to the formation of insoluble cytoplasmic aggregates that have been associated with the onset and progression of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting homeostasis of the motor system which is also characterized by aberrant expression of retrotransposable elements (RTEs). Although the TDP-43 function was shown to be required in the neurons and glia to maintain the organization of neuromuscular synapses and prevent denervation of the skeletal muscles, the molecular mechanisms involved in physiological dysregulation remain elusive. Here, we address this issue using a null mutation of the TDP-43 Drosophila homolog, TBPH. Results Using genome-wide gene expression profiles, we detected a strong upregulation of RTE expression in TBPH-null Drosophila heads, while the genetic rescue of the TDP-43 function reverted these modifications. Furthermore, we found that TBPH modulates the small interfering RNA (siRNA) silencing machinery responsible for RTE repression. Molecularly, we observed that TBPH regulates the expression levels of Dicer-2 by direct protein-mRNA interactions in vivo. Accordingly, the genetic or pharmacological recovery of Dicer-2 activity was sufficient to repress retrotransposon activation and promote motoneuron axonal wrapping and synaptic growth in TBPH-null Drosophila. Conclusions We identified an upregulation of RTE expression in TBPH-null Drosophila heads and demonstrate that defects in the siRNA pathway lead to RTE upregulation and motoneuron degeneration. Our results describe a novel physiological role of endogenous TDP-43 in the prevention of RTE-induced neurological alterations through the modulation of Dicer-2 activity and the siRNA pathway.
Collapse
Affiliation(s)
- Giulia Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Raffaella Klima
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|
31
|
Williamson MG, Finelli MJ, Sleigh JN, Reddington A, Gordon D, Talbot K, Davies KE, Oliver PL. Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Hum Mol Genet 2020; 28:3584-3599. [PMID: 31642482 PMCID: PMC6927465 DOI: 10.1093/hmg/ddz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.
Collapse
Affiliation(s)
- Matthew G Williamson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Amy Reddington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.,MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
32
|
Asakawa K, Handa H, Kawakami K. Optogenetic modulation of TDP-43 oligomerization accelerates ALS-related pathologies in the spinal motor neurons. Nat Commun 2020; 11:1004. [PMID: 32081878 PMCID: PMC7035286 DOI: 10.1038/s41467-020-14815-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic aggregation of TDP-43 characterizes degenerating neurons in most cases of amyotrophic lateral sclerosis (ALS). Here, we develop an optogenetic TDP-43 variant (opTDP-43), whose multimerization status can be modulated in vivo through external light illumination. Using the translucent zebrafish neuromuscular system, we demonstrate that short-term light stimulation reversibly induces cytoplasmic opTDP-43 mislocalization, but not aggregation, in the spinal motor neuron, leading to an axon outgrowth defect associated with myofiber denervation. In contrast, opTDP-43 forms pathological aggregates in the cytoplasm after longer-term illumination and seeds non-optogenetic TDP-43 aggregation. Furthermore, we find that an ALS-linked mutation in the intrinsically disordered region (IDR) exacerbates the light-dependent opTDP-43 toxicity on locomotor behavior. Together, our results propose that IDR-mediated TDP-43 oligomerization triggers both acute and long-term pathologies of motor neurons, which may be relevant to the pathogenesis and progression of ALS. Optogenetic approaches for inducing TDP-43 aggregation have been described previously in cellular models. Here the authors develop an approach to optogenetically induce TDP-43 aggregation in vivo using zebrafish to model ALS pathologies.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan. .,Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
33
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
34
|
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019; 13:1310. [PMID: 31866818 PMCID: PMC6909825 DOI: 10.3389/fnins.2019.01310] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis (ALS) continues to shift as the number of genes associated with the disease risk and pathogenesis, and the cellular processes involved, continues to grow. Despite decades of intense research and over 50 potentially causative or disease-modifying genes identified, etiology remains unexplained and treatment options remain limited for the majority of ALS patients. Various factors have contributed to the slow progress in understanding and developing therapeutics for this disease. Here, we review the genetic basis of ALS, highlighting factors that have contributed to the elusiveness of genetic heritability. The most commonly mutated ALS-linked genes are reviewed with an emphasis on disease-causing mechanisms. The cellular processes involved in ALS pathogenesis are discussed, with evidence implicating their involvement in ALS summarized. Past and present therapeutic strategies and the benefits and limitations of the model systems available to ALS researchers are discussed with future directions for research that may lead to effective treatment strategies outlined.
Collapse
Affiliation(s)
- Rita Mejzini
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - P. Anthony Akkari
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
Chen HJ, Topp SD, Hui HS, Zacco E, Katarya M, McLoughlin C, King A, Smith BN, Troakes C, Pastore A, Shaw CE. RRM adjacent TARDBP mutations disrupt RNA binding and enhance TDP-43 proteinopathy. Brain 2019; 142:3753-3770. [PMID: 31605140 PMCID: PMC6885686 DOI: 10.1093/brain/awz313] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) presents with focal muscle weakness due to motor neuron degeneration that becomes generalized, leading to death from respiratory failure within 3-5 years from symptom onset. Despite the heterogeneity of aetiology, TDP-43 proteinopathy is a common pathological feature that is observed in >95% of ALS and tau-negative frontotemporal dementia (FTD) cases. TDP-43 is a DNA/RNA-binding protein that in ALS and FTD translocates from being predominantly nuclear to form detergent-resistant, hyperphosphorylated aggregates in the cytoplasm of affected neurons and glia. Mutations in TARDBP account for 1-4% of all ALS cases and almost all arise in the low complexity C-terminal domain that does not affect RNA binding and processing. Here we report an ALS/FTD kindred with a novel K181E TDP-43 mutation that is located in close proximity to the RRM1 domain. To offer predictive gene testing to at-risk family members, we undertook a series of functional studies to characterize the properties of the mutation. Spectroscopy studies of the K181E protein revealed no evidence of significant misfolding. Although it is unable to bind to or splice RNA, it forms abundant aggregates in transfected cells. We extended our study to include other ALS-linked mutations adjacent to the RRM domains that also disrupt RNA binding and greatly enhance TDP-43 aggregation, forming detergent-resistant and hyperphosphorylated inclusions. Lastly, we demonstrate that K181E binds to, and sequesters, wild-type TDP-43 within nuclear and cytoplasmic inclusions. Thus, we demonstrate that TDP-43 mutations that disrupt RNA binding greatly enhance aggregation and are likely to be pathogenic as they promote wild-type TDP-43 to mislocalize and aggregate acting in a dominant-negative manner. This study highlights the importance of RNA binding to maintain TDP-43 solubility and the role of TDP-43 aggregation in disease pathogenesis.
Collapse
Affiliation(s)
- Han-Jou Chen
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Simon D Topp
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Ho Sang Hui
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Elsa Zacco
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Malvika Katarya
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Conor McLoughlin
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Andrew King
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Bradley N Smith
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Claire Troakes
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Annalisa Pastore
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Berning BA, Walker AK. The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Front Neurosci 2019; 13:335. [PMID: 31031584 PMCID: PMC6470282 DOI: 10.3389/fnins.2019.00335] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
During neurodegenerative disease, the multifunctional RNA-binding protein TDP-43 undergoes a vast array of post-translational modifications, including phosphorylation, acetylation, and cleavage. Many of these alterations may directly contribute to the pathogenesis of TDP-43 proteinopathies, which include most forms of amyotrophic lateral sclerosis (ALS) and approximately half of all frontotemporal dementia, pathologically identified as frontotemporal lobar degeneration (FTLD) with TDP-43 pathology. However, the relative contributions of the various TDP-43 post-translational modifications to disease remain unclear, and indeed some may be secondary epiphenomena rather than disease-causative. It is therefore critical to determine the involvement of each modification in disease processes to allow the design of targeted treatments. In particular, TDP-43 C-terminal fragments (CTFs) accumulate in the brains of people with ALS and FTLD and are therefore described as a neuropathological signature of these diseases. Remarkably, these TDP-43 CTFs are rarely observed in the spinal cord, even in ALS which involves dramatic degeneration of spinal motor neurons. Therefore, TDP-43 CTFs are not produced non-specifically in the course of all forms of TDP-43-related neurodegeneration, but rather variably arise due to additional factors influenced by regional heterogeneity in the central nervous system. In this review, we summarize how TDP-43 CTFs are generated and degraded by cells, and critique evidence from studies of TDP-43 CTF pathology in human disease tissues, as well as cell and animal models, to analyze the pathophysiological relevance of TDP-43 CTFs to ALS and FTLD. Numerous studies now indicate that, although TDP-43 CTFs are prevalent in ALS and FTLD brains, disease-related pathology is only variably reproduced in TDP-43 CTF cell culture models. Furthermore, TDP-43 CTF expression in both transgenic and viral-mediated in vivo models largely fails to induce motor or behavioral dysfunction reminiscent of human disease. We therefore conclude that although TDP-43 CTFs are a hallmark of TDP-43-related neurodegeneration in the brain, they are not a primary cause of ALS or FTLD.
Collapse
Affiliation(s)
- Britt A. Berning
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Adam K. Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
37
|
Gao N, Huang YP, Chu TT, Li QQ, Zhou B, Chen YX, Zhao YF, Li YM. TDP-43 specific reduction induced by Di-hydrophobic tags conjugated peptides. Bioorg Chem 2019; 84:254-259. [DOI: 10.1016/j.bioorg.2018.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
|
38
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
39
|
De Giorgio F, Maduro C, Fisher EMC, Acevedo-Arozena A. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm037424. [PMID: 30626575 PMCID: PMC6361152 DOI: 10.1242/dmm.037424] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A wide range of genetic mouse models is available to help researchers dissect human disease mechanisms. Each type of model has its own distinctive characteristics arising from the nature of the introduced mutation, as well as from the specific changes to the gene of interest. Here, we review the current range of mouse models with mutations in genes causative for the human neurodegenerative disease amyotrophic lateral sclerosis. We focus on the two main types of available mutants: transgenic mice and those that express mutant genes at physiological levels from gene targeting or from chemical mutagenesis. We compare the phenotypes for genes in which the two classes of model exist, to illustrate what they can teach us about different aspects of the disease, noting that informative models may not necessarily mimic the full trajectory of the human condition. Transgenic models can greatly overexpress mutant or wild-type proteins, giving us insight into protein deposition mechanisms, whereas models expressing mutant genes at physiological levels may develop slowly progressing phenotypes but illustrate early-stage disease processes. Although no mouse models fully recapitulate the human condition, almost all help researchers to understand normal and abnormal biological processes, providing that the individual characteristics of each model type, and how these may affect the interpretation of the data generated from each model, are considered and appreciated.
Collapse
Affiliation(s)
- Francesca De Giorgio
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (ITB), La Laguna, 38320 Tenerife, Spain
| |
Collapse
|
40
|
Gautam M, Jara JH, Kocak N, Rylaarsdam LE, Kim KD, Bigio EH, Hande Özdinler P. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol 2019; 137:47-69. [PMID: 30450515 DOI: 10.1007/s00401-018-1934-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
Insoluble aggregates containing TDP-43 are widely observed in the diseased brain, and defined as "TDP-43 pathology" in a spectrum of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease and ALS with frontotemporal dementia. Here we report that Betz cells of patients with TDP-43 pathology display a distinct set of intracellular defects especially at the site of nuclear membrane, mitochondria and endoplasmic reticulum (ER). Numerous TDP-43 mouse models have been generated to discern the cellular and molecular basis of the disease, but mechanisms of neuronal vulnerability remain unknown. In an effort to define the underlying causes of corticospinal motor neuron (CSMN) degeneration, we generated and characterized a novel CSMN reporter line with TDP-43 pathology, the prp-TDP-43A315T-UeGFP mice. We find that TDP-43 pathology related intracellular problems emerge very early in the disease. The Betz cells in humans and CSMN in mice both have impaired mitochondria, and display nuclear membrane and ER defects with respect to TDP-43 pathology.
Collapse
|
41
|
Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol Dis 2019; 121:148-162. [DOI: 10.1016/j.nbd.2018.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
|
42
|
Lissouba A, Liao M, Kabashi E, Drapeau P. Transcriptomic Analysis of Zebrafish TDP-43 Transgenic Lines. Front Mol Neurosci 2018; 11:463. [PMID: 30618614 PMCID: PMC6301209 DOI: 10.3389/fnmol.2018.00463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disorder that affects both upper and lower motor neurons, leading to muscle atrophy with spasticity and eventual death in 3-5 years after the disease onset. More than 50 mutations linked to ALS have been found in the gene TARDBP, encoding the protein TDP-43 that is the predominant component of neuronal inclusions in ALS. TDP-43 is an RNA binding protein with glycine-rich domains that binds to more than 6,000 RNAs in the human brain. However, ALS-related mutations do not appear to affect the function of these genes, indicating that a toxic gain-of-function may occur. We generated transgenic zebrafish lines expressing human TDP-43, either the wild-type form or the ALS-causative G348C mutation identified in a subset of ALS patients, with the transgene expression driven by an inducible heat shock promoter in order to bypass a potential early mortality. The expression of the mutant but not the wild-type human TDP-43 in zebrafish embryos induced a reduction of the locomotor activity in response to touch compared to controls and moderate axonopathy of the motor neurons of the spinal cord, with premature branching of the main axonal branch, recapitulating previous results obtained by mRNA injections. We used these lines to investigate transcriptomic changes due to the presence of mutant TDP-43 using RNA sequencing and have found 159 genes that are differentially expressed compared to control, with 67 genes up-regulated and 92 genes down-regulated. These transcriptomic changes are in line with recent transcriptomic data obtained in mouse models, indicating that these zebrafish transgenic lines are adequate to further study TDP-43-related ALS.
Collapse
Affiliation(s)
- Alexandra Lissouba
- Department of Pathology and Cell Biology and Research Center of the University of Montréal Hospital Center, University of Montreal, Montréal, QC, Canada
| | - Meijiang Liao
- Department of Pathology and Cell Biology and Research Center of the University of Montréal Hospital Center, University of Montreal, Montréal, QC, Canada
| | - Edor Kabashi
- UMR CNRS 1127, UPMC INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université Paris VI, Paris, France.,Institut Imagine, UMR INSERM 1163, Hospital Necker-Enfants, Université Paris Descartes, Paris, France
| | - Pierre Drapeau
- Department of Pathology and Cell Biology and Research Center of the University of Montréal Hospital Center, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
43
|
Alrafiah AR. From Mouse Models to Human Disease: An Approach for Amyotrophic Lateral Sclerosis. In Vivo 2018; 32:983-998. [PMID: 30150420 DOI: 10.21873/invivo.11339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There are several genetic mutations that lead to ALS development, such as chromosome 9 hexanucleotide repeat 72 (C9ORF72), transactive response DNA-binding protein (TARDBP), superoxide dismutase 1 (SOD1) and fused in sarcoma (FUS). ALS is associated with disrupted gene homeostasis causing aberrant RNA processing or toxic pathology. Several animal models of ALS disease have been developed to understand whether TARDBP-mediated neurodegeneration results from a gain or a loss of function of the protein, however, none exactly mimic the pathophysiology and the phenotype of human ALS. Here, the pathophysiology of specific ALS-linked gene mutations is discussed. Furthermore, some of the generated mouse models, as well as the similarities and differences between these models, are comprehensively reviewed. Further refinement of mouse models will likely aid the development of a better form of model that mimics human ALS. However, disrupted gene homeostasis that causes mutation can result in an ALS-like syndrome, increasing concerns about whether neurodegeneration and other effects in these models are due to the mutation or to gene overexpression. Research on the pleiotropic role of different proteins present in motor neurons is also summarized. The development of better mouse models that closely mimic human ALS will help identify potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Aziza Rashed Alrafiah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences and Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Jawaid A, Khan R, Polymenidou M, Schulz PE. Disease-modifying effects of metabolic perturbations in ALS/FTLD. Mol Neurodegener 2018; 13:63. [PMID: 30509290 PMCID: PMC6278047 DOI: 10.1186/s13024-018-0294-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two fatal neurodegenerative disorders with considerable clinical, pathological and genetic overlap. Both disorders are characterized by the accumulation of pathological protein aggregates that contain a number of proteins, most notably TAR DNA binding protein 43 kDa (TDP-43). Surprisingly, recent clinical studies suggest that dyslipidemia, high body mass index, and type 2 diabetes mellitus are associated with better clinical outcomes in ALS. Moreover, ALS and FTLD patients have a significantly lower incidence of cardiovascular disease, supporting the idea that an unfavorable metabolic profile may be beneficial in ALS and FTLD. The two most widely studied ALS/FTLD models, super-oxide dismutase 1 (SOD1) and TAR DNA binding protein of 43 kDA (TDP-43), reveal metabolic dysfunction and a positive effect of metabolic strategies on disease onset and/or progression. In addition, molecular studies reveal a role for ALS/FTLD-associated proteins in the regulation of cellular and whole-body metabolism. Here, we systematically evaluate these observations and discuss how changes in cellular glucose/lipid metabolism may result in abnormal protein aggregations in ALS and FTLD, which may have important implications for new treatment strategies for ALS/FTLD and possibly other neurodegenerative conditions.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zurich (UZH)/ Swiss Federal Institute of Technology (ETH), Winterthurerstr. 190, 8057, Zurich, Switzerland. .,Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan.
| | - Romesa Khan
- Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | | - Paul E Schulz
- Department of Neurology, The McGovern Medical School of UT Health, Houston, TX, USA
| |
Collapse
|
45
|
Picher-Martel V, Renaud L, Bareil C, Julien JP. Neuronal Expression of UBQLN2 P497H Exacerbates TDP-43 Pathology in TDP-43 G348C Mice through Interaction with Ubiquitin. Mol Neurobiol 2018; 56:4680-4696. [PMID: 30377984 PMCID: PMC6647471 DOI: 10.1007/s12035-018-1411-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Mutations in the gene encoding ubiquilin-2 (UBQLN2) are linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). UBQLN2 plays a central role in ubiquitin proteasome system (UPS) and UBQLN2 up-regulation exacerbates TDP-43 cytoplasmic aggregates. To analyze interaction between UBQLN2 and TDP-43 and to produce a relevant ALS animal model, we have generated a new transgenic mouse expressing UBQLN2P497H under the neurofilament heavy (NFH) gene promoter. The UBQLN2P497H mice were then bred with our previously described TDP-43G348C mice to generate double-transgenic UBQLN2P497H; TDP-43G348C mice. With low-expression levels of UBQLN2, the double-transgenic mice developed TDP-43 cytosolic accumulations in motor neurons starting at 5 months of age. These double-transgenic mice exhibited motor neuron loss, muscle atrophy, as well as motor and cognitive deficits during aging. The microglia from double-transgenic mice were hyperresponsive to intraperitoneal injection of lipopolysaccharide (LPS). In vivo and in vitro analyses suggested that extra UBQLN2 proteins can exacerbate cytoplasmic TDP-43 accumulations by competing with the UPS for binding to ubiquitin. Thus, increasing the pool of ubiquitin promoted the UPS function with ensuing reduction of TDP-43 cytosolic accumulations. In conclusion, the double-transgenic UBQLN2P497H; TDP-43G348C mice provides a unique mouse model of ALS/FTD with enhanced TDP-43 pathology that can be exploited for drug testing.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Laurence Renaud
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Christine Bareil
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. .,CERVO Brain Research Centre, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| |
Collapse
|
46
|
Tawara N, Yamashita S, Kawakami K, Kurashige T, Zhang Z, Tasaki M, Yamamoto Y, Nishikami T, Doki T, Zhang X, Matsuo Y, Kimura E, Tawara A, Maeda Y, Hauschka SD, Maruyama H, Ando Y. Muscle-dominant wild-type TDP-43 expression induces myopathological changes featuring tubular aggregates and TDP-43-positive inclusions. Exp Neurol 2018; 309:169-180. [PMID: 30130494 DOI: 10.1016/j.expneurol.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 11/15/2022]
Abstract
Muscle histology of sporadic inclusion body myositis (sIBM) demonstrates inflammatory findings and degenerative features including accumulation of TAR DNA-binding protein of 43 kDa (TDP-43). However, whether sarcoplasmic accumulation of TDP-43 is a primary trigger of muscle degeneration or a secondary event resulting from muscle degeneration in the pathophysiology of sIBM remained unclear. Our study aimed to discover whether muscle-dominant expression of TDP-43 is a primary cause of muscle degeneration. We generated several lines of wild-type TDP-43 transgenic mice driven by a creatine kinase 8 promoter, and analyzed the phenotypes via biochemical, histological, and proteomic techniques. The mice showed increased serum levels of myogenic enzymes. Muscle histology demonstrated myopathic changes including fiber size variation, abundant tubular aggregates, and TDP-43 aggregation with upregulation of endoplasmic reticulum (ER) stress. Proteomic analysis with aggregated materials in degenerative myofibers identified increased sarcoplasmic reticulum (SR)/ER-resident proteins that regulated calcium homeostasis, as well as cytosolic 5'-nucleotidase 1A. Muscle-dominant wild-type TDP-43 expression indeed caused myotoxicity featuring tubular aggregates and TDP-43-positive inclusions. Our observation suggested that TDP-43 aggregates might not be sufficient to trigger the pathogenesis of sIBM although myofiber sarcoplasmic aggregation of TDP-43 led to myofiber degeneration via ER stress and possibly calcium dysregulation, independently of inflammatory process.
Collapse
Affiliation(s)
- Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Kensuke Kawakami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Centre, 3-1 Aoyama-cho, Kure, Hiroshima 737-0023, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ziwei Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuhiro Yamamoto
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tomo Nishikami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tsukasa Doki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Xiao Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshimasa Matsuo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - En Kimura
- Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira 187-8551, Japan
| | - Akie Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasushi Maeda
- Department of Clinical Research, and Department of Neurology, National Hospital Organization Kumamoto Saishunso National Hospital, 2659 Suya, Koshi, Kumamoto 861-1196, Japan
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
47
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
48
|
Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci 2018; 38:6045-6062. [PMID: 29807909 DOI: 10.1523/jneurosci.1836-17.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is among the most prevalent dementias of early-onset. Pathologically, FTLD presents with tauopathy or TAR DNA-binding protein 43 (TDP-43) proteinopathy. A biallelic mouse model of FTLD was produced on a mix FVB/129SVE background overexpressing wild-type human TDP-43 (hTDP-43) using tetracycline transactivator (tTA), a system widely used in mouse models of neurological disorders. tTA activates hTDP-43, which is placed downstream of the tetracycline response element. The original study on this transgenic mouse found hippocampal degeneration following hTDP-43 expression, but did not account for independent effects of tTA protein. Here, we initially analyzed the neurotoxic effects of tTA in postweaning age mice of either sex using immunostaining and area measurements of select brain regions. We observed tTA-dependent toxicity selectively in the hippocampus affecting the dentate gyrus significantly more than CA fields, whereas hTDP-43-dependent toxicity in bigenic mice occurred in most other cortical regions. Atrophy was associated with inflammation, activation of caspase-3, and loss of neurons. The atrophy associated with tTA expression was rescuable by the tetracycline analog, doxycycline, in the diet. MRI studies corroborated the patterns of atrophy. tTA-induced degeneration was strain-dependent and was rescued by moving the transgene onto a congenic C57BL/6 background. Despite significant hippocampal atrophy, behavioral tests in bigenic mice revealed no hippocampally mediated memory impairment. Significant atrophy in most cortical areas due solely to TDP-43 expression indicates that this mouse model remains useful for providing critical insight into co-occurrence of TDP-43 pathology, neurodegeneration, and behavioral deficits in FTLD.SIGNIFICANCE STATEMENT The tTA expression system has been widely used in mice to model neurological disorders. The technique allows investigators to reversibly turn on or off disease causing genes. Here, we report on a mouse model that overexpresses human TDP-43 using tTA and attempt to recapitulate features of TDP-43 pathology present in human FTLD. The tTA expression system is problematic, resulting in dramatic degeneration of the hippocampus. Thus, our study adds a note of caution for the use of the tTA system. However, because FTLD is primarily characterized by cortical degeneration and our mouse model shows significant atrophy in most cortical areas due to human TDP-43 overexpression, our animal model remains useful for providing critical insight on this human disease.
Collapse
|
49
|
Scherz B, Rabl R, Flunkert S, Rohler S, Neddens J, Taub N, Temmel M, Panzenboeck U, Niederkofler V, Zimmermann R, Hutter-Paier B. mTh1 driven expression of hTDP-43 results in typical ALS/FTLD neuropathological symptoms. PLoS One 2018; 13:e0197674. [PMID: 29787578 PMCID: PMC5963763 DOI: 10.1371/journal.pone.0197674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Transgenic mouse models are indispensable tools to mimic human diseases and analyze the effectiveness of related new drugs. For a long time amyotrophic lateral sclerosis (ALS) research depended on only a few mouse models that exhibit a very strong and early phenotype, e.g. SOD1 mice, resulting in a short treatment time window. By now, several models are available that need to be characterized to highlight characteristics of each model. Here we further characterized the mThy1-hTDP-43 transgenic mouse model TAR6/6 that overexpresses wild type human TARDBP, also called TDP-43, under control of the neuronal Thy-1 promoter presented by Wils and colleagues, 2010, by using biochemical, histological and behavioral readouts. Our results show that TAR6/6 mice exhibit a strong TDP-43 expression in the hippocampus, spinal cord, hypothalamus and medulla oblongata. Apart from prominent protein expression in the nucleus, TDP-43 protein was found at lower levels in the cytosol of transgenic mice. Additionally, we detected insoluble TDP-43 in the cortex, motoneuron loss, and increased neuroinflammation in the central nervous system of TAR6/6 animals. Behavioral analyses revealed early motor deficits in the clasping- and wire suspension test as well as decreased anxiety in the elevated plus maze. Further motor tests showed differences at later time points compared to non-transgenic littermates, thus allowing the observation of onset and severity of such deficits. Together, TAR6/6 mice are a valuable tool to test new ALS/FTLD drugs that target TDP-43 expression and insolubility, neuroinflammation, motoneuron loss or other TDP-43 related downstream signaling pathways since these mice exhibit a later pathology as previously used ALS/FTLD mouse models.
Collapse
Affiliation(s)
- Barbara Scherz
- QPS Austria GmbH, Grambach, Austria
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| | | | | | - Siegfried Rohler
- Medical University Graz, Institute of Pathophysiology and Immunology, Graz, Austria
| | | | | | | | - Ute Panzenboeck
- Medical University Graz, Institute of Pathophysiology and Immunology, Graz, Austria
| | | | - Robert Zimmermann
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| | | |
Collapse
|
50
|
Bossolasco P, Sassone F, Gumina V, Peverelli S, Garzo M, Silani V. Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient. Stem Cell Res 2018; 30:61-68. [PMID: 29800782 DOI: 10.1016/j.scr.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease, mainly affecting the motor neurons (MNs) and without effective therapy. Drug screening is hampered by the lack of satisfactory experimental and pre-clinical models. Induced pluripotent stem cells (iPSCs) could help to define disease mechanisms and therapeutic strategies as they could be differentiated into MNs, otherwise inaccessible from living humans. In this study, given the seminal role of TDP-43 in ALS pathophysiology, MNs were obtained from peripheral blood mononuclear cells-derived iPSCs of an ALS patient carrying a p.A382T TARDBP mutation and a healthy donor. Venous samples were preferred to fibroblasts for their ease of collection and no requirement for time consuming extended cultures before experimentation. iPSCs were characterized for expression of specific markers, spontaneously differentiated into primary germ layers and, finally, into MNs. No differences were observed between the mutated ALS patient and the control MNs with most of the cells displaying a nuclear localization of the TDP-43 protein. In conclusion, we here demonstrated for the first time that human TARDBP mutated MNs can be successfully obtained exploiting the reprogramming and differentiation ability of peripheral blood cells, an easily accessible source from any patient.
Collapse
Affiliation(s)
- Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy.
| | - Francesca Sassone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy
| | - Valentina Gumina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy; "Dino Ferrari" Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy
| | - Maria Garzo
- Lab. di Citogenetica Medica, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy; "Dino Ferrari" Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan, Italy
| |
Collapse
|