1
|
Xie Y, Chen L, Wang L, Liu T, Zheng Y, Si L, Ge H, Xu H, Xiao L, Wang G. Single-nucleus transcriptomic analysis reveals the relationship between gene expression in oligodendrocyte lineage and major depressive disorder. J Transl Med 2024; 22:109. [PMID: 38281050 PMCID: PMC10822185 DOI: 10.1186/s12967-023-04727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/13/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common mental illness that affects millions of people worldwide and imposes a heavy burden on individuals, families and society. Previous studies on MDD predominantly focused on neurons and employed bulk homogenates of brain tissues. This paper aims to decipher the relationship between oligodendrocyte lineage (OL) development and MDD at the single-cell resolution level. METHODS Here, we present the use of a guided regularized random forest (GRRF) algorithm to explore single-nucleus RNA sequencing profiles (GSE144136) of the OL at four developmental stages, which contains dorsolateral prefrontal cortex of 17 healthy controls (HC) and 17 MDD cases, generated by Nagy C et al. We prioritized and ordered differentially expressed genes (DEGs) based on Nagy et al., which could predominantly discriminate cells in the four developmental stages and two adjacent developmental stages of the OL. We further screened top-ranked genes that distinguished between HC and MDD in four developmental stages. Moreover, we estimated the performance of the GRRF model via the area under the curve value. Additionally, we validated the pivotal candidate gene Malat1 in animal models. RESULTS We found that, among the four developmental stages, the onset development of OL (OPC2) possesses the best predictive power for distinguishing HC and MDD, and long noncoding RNA MALAT1 has top-ranked importance value in candidate genes of four developmental stages. In addition, results of fluorescence in situ hybridization assay showed that Malat1 plays a critical role in the occurrence of depression. CONCLUSIONS Our work elucidates the mechanism of MDD from the perspective of OL development at the single-cell resolution level and provides novel insight into the occurrence of depression.
Collapse
Affiliation(s)
- Yinping Xie
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Leimin Wang
- School of Automation, China University of Geosciences, Wuhan, China
| | - Tongou Liu
- The First Clinical College of Hubei University of Chinese Medicine, Wuhan, China
| | - Yage Zheng
- Judicial Appraisal Institute, Renmin Hospital of Hubei Province, Wuhan, China
| | - Lujia Si
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hailong Ge
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Gaohua Wang
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Sabaie H, Khorami Rouz S, Kouchakali G, Heydarzadeh S, Asadi MR, Sharifi-Bonab M, Hussen BM, Taheri M, Ayatollahi SA, Rezazadeh M. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis. Front Genet 2022; 13:1011350. [PMID: 36324503 PMCID: PMC9619104 DOI: 10.3389/fgene.2022.1011350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Slow-burning inflammation at the lesion rim is connected to the expansion of chronic multiple sclerosis (MS) lesions. However, the underlying processes causing expansion are not clearly realized. In this context, the current study used a bioinformatics approach to identify the expression profiles and related lncRNA-associated ceRNA regulatory axes in the periplaque region in MS patients. Expression data (GSE52139) from periplaque regions in the secondary progressive MS spinal cord and controls were downloaded from the Gene Expression Omnibus database (GEO), which has details on mRNAs and lncRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also found using the DIANA-LncBase, miRTarBase, and HMDD databases. The Pearson correlation coefficient was used to determine whether there were any positive correlations between DEmRNAs and DElncRNAs in the ceRNA network. Finally, lncRNA-associated ceRNA axes were created based on co-expression and connections between DElncRNA, miRNA, and DEmRNA. We used the Enrichr tool to enrich the biological process, molecular function, and pathways for DEmRNAs and DElncRNAs. A network of DEmRNAs' protein-protein interactions was developed, and the top five hub genes were found using Cytoscape and STRING. The current study indicates that 15 DEmRNAs, including FOS, GJA1, NTRK2, CTNND1, and SP3, are connected to the MS ceRNA network. Additionally, four DElncRNAs (such as TUG1, ASB16-AS1, and LINC01094) that regulated the aforementioned mRNAs by sponging 14 MS-related miRNAs (e.g., hsa-miR-145-5p, hsa-miR-200a-3p, hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-23a-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-34a-5p) were found. In addition, the analysis of pathway enrichment revealed that DEmRNAs were enriched in the pathways for the "MAPK signaling pathway", "Kaposi sarcoma-associated herpesvirus infection", "Human immunodeficiency virus one infection", "Lipid and atherosclerosis", and "Amphetamine addiction". Even though the function of these ceRNA axes needs to be investigated further, this study provides research targets for studying ceRNA-mediated molecular mechanisms related to periplaque demyelination in MS.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
4
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
5
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Commun Biol 2021; 4:20. [PMID: 33398046 PMCID: PMC7782481 DOI: 10.1038/s42003-020-01557-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Myelin destruction and oligodendrocyte (OL) death consequent to metabolic stress is a feature of CNS disorders across the age spectrum. Using cells derived from surgically resected tissue, we demonstrate that young (<age 5) pediatric-aged sample OLs are more resistant to in-vitro metabolic injury than fetal O4+ progenitor cells, but more susceptible to cell death and apoptosis than adult-derived OLs. Pediatric but not adult OLs show measurable levels of TUNEL+ cells, a feature of the fetal cell response. The ratio of anti- vs pro-apoptotic BCL-2 family genes are increased in adult vs pediatric (<age 5) mature OLs and in more mature OL lineage cells. Lysosomal gene expression was increased in adult and pediatric compared to fetal OL lineage cells. Cell death of OLs was increased by inhibiting pro-apoptotic BCL-2 gene and autophagy activity. These distinct age-related injury responses should be considered in designing therapies aimed at reducing myelin injury.
Collapse
|
7
|
Abstract
B cells serve as a key weapon against infectious diseases. They also contribute to multiple autoimmune diseases, including multiple sclerosis (MS) where depletion of B cells is a highly effective therapy. We describe a comprehensive profile of central nervous system (CNS)-specific transcriptional B cell phenotypes in MS at single-cell resolution with paired immune repertoires. We reveal a polyclonal immunoglobulin M (IgM) and IgG1 cerebrospinal fluid B cell expansion polarized toward an inflammatory, memory and plasmablast/plasma cell phenotype, with differential up-regulation of specific proinflammatory pathways. We did not find evidence that CNS B cells harbor a neurotropic virus. These data support the targeting of activated resident B cells in the CNS as a potentially effective strategy for control of treatment-resistant chronic disease. Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype.
Collapse
|
8
|
Jäkel S, Williams A. What Have Advances in Transcriptomic Technologies Taught us About Human White Matter Pathologies? Front Cell Neurosci 2020; 14:238. [PMID: 32848627 PMCID: PMC7418269 DOI: 10.3389/fncel.2020.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
For a long time, post-mortem analysis of human brain pathologies has been purely descriptive, limiting insight into the pathological mechanisms. However, starting in the early 2000s, next-generation sequencing (NGS) and the routine application of bulk RNA-sequencing and microarray technologies have revolutionized the usefulness of post-mortem human brain tissue. This has allowed many studies to provide novel mechanistic insights into certain brain pathologies, albeit at a still unsatisfying resolution, with masking of lowly expressed genes and regulatory elements in different cell types. The recent rapid evolution of single-cell technologies has now allowed researchers to shed light on human pathologies at a previously unreached resolution revealing further insights into pathological mechanisms that will open the way for the development of new strategies for therapies. In this review article, we will give an overview of the incremental information that single-cell technologies have given us for human white matter (WM) pathologies, summarize which single-cell technologies are available, and speculate where these novel approaches may lead us for pathological assessment in the future.
Collapse
Affiliation(s)
- Sarah Jäkel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
9
|
Holman SP, Lobo AS, Novorolsky RJ, Nichols M, Fiander MDJ, Konda P, Kennedy BE, Gujar S, Robertson GS. Neuronal mitochondrial calcium uniporter deficiency exacerbates axonal injury and suppresses remyelination in mice subjected to experimental autoimmune encephalomyelitis. Exp Neurol 2020; 333:113430. [PMID: 32745471 DOI: 10.1016/j.expneurol.2020.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
High-capacity mitochondrial calcium (Ca2+) uptake by the mitochondrial Ca2+ uniporter (MCU) is strategically positioned to support the survival and remyelination of axons in multiple sclerosis (MS) by undocking mitochondria, buffering Ca2+ and elevating adenosine triphosphate (ATP) synthesis at metabolically stressed sites. Respiratory chain deficits in MS are proposed to metabolically compromise axon survival and remyelination by suppressing MCU activity. In support of this hypothesis, clinical scores, mitochondrial dysfunction, myelin loss, axon damage and inflammation were elevated while remyelination was blocked in neuronal MCU deficient (Thy1-MCU Def) mice relative to Thy1 controls subjected to experimental autoimmune encephalomyelitis (EAE). At the first sign of walking deficits, mitochondria in EAE/Thy1 axons showed signs of activation. By contrast, cytoskeletal damage, fragmented mitochondria and large autophagosomes were seen in EAE/Thy1-MCU Def axons. As EAE severity increased, EAE/Thy1 axons were filled with massively swollen mitochondria with damaged cristae while EAE/Thy1-MCU Def axons were riddled with late autophagosomes. ATP concentrations and mitochondrial gene expression were suppressed while calpain activity, autophagy-related gene mRNA levels and autophagosome marker (LC3) co-localization in Thy1-expressing neurons were elevated in the spinal cords of EAE/Thy1-MCU Def compared to EAE/Thy1 mice. These findings suggest that MCU inhibition contributes to axonal damage that drives MS progression.
Collapse
Affiliation(s)
- Scott P Holman
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Aurelio S Lobo
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Robyn J Novorolsky
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Matthew Nichols
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Maximillian D J Fiander
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Prathyusha Konda
- Department of Pathology, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Barry E Kennedy
- Department of Pathology, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Shashi Gujar
- Department of Pathology, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - George S Robertson
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax B3H 2E2, Canada.
| |
Collapse
|
10
|
Kharati M, Foroutanparsa S, Rabiee M, Salarian R, Rabiee N, Rabiee G. Early Diagnosis of Multiple Sclerosis Based on Optical and Electrochemical Biosensors: Comprehensive Perspective. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180829111004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background:
Multiple Sclerosis (MS) involves an immune-mediated response in which
body’s immune system destructs the protective sheath (myelin). Part of the known MS biomarkers are
discovered in cerebrospinal fluid like oligoclonal lgG (OCGB), and also in blood like myelin Oligodendrocyte
Glycoprotein (MOG). The conventional MS diagnostic methods often fail to detect the
disease in early stages such as Clinically Isolated Syndrome (CIS), which considered as a concerning
issue since CIS highlighted as a prognostic factor of MS development in most cases.
Methods:
MS diagnostic techniques include Magnetic Resonance Imaging (MRI) of the brain and spinal
cord, lumbar puncture (or spinal tap) that evaluate cerebrospinal fluid, evoked potential testing revealing
abnormalities in the brain and spinal cord. These conventional diagnostic methods have some
negative points such as extensive processing time as well as restriction in the quantity of samples that
can be analyzed concurrently. Scientists have focused on developing the detection methods especially
early detection which belongs to ultra-sensitive, non-invasive and needed for the Point of Care (POC)
diagnosis because the situation was complicated by false positive or negative results.
Results:
As a result, biosensors are utilized and investigated since they could be ultra-sensitive to specific
compounds, cost effective devices, body-friendly and easy to implement. In addition, it has been
proved that the biosensors on physiological fluids (blood, serum, urine, saliva, milk etc.) have quick
response in a non-invasive rout. In general form, a biosensor system for diagnosis and early detection
process usually involves; biomarker (target molecule), bio receptor (recognition element) and compatible
bio transducer.
Conclusion:
Studies underlined that early treatment of patients with high possibility of MS can be advantageous
by postponing further abnormalities on MRI and subsequent attacks.
:
This Review highlights variable disease diagnosis approaches such as Surface Plasmon Resonance
(SPR), electrochemical biosensors, Microarrays and microbeads based Microarrays, which are considered
as promising methods for detection and early detection of MS.
Collapse
Affiliation(s)
- Maryam Kharati
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sanam Foroutanparsa
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Noor, Royan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ghazal Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:10130-10139. [PMID: 31040210 PMCID: PMC6525478 DOI: 10.1073/pnas.1821306116] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination. Here, RNA-sequencing analysis of MS tissues from six brain regions suggested a focus on oligodendrocyte lineage cells (OLCs) in corpus callosum. Olig1-RiboTag mice were used to determine the translatome of OLCs in vivo in corpus callosum during the remyelination phase of a chronic cuprizone model with axonal damage. Cholesterol-synthesis gene pathways dominated as the top up-regulated pathways in OLCs during remyelination. In EAE, remyelination was induced with estrogen receptor-β (ERβ) ligand treatment, and up-regulation of cholesterol-synthesis gene expression was again observed in OLCs. ERβ-ligand treatment in the cuprizone model further increased cholesterol synthesis gene expression and enhanced remyelination. Conditional KOs of ERβ in OLCs demonstrated that increased cholesterol-synthesis gene expression in OLCs was mediated by direct effects in both models. To address this direct effect, ChIP assays showed binding of ERβ to the putative estrogen-response element of a key cholesterol-synthesis gene (Fdps). As fetal OLCs are exposed in utero to high levels of estrogens in maternal blood, we discuss how remyelinating properties of estrogen treatment in adults during injury may recapitulate normal developmental myelination through targeting cholesterol homeostasis in OLCs.
Collapse
|
12
|
Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 2019; 566:543-547. [PMID: 30747918 PMCID: PMC6544546 DOI: 10.1038/s41586-019-0903-2] [Citation(s) in RCA: 502] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
Oligodendrocyte pathology is increasingly implicated in neurodegenerative diseases as oligodendrocytes both myelinate and provide metabolic support to axons. In multiple sclerosis (MS), demyelination in the central nervous system thus leads to neurodegeneration, but the severity of MS between patients is very variable. Disability does not correlate well with the extent of demyelination1, which suggests that other factors contribute to this variability. One such factor may be oligodendrocyte heterogeneity. Not all oligodendrocytes are the same-those from the mouse spinal cord inherently produce longer myelin sheaths than those from the cortex2, and single-cell analysis of the mouse central nervous system identified further differences3,4. However, the extent of human oligodendrocyte heterogeneity and its possible contribution to MS pathology remain unknown. Here we performed single-nucleus RNA sequencing from white matter areas of post-mortem human brain from patients with MS and from unaffected controls. We identified subclusters of oligodendroglia in control human white matter, some with similarities to mouse, and defined new markers for these cell states. Notably, some subclusters were underrepresented in MS tissue, whereas others were more prevalent. These differences in mature oligodendrocyte subclusters may indicate different functional states of oligodendrocytes in MS lesions. We found similar changes in normal-appearing white matter, showing that MS is a more diffuse disease than its focal demyelination suggests. Our findings of an altered oligodendroglial heterogeneity in MS may be important for understanding disease progression and developing therapeutic approaches.
Collapse
|
13
|
Kim HH, Jeong IH, Hyun JS, Kong BS, Kim HJ, Park SJ. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One 2017; 12:e0181758. [PMID: 28746356 PMCID: PMC5528902 DOI: 10.1371/journal.pone.0181758] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are inflammatory diseases of the central nervous system. Although several studies have characterized the metabolome in the cerebrospinal fluid (CSF) from MS and NMOSD patients, comparative analyses between them and between the relapse and the remission of each disease have not been performed. Both univariate and multivariate analyses were used to compare 1H-NMR spectra of CSF from MS, NMOSD, and healthy controls (HCs). The statistical analysis showed alterations of eight metabolites that were dependent on the disease. Levels of 2-hydroxybutyrate, acetone, formate, and pyroglutamate were higher and levels of acetate and glucose were lower in both MS and NMOSD. Citrate was lower in MS patients, whereas lactate was higher in only NMOSD specifically. The shared feature of metabolic changes between MS and NMOSD may be related to altered energy metabolism and fatty acid biosynthesis in the brain. Another analysis to characterize relapse and remission status showed that isoleucine and valine were down-regulated in MS relapse compared to MS remission. The other metabolites identified in the disease comparison showed the same alterations regardless of disease activity. These findings would be helpful in understanding the biological background of these diseases, and distinguishing between MS and NMOSD, as well as determining the disease activity.
Collapse
Affiliation(s)
- Hyun-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Korea
| | - In Hye Jeong
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ja-Shil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Korea
| | - Byung Soo Kong
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Korea
| |
Collapse
|
14
|
Ofengeim D, Giagtzoglou N, Huh D, Zou C, Yuan J. Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time. Trends Mol Med 2017; 23:563-576. [PMID: 28501348 DOI: 10.1016/j.molmed.2017.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an exciting new technology allowing the analysis of transcriptomes from individual cells, and is ideally suited to address the inherent complexity and dynamics of the central nervous system. scRNA-seq has already been applied to the study of molecular taxonomy of the brain. These works have paved the way to expanding our understanding of the nervous system and provide insights into cellular susceptibilities and molecular mechanisms in neurological and neurodegenerative diseases. We discuss recent progress and challenges in applying this technology to advance our understanding of the brain. We advocate the application of scRNA-seq in the discovery of targets and biomarkers as a new approach in developing novel therapeutics for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dimitry Ofengeim
- Biogen, Neurology, 115 Broadway Street, Cambridge, MA 02142, USA.
| | | | - Dann Huh
- Biogen, Neurology, 115 Broadway Street, Cambridge, MA 02142, USA
| | - Chengyu Zou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Mohammadi SM, Shirvani Farsani Z, Dosti R, Sahraian MA, Behmanesh M. Association study of two functional single nucleotide polymorphisms of neuropeptide y gene with multiple sclerosis. Neuropeptides 2016; 60:45-50. [PMID: 27559040 DOI: 10.1016/j.npep.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by brain inflammation, demyelination and axonal loss. Neuropeptide Y (NPY) has a critical role in the maintenance of homeostasis in the immune system and coping of stress condition. In the current study we analyzed 188 patients suffering from MS and 204 unrelated healthy controls for two functional single nucleotide polymorphisms (SNPs), NPY 20T>C (rs16139) and NPY -485T>C (rs16147) using PCR-RFLP and Mismatch PCR-RFLP methods. Our results demonstrated that homozygocity in the minor allele for NPY -485T>C polymorphism is associated with the MS risk in patients in compare with healthy controls (CC vs. TT, P=0.033; CC vs. TT+TC, P=0.02). In addition, by comparison with allele T, the frequency of NPY -485C allele was higher in cases than in control subjects and present increased risk of MS, but statistically significant was borderline (P=0.053). The stratification for disease progression revealed a significant difference in the allelic and genotypic distribution between subgroups of MS and controls. The frequency of the CC genotype and C allele was higher in the primary progressive MS patients when compared with control group (CC vs. TT, P=0.019; CC vs. TT+TC, P=0.008; C vs. T, P=0.022). In addition, the frequency of CC genotype was higher in the relapsing remitting MS patients when compared with control group (CC vs. TT, P=0.034; CC vs. TT+TC, P=0.016). Haplotype analysis demonstrated that the haplotype 3 (CT) is more common in RR MS (P=0.041), and PP MS (P=0.031) than control group. In conclusion, the obtained results demonstrate the probable role of NPY SNPs in susceptibility to MS within the Iranian population.
Collapse
Affiliation(s)
- Seyed Mahdi Mohammadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shirvani Farsani
- Department of Genetics, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, IR Iran
| | - Rozita Dosti
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Waller R, Woodroofe MN, Wharton SB, Ince PG, Francese S, Heath PR, Cudzich-Madry A, Thomas RH, Rounding N, Sharrack B, Simpson JE. Gene expression profiling of the astrocyte transcriptome in multiple sclerosis normal appearing white matter reveals a neuroprotective role. J Neuroimmunol 2016; 299:139-146. [DOI: 10.1016/j.jneuroim.2016.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023]
|
17
|
Wharton SB, Simpson JE, Brayne C, Ince PG. Age-associated white matter lesions: the MRC Cognitive Function and Ageing Study. Brain Pathol 2015; 25:35-43. [PMID: 25521175 DOI: 10.1111/bpa.12219] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
Cerebral white matter lesions (WML) are common in the aging brain and are associated with dementia and depression. They are associated with vascular risk factors and small vessel disease, suggesting an ischemic origin, but recent pathology studies suggest a more complex pathogenesis. Studies using samples from the population-representative Medical Research Council Cognitive Function and Ageing Study neuropathology cohort used post-mortem magnetic resonance imaging to identify WML for further study. Expression of hypoxia-related molecules and other injury and protective cellular pathways in candidate immunohistochemical and gene expression microarray studies support a role for hypoxia/ischemia. However, these approaches also suggest that immune activation, blood-brain barrier dysfunction, altered cell metabolic pathways and glial cell injury contribute to pathogenesis. These abnormalities are not confined to WML, but are also found in apparently normal white matter in brains with lesions, suggesting a field effect of white matter abnormality within which lesions arise. WML are an active pathology with a complex pathogenesis that may potentially offer a number of primary and secondary intervention targets.
Collapse
Affiliation(s)
- Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
18
|
Mohan H, Friese A, Albrecht S, Krumbholz M, Elliott CL, Arthur A, Menon R, Farina C, Junker A, Stadelmann C, Barnett SC, Huitinga I, Wekerle H, Hohlfeld R, Lassmann H, Kuhlmann T, Linington C, Meinl E. Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathol Commun 2014; 2:168. [PMID: 25589163 PMCID: PMC4359505 DOI: 10.1186/s40478-014-0168-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 01/17/2023] Open
Abstract
Chronic demyelination is a pathological hallmark of multiple sclerosis (MS). Only a minority of MS lesions remyelinates completely. Enhancing remyelination is, therefore, a major aim of future MS therapies. Here we took a novel approach to identify factors that may inhibit or support endogenous remyelination in MS. We dissected remyelinated, demyelinated active, and demyelinated inactive white matter MS lesions, and compared transcript levels of myelination and inflammation-related genes using quantitative PCR on customized TaqMan Low Density Arrays. In remyelinated lesions, fibroblast growth factor (FGF) 1 was the most abundant of all analyzed myelination-regulating factors, showed a trend towards higher expression as compared to demyelinated lesions and was significantly higher than in control white matter. Two MS tissue blocks comprised lesions with adjacent de- and remyelinated areas and FGF1 expression was higher in the remyelinated rim compared to the demyelinated lesion core. In functional experiments, FGF1 accelerated developmental myelination in dissociated mixed cultures and promoted remyelination in slice cultures, whereas it decelerated differentiation of purified primary oligodendrocytes, suggesting that promotion of remyelination by FGF1 is based on an indirect mechanism. The analysis of human astrocyte responses to FGF1 by genome wide expression profiling showed that FGF1 induced the expression of the chemokine CXCL8 and leukemia inhibitory factor, two factors implicated in recruitment of oligodendrocytes and promotion of remyelination. Together, this study presents a transcript profiling of remyelinated MS lesions and identified FGF1 as a promoter of remyelination. Modulation of FGF family members might improve myelin repair in MS.
Collapse
|
19
|
Dutta R. Gene expression changes underlying cortical pathology: clues to understanding neurological disability in multiple sclerosis. Mult Scler 2014; 19:1249-54. [PMID: 23996595 DOI: 10.1177/1352458513500554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with an unknown etiology. The clinical disease course is variable, with the majority of patients experiencing reversible episodes of neurological disability in the third or fourth decade of life, eventually followed by a state of irreversible progression. Continuous axonal and neuronal loss is thought to be the major cause of this progression. Over the last decade, extensive research has targeted the gray matter and its role in MS pathogenesis. While pathological and imaging studies have begun to reveal important clues about the role of cortical pathology, gene expression studies in MS cortex are still emerging. Microarray-based comparative gene expression profiling provides a snapshot of genes underlying a particular condition and has been performed using brain tissues from patients with progressive MS. In this review, we summarize existing data from gene expression changes in cortical tissues from MS brains and how they may provide clues to the pathogenesis.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Benjamins JA. Direct effects of secretory products of immune cells on neurons and glia. J Neurol Sci 2013; 333:30-6. [DOI: 10.1016/j.jns.2013.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022]
|
21
|
Bhullar KS, Rupasinghe HPV. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:891748. [PMID: 23840922 PMCID: PMC3690243 DOI: 10.1155/2013/891748] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders.
Collapse
Affiliation(s)
- Khushwant S. Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| |
Collapse
|
22
|
Cox MB, Bowden NA, Scott RJ, Lechner-Scott J. Altered expression of the plasminogen activation pathway in peripheral blood mononuclear cells in multiple sclerosis: possible pathomechanism of matrix metalloproteinase activation. Mult Scler 2013; 19:1268-74. [PMID: 23401127 DOI: 10.1177/1352458513475493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder where a breakdown in the integrity of the blood-brain barrier is thought to allow lymphocytes to enter the central nervous system. OBJECTIVES The purpose of this study was to examine gene expression profiles between MS patients and healthy controls to identify genes intimately involved in the pathobiology of MS. METHODS Whole-genome gene expression analysis was performed using peripheral blood mononuclear cells from 39 healthy controls and 37 MS patients, 24 MS patients receiving no disease modifying therapy and 13 MS patients receiving interferon-beta (IFN-beta). Pathway analysis was performed to identify pathways dysregulated in MS. RESULTS Gene expression profiling of MS identified a signature of predominately immune associated genes. The plasminogen activation pathway contained an over-representation of significantly differentially expressed genes, including matrix metallopeptidase 9 (MMP9). Treatment with IFN-beta ameliorated the over-expression of MMP9, however the expression of two genes, plasminogen activator urokinase (PLAU) and serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), forming part of the plasminogen activation pathway were not affected by IFN-beta therapy. CONCLUSIONS High expression levels of MMP9 have been associated with MS and the breakdown of the blood-brain barrier, while IFN-beta therapy decreases MMP9 expression. We confirm altered MMP9 expression in MS, and identify dysregulation within the plasminogen activation cascade, a pathway involved in the activation of MMP9.
Collapse
|
23
|
Borjabad A, Volsky DJ. Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer's disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 2012; 7:914-26. [PMID: 23065460 PMCID: PMC3515772 DOI: 10.1007/s11481-012-9409-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/26/2012] [Indexed: 01/01/2023]
Abstract
HIV-Associated Neurocognitive Disorders (HAND) is a common manifestation of HIV infection that afflicts about 50 % of HIV-positive individuals. As people with access to antiretroviral treatments live longer, HAND can be found in increasing segments of populations at risk for other chronic, neurodegenerative conditions such as Alzheimer's disease (AD) and Multiple Sclerosis (MS). If brain diseases of diverse etiologies utilize similar biological pathways in the brain, they may coexist in a patient and possibly exacerbate neuropathogenesis and morbidity. To test this proposition, we conducted comparative meta-analysis of selected publicly available microarray datasets from brain tissues of patients with HAND, AD, and MS. In pair-wise and three-way analyses, we found a large number of dysregulated genes and biological processes common to either HAND and AD or HAND and MS, or to all three diseases. The common characteristic of all three diseases was up-regulation of broadly ranging immune responses in the brain. In addition, HAND and AD share down-modulation of processes involved, among others, in synaptic transmission and cell-cell signaling while HAND and MS share defective processes of neurogenesis and calcium/calmodulin-dependent protein kinase activity. Our approach could provide insight into the identification of common disease mechanisms and better intervention strategies for complex neurocognitive disorders.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University, New York, NY 10019, USA.
| | | |
Collapse
|
24
|
Sex differences and genomics in autoimmune diseases. J Autoimmun 2012; 38:J254-65. [DOI: 10.1016/j.jaut.2011.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/23/2022]
|