1
|
Wise DL, Greene SB, Escobedo-Lozoya Y, Van Hooser SD, Nelson SB. Progressive Circuit Hyperexcitability in Mouse Neocortical Slice Cultures with Increasing Duration of Activity Silencing. eNeuro 2024; 11:ENEURO.0362-23.2024. [PMID: 38653560 PMCID: PMC11079856 DOI: 10.1523/eneuro.0362-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Forebrain neurons deprived of activity become hyperactive when activity is restored. Rebound activity has been linked to spontaneous seizures in vivo following prolonged activity blockade. Here, we measured the time course of rebound activity and the contributing circuit mechanisms using calcium imaging, synaptic staining, and whole-cell patch clamp in organotypic slice cultures of mouse neocortex. Calcium imaging revealed hypersynchronous activity increasing in intensity with longer periods of deprivation. While activity partially recovered 3 d after slices were released from 5 d of deprivation, they were less able to recover after 10 d of deprivation. However, even after the longer period of deprivation, activity patterns eventually returned to baseline levels. The degree of deprivation-induced rebound was age-dependent, with the greatest effects occurring when silencing began in the second week. Pharmacological blockade of NMDA receptors indicated that hypersynchronous rebound activity did not require activation of Hebbian plasticity. In single-neuron recordings, input resistance roughly doubled with a concomitant increase in intrinsic excitability. Synaptic imaging of pre- and postsynaptic proteins revealed dramatic reductions in the number of presumptive synapses with a larger effect on inhibitory than excitatory synapses. Putative excitatory synapses colocalizing PSD-95 and Bassoon declined by 39 and 56% following 5 and 10 d of deprivation, but presumptive inhibitory synapses colocalizing gephyrin and VGAT declined by 55 and 73%, respectively. The results suggest that with prolonged deprivation, a progressive reduction in synapse number is accompanied by a shift in the balance between excitation and inhibition and increased cellular excitability.
Collapse
Affiliation(s)
- Derek L Wise
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Samuel B Greene
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | | | | | - Sacha B Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
2
|
Cook DC, Ryan TA. GABA BR silencing of nerve terminals. eLife 2023; 12:e83530. [PMID: 37014052 PMCID: PMC10115440 DOI: 10.7554/elife.83530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Control of neurotransmission efficacy is central to theories of how the brain computes and stores information. Presynaptic G-protein coupled receptors (GPCRs) are critical in this problem as they locally influence synaptic strength and can operate on a wide range of time scales. Among the mechanisms by which GPCRs impact neurotransmission is by inhibiting voltage-gated calcium (Ca2+) influx in the active zone. Here, using quantitative analysis of both single bouton Ca2+ influx and exocytosis, we uncovered an unexpected non-linear relationship between the magnitude of action potential driven Ca2+ influx and the concentration of external Ca2+ ([Ca2+]e). We find that this unexpected relationship is leveraged by GPCR signaling when operating at the nominal physiological set point for [Ca2+]e, 1.2 mM, to achieve complete silencing of nerve terminals. These data imply that the information throughput in neural circuits can be readily modulated in an all-or-none fashion at the single synapse level when operating at the physiological set point.
Collapse
Affiliation(s)
- Daniel C Cook
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Timothy A Ryan
- Department of Anesthesiology, Weill Cornell Medical CollegeNew YorkUnited States
- Department of Biochemistry, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
3
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
4
|
Resilience of network activity in preconditioned neurons exposed to 'stroke-in-a-dish' insults. Neurochem Int 2021; 146:105035. [PMID: 33798645 DOI: 10.1016/j.neuint.2021.105035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Exposing cultured cortical neurons to stimulatory agents - the K+ channel blocker 4-aminopyridine (4-ap), and the GABAA receptor antagonist bicuculline (bic) - for 48 h induces down-regulated synaptic scaling, and preconditions neurons to withstand subsequent otherwise lethal 'stroke-in-a-dish' insults; however, the degree to which usual neuronal function remains is unknown. As a result, multi-electrode array and patch-clamp electrophysiological techniques were employed to characterize hallmarks of spontaneous synaptic activity over a 12-day preconditioning/insult experiment. Spiking frequency increased 8-fold immediately upon 4-ap/bic treatment but declined within the 48 h treatment window to sub-baseline levels that persisted long after washout. Preconditioning resulted in key markers of network activity - spiking frequency, bursting and avalanches - being impervious to an insult. Surprisingly, preconditioning resulted in higher peak NMDA mEPSC amplitudes, resulting in a decrease in the ratio of AMPA:NMDA mEPSC currents, suggesting a relative increase in synaptic NMDA receptors. An investigation of a broad mRNA panel of excitatory and inhibitory signaling mediators indicated preconditioning rapidly up-regulated GABA synthesis (GAD67) and BDNF, followed by up-regulation of neuronal activity-regulated pentraxin and down-regulation of presynaptic glutamate release (VGLUT1). Preconditioning also enhanced surface expression of GLT-1, which persisted following an insult. Overall, preconditioning resulted in a reduced spiking frequency which was impervious to subsequent exposure to 'stroke-in-a-dish' insults, a phenotype initiated predominantly by up-regulation of inhibitory neurotransmission, a lower neuronal postsynaptic AMPA: NMDA receptor ratio, and trafficking of GLT-1 to astrocyte plasma membranes.
Collapse
|
5
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int J Mol Sci 2019; 20:ijms20092197. [PMID: 31060234 PMCID: PMC6538995 DOI: 10.3390/ijms20092197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, functional interconnections emerged between synaptic transmission, inflammatory/immune mediators, and central nervous system (CNS) (patho)-physiology. Such interconnections rose up to a level that involves synaptic plasticity, both concerning its molecular mechanisms and the clinical outcomes related to its behavioral abnormalities. Within this context, synaptic plasticity, apart from being modulated by classic CNS molecules, is strongly affected by the immune system, and vice versa. This is not surprising, given the common molecular pathways that operate at the cross-road between the CNS and immune system. When searching for a common pathway bridging neuro-immune and synaptic dysregulations, the two major cell-clearing cell clearing systems, namely the ubiquitin proteasome system (UPS) and autophagy, take center stage. In fact, just like is happening for the turnover of key proteins involved in neurotransmitter release, antigen processing within both peripheral and CNS-resident antigen presenting cells is carried out by UPS and autophagy. Recent evidence unravelling the functional cross-talk between the cell-clearing pathways challenged the traditional concept of autophagy and UPS as independent systems. In fact, autophagy and UPS are simultaneously affected in a variety of CNS disorders where synaptic and inflammatory/immune alterations concur. In this review, we discuss the role of autophagy and UPS in bridging synaptic plasticity with neuro-immunity, while posing a special emphasis on their interactions, which may be key to defining the role of immunity in synaptic plasticity in health and disease.
Collapse
|
7
|
The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation. PLoS Biol 2019; 17:e3000170. [PMID: 30822303 PMCID: PMC6415872 DOI: 10.1371/journal.pbio.3000170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Depolarization of presynaptic terminals stimulates calcium influx, which evokes neurotransmitter release and activates phosphorylation-based signalling. Here, we present the first global temporal profile of presynaptic activity-dependent phospho-signalling, which includes two KCl stimulation levels and analysis of the poststimulus period. We profiled 1,917 regulated phosphopeptides and bioinformatically identified six temporal patterns of co-regulated proteins. The presynaptic proteins with large changes in phospho-status were again prominently regulated in the analysis of 7,070 activity-dependent phosphopeptides from KCl-stimulated cultured hippocampal neurons. Active zone scaffold proteins showed a high level of activity-dependent phospho-regulation that far exceeded the response from postsynaptic density scaffold proteins. Accordingly, bassoon was identified as the major target of neuronal phospho-signalling. We developed a probabilistic computational method, KinSwing, which matched protein kinase substrate motifs to regulated phosphorylation sites to reveal underlying protein kinase activity. This approach allowed us to link protein kinases to profiles of co-regulated presynaptic protein networks. Ca2+- and calmodulin-dependent protein kinase IIα (CaMKIIα) responded rapidly, scaled with stimulus strength, and had long-lasting activity. Mitogen-activated protein kinase (MAPK)/extracellular signal–regulated kinase (ERK) was the main protein kinase predicted to control a distinct and significant pattern of poststimulus up-regulation of phosphorylation. This work provides a unique resource of activity-dependent phosphorylation sites of synaptosomes and neurons, the vast majority of which have not been investigated with regard to their functional impact. This resource will enable detailed characterization of the phospho-regulated mechanisms impacting the plasticity of neurotransmitter release. Analysis of activity-dependent phosphorylation-based signalling in synaptosomes revealed six patterns of long-lasting presynaptic regulation from 1,917 phosphopeptides. The authors identified patterns most likely to be regulated by CamKII and MAPK/ERK and showed the active zone scaffold protein bassoon to be a major signalling target. Neurobiological processes are altered by linking neuronal activity to regulated changes in protein phosphorylation levels that influence protein function. Although some of the major targets of activity-dependent phospho-signalling have been identified, a large number of substrates remain unknown. Here, we have screened systematically for these substrates and extended the list from hundreds to thousands of phosphorylation sites, thereby providing a new depth of understanding. We monitored phospho-signalling for 15 min after the stimulation, which to our knowledge had not been attempted at a large scale. We focused on presynaptic protein substrates of phospho-signalling by isolating the presynaptic terminal. We also stimulated hippocampal neurons but did not monitor the poststimulus. Although the phospho-signalling is immensely complex, the findings could be simplified through data exploration. We identified distinct patterns of presynaptic phospho-regulation across the time course that may constitute co-regulated protein networks. In addition, we found a subset of proteins that had many more phosphorylation sites than the average and high-magnitude responses, implying major signalling or functional roles for these proteins. We also determined the likely protein kinases with the strongest responses to the stimulus at different times using KinSwing, a computational tool that we developed. This resource reveals a new depth of activity-dependent phospho-signalling and identifies major signalling targets, major protein kinases, and co-regulated phosphoprotein networks.
Collapse
|
8
|
Loss of Doc2-Dependent Spontaneous Neurotransmission Augments Glutamatergic Synaptic Strength. J Neurosci 2017; 37:6224-6230. [PMID: 28539418 DOI: 10.1523/jneurosci.0418-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 11/21/2022] Open
Abstract
Action potential-evoked vesicle fusion comprises the majority of neurotransmission within chemical synapses, but action potential-independent spontaneous neurotransmission also contributes to the collection of signals sent to the postsynaptic cell. Previous work has implicated spontaneous neurotransmission in homeostatic synaptic scaling, but few studies have selectively manipulated spontaneous neurotransmission without substantial changes in evoked neurotransmission to study this function in detail. Here we used a quadruple knockdown strategy to reduce levels of proteins within the soluble calcium-binding double C2 domain (Doc2)-like protein family to selectively reduce spontaneous neurotransmission in cultured mouse and rat neurons. Activity-evoked responses appear normal while both excitatory and inhibitory spontaneous events exhibit reduced frequency. Excitatory miniature postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents (mIPSCs), increase in amplitude after quadruple knockdown. This increase in synaptic efficacy correlates with reduced phosphorylation levels of eukaryotic elongation factor 2 and also requires the presence of elongation factor 2 kinase. Together, these data suggest that spontaneous neurotransmission independently contributes to the regulation of synaptic efficacy, and action potential-evoked and spontaneous neurotransmission can be segregated at least partially on a molecular level.SIGNIFICANCE STATEMENT Action potential-evoked and spontaneous neurotransmission have been observed in nervous system circuits as long as methods have existed to measure them. Despite being well studied, controversy still remains about whether these forms of neurotransmission are regulated independently on a molecular level or whether they are simply a continuum of neurotransmission modes. In this study, members of the Doc2 family of presynaptic proteins were eliminated, which caused a reduction in spontaneous neurotransmission, whereas action potential-evoked neurotransmission remained relatively normal. This protein loss also caused an increase in synaptic strength, suggesting that spontaneous neurotransmission is able to communicate independently with the postsynaptic neuron and trigger downstream signaling cascades that regulate the synaptic state.
Collapse
|
9
|
Alonso B, Bartolomé-Martín D, Ferrero JJ, Ramírez-Franco J, Torres M, Sánchez-Prieto J. CB1 receptors down-regulate a cAMP/Epac2/PLC pathway to silence the nerve terminals of cerebellar granule cells. J Neurochem 2017; 142:350-364. [PMID: 28445587 DOI: 10.1111/jnc.14059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
Cannabinoid receptors mediate short-term retrograde inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at excitatory synapses. The responses of individual nerve terminals in VGLUT1-pHluorin transfected cerebellar granule cells to cannabinoids have shown that prolonged activation of cannabinoid type 1 receptors (CB1Rs) silences a subpopulation of previously active synaptic boutons. Adopting a combined pharmacological and genetic approach to study the molecular mechanisms of CB1R-induced silencing, we found that adenylyl cyclase inhibition decreases cAMP levels while it increases the number of silent synaptic boutons and occludes the induction of further silencing by the cannabinoid agonist HU-210. Guanine nucleotide exchange proteins directly activated by cAMP (Epac proteins) mediate some of the presynaptic effects of cAMP in the potentiation of synaptic transmission. ESI05, a selective Epac2 inhibitor, and U-73122, the specific inhibitor of phospholipase C (PLC), both augment the number of silent synaptic boutons. Moreover, they abolish the capacity of the Epac activator, 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate, to prevent HU-210-induced silencing consistent with PLC signaling lying downstream of Epac2 proteins. Furthermore, Rab3-interacting molecule (RIM)1α KO cells have many more basally silent synaptic boutons (12.9 ± 3.5%) than wild-type cells (1.1 ± 0.5%). HU-210 induced further silencing in these mutant cells, although 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate only awoke the HU-210-induced silence and not the basally silent synaptic boutons. This behavior can be rescued by expressing RIM1α in RIM1α KO cells, these cells behaving very much like wild-type cells. These findings support the hypothesis that a cAMP/Epac/PLC signaling pathway targeting the release machinery appears to mediate cannabinoid-induced presynaptic silencing.
Collapse
Affiliation(s)
- Beatris Alonso
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - José Javier Ferrero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
10
|
Low dose of l-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice. Behav Pharmacol 2016; 27:615-22. [DOI: 10.1097/fbp.0000000000000256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sun MY, Linsenbardt AJ, Emnett CM, Eisenman LN, Izumi Y, Zorumski CF, Mennerick S. 24(S)-Hydroxycholesterol as a Modulator of Neuronal Signaling and Survival. Neuroscientist 2016; 22:132-44. [PMID: 25628343 PMCID: PMC4821654 DOI: 10.1177/1073858414568122] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The major cholesterol metabolite in brain, 24(S)-hydroxycholesterol (24S-HC), serves as a vehicle for cholesterol removal. Its effects on neuronal function, however, have only recently begun to be investigated. Here, we review that nascent work. Our own studies have demonstrated that 24S-HC has potent positive modulatory effects on N-methyl-d-aspartate (NMDA) receptor (NMDAR) function. This could have implications not only for brain plasticity but also for pathological NMDAR overuse. Other work has demonstrated effects of 24S-HC on neuronal survival and as a possible biomarker of neurodegenerative disease. Depending on circumstances, both upregulation/mimicry of 24S-HC signaling and down-regulation/antagonism may have therapeutic potential. We are interested in the possibility that synthetic analogues of 24S-HC with positive effects at NMDARs may hold neurotherapeutic promise, given the role of NMDA receptor hypofunction in certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steve Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Zheng L, Wu X, Dong X, Ding X, Song C. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus. Alcohol Clin Exp Res 2015; 39:1908-16. [PMID: 26343919 DOI: 10.1111/acer.12845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. METHODS We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). RESULTS Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. CONCLUSIONS Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal.
Collapse
Affiliation(s)
- Lei Zheng
- Liaocheng Third People's Hospital, Liaocheng, Shandong, China
| | - Xiaoda Wu
- Liaocheng Third People's Hospital, Liaocheng, Shandong, China
| | - Xiao Dong
- Liaocheng Third People's Hospital, Liaocheng, Shandong, China
| | - Xinli Ding
- Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Cunfeng Song
- Liaocheng Third People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
13
|
Zhou H, Liu G. Regulation of density of functional presynaptic terminals by local energy supply. Mol Brain 2015; 8:42. [PMID: 26184109 PMCID: PMC4504454 DOI: 10.1186/s13041-015-0132-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background The density of functional synapses is an important parameter in determining the efficacy of synaptic transmission. However, how functional presynaptic terminal density is regulated under natural physiological conditions is still poorly understood. Results We studied the factors controlling the density of presynaptic functional terminals at single dendritic branches of hippocampal neurons and found that elevation of intracellular Mg2+ concentration was effective in increasing the density of functional terminals. Interestingly, the upregulation was not due to synaptogenesis, but to the conversion of a considerable proportion of presynaptic terminals from nonfunctional to functional. Mechanistic studies revealed that the nonfunctional terminals had inadequate Ca2+-sensitivity-related proteins, resulting in very low Ca2+ sensitivity within their vesicle release machinery. We identified energy-dependent axonal transport as a primary factor controlling the amount of Ca2+-sensitivity-related proteins in terminals. The elevation of intracellular Mg2+ enhanced local energy supply and promoted the increase of Ca2+-sensitivity-related proteins in terminals, leading to increased functional terminal density. Conclusions Our study suggests that local energy supply plays a critical role in controlling the density of functional presynaptic terminals, demonstrating the link between energy supply and efficacy of synaptic transmission. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0132-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Guosong Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Lazarevic V, Pothula S, Andres-Alonso M, Fejtova A. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Front Cell Neurosci 2013; 7:244. [PMID: 24348337 PMCID: PMC3847662 DOI: 10.3389/fncel.2013.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022] Open
Abstract
Homeostatic plasticity is a process by which neurons adapt to the overall network activity to keep their firing rates in a reasonable range. At the cellular level this kind of plasticity comprises modulation of cellular excitability and tuning of synaptic strength. In this review we concentrate on presynaptic homeostatic plasticity controlling the efficacy of neurotransmitter release from presynaptic boutons. While morphological and electrophysiological approaches were successful to describe homeostatic plasticity-induced changes in the presynaptic architecture and function, cellular and molecular mechanisms underlying those modifications remained largely unknown for a long time. We summarize the latest progress made in the understanding of homeostasis-induced regulation of different steps of the synaptic vesicle cycle and the molecular machineries involved in this process. We particularly focus on the role of presynaptic scaffolding proteins, which functionally and spatially organize synaptic vesicle clusters, neurotransmitter release sites and the associated endocytic machinery. These proteins turned out to be major presynaptic substrates for remodeling during homeostatic plasticity. Finally, we discuss cellular processes and signaling pathways acting during homeostatic molecular remodeling and their potential involvement in the maladaptive plasticity occurring in multiple neuropathologic conditions such as neurodegeneration, epilepsy and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vesna Lazarevic
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Santosh Pothula
- Research Group Presynaptic Plasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Maria Andres-Alonso
- Research Group Presynaptic Plasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Anna Fejtova
- Research Group Presynaptic Plasticity, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| |
Collapse
|
15
|
Emnett CM, Eisenman LN, Taylor AM, Izumi Y, Zorumski CF, Mennerick S. Indistinguishable synaptic pharmacodynamics of the N-methyl-D-aspartate receptor channel blockers memantine and ketamine. Mol Pharmacol 2013; 84:935-47. [PMID: 24101301 DOI: 10.1124/mol.113.089334] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Memantine and ketamine, voltage- and activation-dependent channel blockers of N-methyl-d-aspartate (NMDA) receptors (NMDARs), have enjoyed a recent resurgence in clinical interest. Steady-state pharmacodynamic differences between these blockers have been reported, but it is unclear whether the compounds differentially affect dynamic physiologic signaling. In this study, we explored nonequilibrium conditions relevant to synaptic transmission in hippocampal networks in dissociated culture and hippocampal slices. Equimolar memantine and ketamine had indistinguishable effects on the following measures: steady-state NMDA currents, NMDAR excitatory postsynaptic current (EPSC) decay kinetics, progressive EPSC inhibition during repetitive stimulation, and extrasynaptic NMDAR inhibition. Therapeutic drug efficacy and tolerability of memantine have been attributed to fast kinetics and strong voltage dependence. However, pulse depolarization in drug presence revealed a surprisingly slow and similar time course of equilibration for the two compounds, although memantine produced a more prominent fast component (62% versus 48%) of re-equilibration. Simulations predicted that low gating efficacy underlies the slow voltage-dependent relief from block. This prediction was empirically supported by faster voltage-dependent blocker re-equilibration with several experimental manipulations of gating efficacy. Excitatory postsynaptic potential-like voltage commands produced drug differences only with large, prolonged depolarizations unlikely to be attained physiologically. In fact, we found no difference between drugs on measures of spontaneous network activity or acute effects on plasticity in hippocampal slices. Despite indistinguishable synaptic pharmacodynamics, ketamine provided significantly greater neuroprotection from damage induced by oxygen glucose deprivation, consistent with the idea that under extreme depolarizing conditions, the biophysical difference between drugs becomes detectable. We conclude that despite subtle differences in voltage dependence, during physiologic activity, blocker pharmacodynamics are largely indistinguishable and largely voltage independent.
Collapse
Affiliation(s)
- Christine M Emnett
- Graduate Program in Neuroscience (C.M.E.), Washington University, and Departments of Psychiatry (C.M.E., A.M.T., Y.I., C.F.Z., S.M.), Neurology (L.N.E.), Anatomy and Neurobiology (C.F.Z., S.M.), and Taylor Family Institute for Innovative Psychiatric Research (Y.I., C.F.Z., S.M.), Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | |
Collapse
|
16
|
Ischemic conditioning protects from axoglial alterations of the optic pathway induced by experimental diabetes in rats. PLoS One 2012; 7:e51966. [PMID: 23284834 PMCID: PMC3527393 DOI: 10.1371/journal.pone.0051966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/09/2012] [Indexed: 11/20/2022] Open
Abstract
Diabetic retinopathy is a leading cause of blindness. Visual function disorders have been demonstrated in diabetics even before the onset of retinopathy. At early stages of experimental diabetes, axoglial alterations occur at the distal portion of the optic nerve. Although ischemic conditioning can protect neurons and synaptic terminals against ischemic damage, there is no information on its ability to protect axons. We analyzed the effect of ischemic conditioning on the early axoglial alterations in the distal portion of the optic nerve induced by experimental diabetes. Diabetes was induced in Wistar rats by an intraperitoneal injection of streptozotocin. Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 days after streptozotocin injection and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. The application of ischemia pulses prevented a deficit in the anterograde transport from the retina to the superior colliculus, as well as an increase in astrocyte reactivity, ultraestructural myelin alterations, and altered morphology of oligodendrocyte lineage in the optic nerve distal portion at early stages of experimental diabetes. Ischemia tolerance prevented a significant decrease of retinal glutamine synthetase activity induced by diabetes. These results suggest that early vision loss in diabetes could be abated by ischemic conditioning which preserved axonal function and structure.
Collapse
|
17
|
Crawford DC, Jiang X, Taylor A, Moulder KL, Mennerick S. Differential requirement for protein synthesis in presynaptic unmuting and muting in hippocampal glutamate terminals. PLoS One 2012; 7:e51930. [PMID: 23272190 PMCID: PMC3521764 DOI: 10.1371/journal.pone.0051930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
Synaptic function and plasticity are crucial for information processing within the nervous system. In glutamatergic hippocampal neurons, presynaptic function is silenced, or muted, after strong or prolonged depolarization. This muting is neuroprotective, but the underlying mechanisms responsible for muting and its reversal, unmuting, remain to be clarified. Using cultured rat hippocampal neurons, we found that muting induction did not require protein synthesis; however, slow forms of unmuting that depend on protein kinase A (PKA), including reversal of depolarization-induced muting and forskolin-induced unmuting of basally mute synapses, required protein synthesis. In contrast, fast unmuting of basally mute synapses by phorbol esters was protein synthesis-independent. Further studies of recovery from depolarization-induced muting revealed that protein levels of Rim1 and Munc13-1, which mediate vesicle priming, correlated with the functional status of presynaptic terminals. Additionally, this form of unmuting was prevented by both transcription and translation inhibitors, so proteins are likely synthesized de novo after removal of depolarization. Phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB), a nuclear transcription factor, was elevated after recovery from depolarization-induced muting, consistent with a model in which PKA-dependent mechanisms, possibly including pCREB-activated transcription, mediate slow unmuting. In summary, we found that protein synthesis was required for slower, PKA-dependent unmuting of presynaptic terminals, but it was not required for muting or a fast form of unmuting. These results clarify some of the molecular mechanisms responsible for synaptic plasticity in hippocampal neurons and emphasize the multiple mechanisms by which presynaptic function is modulated.
Collapse
Affiliation(s)
- Devon C. Crawford
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaoping Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda Taylor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krista L. Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro. J Neurosci 2012; 32:13100-10. [PMID: 22993427 DOI: 10.1523/jneurosci.2604-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Astrocytes contribute to many neuronal functions, including synaptogenesis, but their role in the development of synaptic plasticity remains unclear. Presynaptic muting of hippocampal glutamatergic terminals defends against excitotoxicity. Here we studied the role of astrocytes in the development of presynaptic muting at glutamatergic synapses in rat hippocampal neurons. We found that astrocytes were critical for the development of depolarization-dependent and G(i/o)-dependent presynaptic muting. The ability of cAMP analogues to modulate presynaptic function was also impaired by astrocyte deficiency. Although astrocyte deprivation resulted in postsynaptic glutamate receptor deficits, this effect appeared independent of astrocytes' role in presynaptic muting. Muting was restored with chronic, but not acute, treatment with astrocyte-conditioned medium, indicating that a soluble factor is permissive for muting. Astrocyte-derived thrombospondins (TSPs) are likely responsible because TSP1 mimicked the effect of conditioned medium, and gabapentin, a high-affinity antagonist of TSP binding to the α2δ-1 calcium channel subunit, mimicked astrocyte deprivation. We found evidence that protein kinase A activity is abnormal in astrocyte-deprived neurons but restored by TSP1, so protein kinase A dysfunction may provide a mechanism by which muting is disrupted during astrocyte deficiency. In summary our results suggest an important role for astrocyte-derived TSPs, acting through α2δ-1, in maturation of a potentially important form of presynaptic plasticity.
Collapse
|
19
|
Anesthetic protection of neurons injured by hypothermia and rewarming: roles of intracellular Ca2+ and excitotoxicity. Anesthesiology 2012; 117:280-92. [PMID: 22728782 DOI: 10.1097/aln.0b013e318260a7b9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mild hypothermia is neuroprotective after cerebral ischemia but surgery involving profound hypothermia (PH, temperature less than 18°C) is associated with neurologic complications. Rewarming (RW) from PH injures hippocampal neurons by glutamate excitotoxicity, N-methyl-D-aspartate receptors, and intracellular calcium. Because neurons are protected from hypoxia-ischemia by anesthetic agents that inhibit N-methyl-D-aspartic acid receptors, we tested whether anesthetics protect neurons from damage caused by PH/RW. METHODS Organotypic cultures of rat hippocampus were used to model PH/RW injury, with hypothermia at 4°C followed by RW to 37°C and assessment of cell death 1 or 24 h later. Cell death and intracellular Ca were assessed with fluorescent dye imaging and histology. Anesthetic agents were present in the culture media during PH and RW or only RW. RESULTS Injury to hippocampal CA1, CA3, and dentate neurons after PH and RW involved cell swelling, cell rupture, and adenosine triphosphate (ATP) loss; this injury was similar for 4 through 10 h of PH. Isoflurane (1% and 2%), sevoflurane (3%) and xenon (60%) reduced cell loss but propofol (3 μM) and pentobarbital (100 μM) did not. Isoflurane protection involved reduction in N-methyl-D-aspartate receptor-mediated Ca influx during RW but did not involve γ-amino butyric acid receptors or KATP channels. However, cell death increased over the next day. CONCLUSION Anesthetic protection of neurons rewarmed from 4°C involves suppression of N-methyl-D-aspartate receptor-mediated Ca overload in neurons undergoing ATP loss and excitotoxicity. Unlike during hypoxia/ischemia, anesthetic agents acting predominantly on γ-aminobutyric acid receptors do not protect against PH/RW. The durability of anesthetic protection against cold injury may be limited.
Collapse
|
20
|
Tauskela JS, Aylsworth A, Hewitt M, Brunette E, Mealing GAR. Preconditioning induces tolerance by suppressing glutamate release in neuron culture ischemia models. J Neurochem 2012; 122:470-81. [DOI: 10.1111/j.1471-4159.2012.07791.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Wroge CM, Hogins J, Eisenman L, Mennerick S. Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 2012; 32:6732-42. [PMID: 22573696 PMCID: PMC3361974 DOI: 10.1523/jneurosci.6371-11.2012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/10/2012] [Accepted: 03/30/2012] [Indexed: 12/20/2022] Open
Abstract
Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. The extrasynaptic hypothesis is built in part on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons, we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a nonsubstrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase, which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate.
Collapse
Affiliation(s)
- Christine M. Wroge
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Graduate Program in Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110, and
| | - Joshua Hogins
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Larry Eisenman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
22
|
Hogins J, Crawford DC, Zorumski CF, Mennerick S. Excitotoxicity triggered by Neurobasal culture medium. PLoS One 2011; 6:e25633. [PMID: 21980512 PMCID: PMC3182245 DOI: 10.1371/journal.pone.0025633] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023] Open
Abstract
Neurobasal defined culture medium has been optimized for survival of rat embryonic hippocampal neurons and is now widely used for many types of primary neuronal cell culture. Therefore, we were surprised that routine medium exchange with serum- and supplement-free Neurobasal killed as many as 50% of postnatal hippocampal neurons after a 4 h exposure at day in vitro 12–15. Minimal Essential Medium (MEM), in contrast, produced no significant toxicity. Detectable Neurobasal-induced neuronal death occurred with as little as 5 min exposure, measured 24 h later. D-2-Amino-5-phosphonovalerate (D-APV) completely prevented Neurobasal toxicity, implicating direct or indirect N-methyl-D-aspartate (NMDA) receptor-mediated neuronal excitotoxicity. Whole-cell recordings revealed that Neurobasal but not MEM directly activated D-APV-sensitive currents similar in amplitude to those gated by 1 µM glutamate. We hypothesized that L-cysteine likely mediates the excitotoxic effects of Neurobasal incubation. Although the original published formulation of Neurobasal contained only 10 µM L-cysteine, commercial recipes contain 260 µM, a concentration in the range reported to activate NMDA receptors. Consistent with our hypothesis, 260 µM L-cysteine in bicarbonate-buffered saline gated NMDA receptor currents and produced toxicity equivalent to Neurobasal. Although NMDA receptor-mediated depolarization and Ca2+ influx may support survival of young neurons, NMDA receptor agonist effects on development and survival should be considered when employing Neurobasal culture medium.
Collapse
Affiliation(s)
- Joshua Hogins
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Devon C. Crawford
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Charles F. Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steven Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
23
|
Crawford DC, Mennerick S. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release. Neuroscientist 2011; 18:216-23. [PMID: 21908849 DOI: 10.1177/1073858411418525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synapses represent the main junctures of communication between neurons in the nervous system. In many neurotransmitter systems, a fraction of presynaptic terminals fails to release vesicles in response to action potential stimulation and strong calcium influx. These silent presynaptic terminals exhibit a reversible functional dormancy beyond low vesicle release probability, and dormancy status may have important implications in neural function. Recent advances have implicated presynaptic proteins interacting with vesicles downstream of cAMP and protein kinase A signaling cascades in modulating the number of these mute presynaptic terminals, and dormancy induction may represent a homeostatic neuroprotective mechanism active during pathological insults involving excitotoxicity. Interestingly, dormancy reversal may also be induced during Hebbian plasticity. Here, details of synaptic dormancy, recent insights into the molecular signaling cascades involved, and potential clinical and mechanistic implications of this form of synaptic plasticity are described.
Collapse
Affiliation(s)
- Devon C Crawford
- Graduate Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | |
Collapse
|