1
|
Guida N, Serani A, Sanguigno L, Mascolo L, Cuomo O, Fioriniello S, Marano D, Ragione FD, Anzilotti S, Brancaccio P, Molinaro P, Pignataro G, Annunziato L, Formisano L. Stroke Causes DNA Methylation at Ncx1 Heart Promoter in the Brain Via DNMT1/MeCP2/REST Epigenetic Complex. J Am Heart Assoc 2024; 13:e030460. [PMID: 38456444 PMCID: PMC11010005 DOI: 10.1161/jaha.123.030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.
Collapse
Affiliation(s)
- Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Domenico Marano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| |
Collapse
|
2
|
Voogd EJHF, Frega M, Hofmeijer J. Neuronal Responses to Ischemia: Scoping Review of Insights from Human-Derived In Vitro Models. Cell Mol Neurobiol 2023; 43:3137-3160. [PMID: 37380886 PMCID: PMC10477161 DOI: 10.1007/s10571-023-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Translation of neuroprotective treatment effects from experimental animal models to patients with cerebral ischemia has been challenging. Since pathophysiological processes may vary across species, an experimental model to clarify human-specific neuronal pathomechanisms may help. We conducted a scoping review of the literature on human neuronal in vitro models that have been used to study neuronal responses to ischemia or hypoxia, the parts of the pathophysiological cascade that have been investigated in those models, and evidence on effects of interventions. We included 147 studies on four different human neuronal models. The majority of the studies (132/147) was conducted in SH-SY5Y cells, which is a cancerous cell line derived from a single neuroblastoma patient. Of these, 119/132 used undifferentiated SH-SY5Y cells, that lack many neuronal characteristics. Two studies used healthy human induced pluripotent stem cell derived neuronal networks. Most studies used microscopic measures and established hypoxia induced cell death, oxidative stress, or inflammation. Only one study investigated the effect of hypoxia on neuronal network functionality using micro-electrode arrays. Treatment targets included oxidative stress, inflammation, cell death, and neuronal network stimulation. We discuss (dis)advantages of the various model systems and propose future perspectives for research into human neuronal responses to ischemia or hypoxia.
Collapse
Affiliation(s)
- Eva J H F Voogd
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| | - Monica Frega
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
3
|
Lam XJ, Maniam S, Cheah PS, Ling KH. REST in the Road Map of Brain Development. Cell Mol Neurobiol 2023; 43:3417-3433. [PMID: 37517069 PMCID: PMC11410019 DOI: 10.1007/s10571-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries. At the cellular level, nuclear localisation of REST is a key determinant for the functional transcriptional regulation of REST towards its target genes. Emerging studies reveal the implication of REST nuclear mislocalisation or dysregulation in several neurological diseases. The expression of REST varies depending on different types of neurological disorders, which has created challenges in the discovery of REST-targeted interventions. Hence, this review presents a comprehensive summary on the physiological roles of REST throughout brain development and its implications in neurodegenerative and neurodevelopmental disorders, brain tumours and cerebrovascular diseases. This review offers valuable insights to the development of potential therapeutic approaches targeting REST to improve pathologies in the brain. The important roles of REST as a key player in the nervous system development, and its implications in several neurological diseases.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
5
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Identification and characterization of the promoter and transcription factors regulating the expression of cerebral sodium/calcium exchanger 2 (NCX2) gene. Cell Calcium 2022; 102:102542. [DOI: 10.1016/j.ceca.2022.102542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/22/2022]
|
7
|
Guida N, Mascolo L, Serani A, Cuomo O, Anzilotti S, Brancaccio P, Pignataro G, Molinaro P, Annunziato L, Formisano L. GATA3 (GATA-Binding Protein 3)/KMT2A (Lysine-Methyltransferase-2A) Complex by Increasing H3K4-3me (Trimethylated Lysine-4 of Histone-3) Upregulates NCX3 (Na +-Ca 2+ Exchanger 3) Transcription and Contributes to Ischemic Preconditioning Neuroprotection. Stroke 2021; 52:3680-3691. [PMID: 34694864 DOI: 10.1161/strokeaha.121.034637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose NCX3 (Na+-Ca2+ exchanger 3) plays a relevant role in stroke; indeed its pharmacological blockade or its genetic ablation exacerbates brain ischemic damage, whereas its upregulation takes part in the neuroprotection elicited by ischemic preconditioning. To identify an effective strategy to induce an overexpression of NCX3, we examined transcription factors and epigenetic mechanisms potentially involved in NCX3 gene regulation. Methods Brain ischemia and ischemic preconditioning were induced in vitro by exposure of cortical neurons to oxygen and glucose deprivation plus reoxygenation (OGD/Reoxy) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcripts and proteins of GATA3 (GATA-binding protein 3), KMT2A (lysine-methyltransferase-2A), and NCX3. GATA3 and KMT2A binding on NCX3 gene was evaluated by chromatin immunoprecipitation and Rechromatin immunoprecipitation experiments. Results Among the putative transcription factors sharing a consensus sequence on the ncx3 brain promoter region, GATA3 was the only able to up-regulate ncx3. Interestingly, GATA3 physically interacted with KMT2A, and their overexpression or knocking-down increased or downregulated NCX3 mRNA and protein, respectively. Notably, site-direct mutagenesis of GATA site on ncx3 brain promoter region counteracted GATA3 and KMT2A binding on NCX3 gene. More importantly, we found that in the perischemic cortical regions of preconditioned rats GATA3 recruited KMT2A and the complex H3K4-3me (trimethylated lysine-4 of histone-3) on ncx3 brain promoter region, thus reducing transient middle cerebral artery occlusion–induced damage. Consistently, in vivo silencing of either GATA3 or KMT2A prevented NCX3 upregulation and consequently the neuroprotective effect of preconditioning stimulus. The involvement of GATA3/KMT2A complex in neuroprotection elicited by ischemic preconditioning was further confirmed by in vitro experiments in which the knocking-down of GATA3 and KMT2A reverted the neuroprotection induced by NCX3 overexpression in cortical neurons exposed to anoxic preconditioning followed by oxygen and glucose deprivation plus reoxygenation. Conclusions Collectively, our results revealed that GATA3/KMT2A complex epigenetically activates NCX3 gene transcription during ischemic preconditioning.
Collapse
Affiliation(s)
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.M., O.C., P.B., G.P., P.M., L.F.)
| | - Angelo Serani
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genoa, Italy (A.S.)
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.M., O.C., P.B., G.P., P.M., L.F.)
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.M., O.C., P.B., G.P., P.M., L.F.)
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.M., O.C., P.B., G.P., P.M., L.F.)
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.M., O.C., P.B., G.P., P.M., L.F.)
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.M., O.C., P.B., G.P., P.M., L.F.)
| |
Collapse
|
8
|
Anzilotti S, Valsecchi V, Brancaccio P, Guida N, Laudati G, Tedeschi V, Petrozziello T, Frecentese F, Magli E, Hassler B, Cuomo O, Formisano L, Secondo A, Annunziato L, Pignataro G. Prolonged NCX activation prevents SOD1 accumulation, reduces neuroinflammation, ameliorates motor behavior and prolongs survival in a ALS mouse model. Neurobiol Dis 2021; 159:105480. [PMID: 34411705 DOI: 10.1016/j.nbd.2021.105480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS.
Collapse
Affiliation(s)
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Brenda Hassler
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
9
|
Tagliaferri S, Cepparulo P, Vinciguerra A, Campanile M, Esposito G, Maruotti GM, Zullo F, Annunziato L, Pignataro G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front Pediatr 2021; 9:611112. [PMID: 33777862 PMCID: PMC7991078 DOI: 10.3389/fped.2021.611112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current tests available to diagnose fetal hypoxia in-utero lack sensitivity thus failing to identify many fetuses at risk. Emerging evidence suggests that microRNAs derived from the placenta circulate in the maternal blood during pregnancy and may be used as non-invasive biomarkers for pregnancy complications. With the intent to identify putative markers of fetal growth restriction (FGR) and new therapeutic druggable targets, we examined, in maternal blood samples, the expression of a group of microRNAs, known to be regulated by hypoxia. The expression of microRNAs was evaluated in maternal plasma samples collected from (1) women carrying a preterm FGR fetus (FGR group) or (2) women with an appropriately grown fetus matched at the same gestational age (Control group). To discriminate between early- and late-onset FGR, the study population was divided into two subgroups according to the gestational age at delivery. Four microRNAs were identified as possible candidates for the diagnosis of FGR: miR-16-5p, miR-103-3p, miR-107-3p, and miR-27b-3p. All four selected miRNAs, measured by RT-PCR, resulted upregulated in FGR blood samples before the 32nd week of gestation. By contrast, miRNA103-3p and miRNA107-3p, analyzed between the 32nd and 37th week of gestation, showed lower expression in the FGR group compared to aged matched controls. Our results showed that measurement of miRNAs in maternal blood may form the basis for a future diagnostic test to determine the degree of fetal hypoxia in FGR, thus allowing the start of appropriate therapeutic interventions to alleviate the burden of this disease.
Collapse
Affiliation(s)
- Salvatore Tagliaferri
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Marta Campanile
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppina Esposito
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Maria Maruotti
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Fulvio Zullo
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
10
|
Vinciguerra A, Cepparulo P, Anzilotti S, Cuomo O, Valsecchi V, Amoroso S, Annunziato L, Pignataro G. Remote postconditioning ameliorates stroke damage by preventing let-7a and miR-143 up-regulation. Theranostics 2020; 10:12174-12188. [PMID: 33204336 PMCID: PMC7667695 DOI: 10.7150/thno.48135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
Remote limb ischemic postconditioning (RLIP) is a well-established neuroprotective strategy able to protect the brain from a previous harmful ischemic insult through a sub-lethal occlusion of the femoral artery. Neural and humoral mechanisms have been proposed as mediators required to transmit the peripheral signal from limb to brain. Moreover, different studies suggest that protection observed at brain level is associated to a general genetic reprogramming involving also microRNAs (miRNAs) intervention. Methods: Brain ischemia was induced in male rats by transient occlusion of the middle cerebral artery (tMCAO), whereas RLIP was achieved by one cycle of temporary occlusion of the ipsilateral femoral artery after tMCAO. The expression profile of 810 miRNAs was evaluated in ischemic brain samples from rats subjected either to tMCAO or to RLIP. Among all analyzed miRNAs, there were four whose expression were upregulated after stroke and returned to basal level after RLIP, thus suggesting a possible involvement in RLIP-induced neuroprotection. These selected miRNAs were intracerebroventricularly infused in rats subjected to remote ischemic postconditioning, and their effect was evaluated in terms of brain damage, neurological deficit scores and expression of putative targets. Results: Twenty-one miRNAs, whose expression was significantly affected by tMCAO and by tMCAO plus RLIP, were selected based on microarray microfluidic profiling. Our data showed that: (1) stroke induced an up-regulation of let-7a and miR-143 (2) these two miRNAs were involved in the protective effects induced by RLIP and (3) HIF1-α contributes to their protective effect. Indeed, their expression was reduced after RLIP and the exogenous intracerebroventricularly infusion of let-7a and miR-143 mimics prevented neuroprotection and HIF1-α overexpression induced by RLIP. Conclusions: Prevention of cerebral let-7a and miR-143 overexpression induced by brain ischemia emerges as new potential strategy in stroke intervention.
Collapse
|
11
|
Formisano L, Laudati G, Guida N, Mascolo L, Serani A, Cuomo O, Cantile M, Boscia F, Molinaro P, Anzilotti S, Pizzorusso V, Di Renzo G, Pignataro G, Annunziato L. HDAC4 and HDAC5 form a complex with DREAM that epigenetically down-regulates NCX3 gene and its pharmacological inhibition reduces neuronal stroke damage. J Cereb Blood Flow Metab 2020; 40:2081-2097. [PMID: 31696766 PMCID: PMC7786841 DOI: 10.1177/0271678x19884742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The histone deacetylases (HDACs)-dependent mechanisms regulating gene transcription of the Na+/Ca+ exchanger isoform 3 (ncx3) after stroke are still unknown. Overexpression or knocking-down of HDAC4/HDAC5 down-regulates or increases, respectively, NCX3 mRNA and protein. Likewise, MC1568 (class IIa HDACs inhibitor), but not MS-275 (class I HDACs inhibitor) increased NCX3 promoter activity, gene and protein expression. Furthermore, HDAC4 and HDAC5 physically interacted with the transcription factor downstream regulatory element antagonist modulator (DREAM). As MC1568, DREAM knocking-down prevented HDAC4 and HDAC5 recruitment to the ncx3 promoter. Importantly, DREAM, HDAC4, and HDAC5 recruitment to the ncx3 gene was increased in the temporoparietal cortex of rats subjected to transient middle cerebral artery occlusion (tMCAO), with a consequent histone-deacetylation of ncx3 promoter. Conversely, the tMCAO-induced NCX3 reduction was prevented by intracerebroventricular injection of siDREAM, siHDAC4, and siHDAC5. Notably, MC1568 prevented oxygen glucose deprivation plus reoxygenation and tMCAO-induced neuronal damage, whereas its neuroprotective effect was abolished by ncx3 knockdown. Collectively, we found that: (1) DREAM/HDAC4/HDAC5 complex epigenetically down-regulates ncx3 gene transcription after stroke, and (2) pharmacological inhibition of class IIa HDACs reduces stroke-induced neurodetrimental effects.
Collapse
Affiliation(s)
- Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Cantile
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Vincenzo Pizzorusso
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | |
Collapse
|
12
|
Zhang AP, Zhang YY, Liu AF, Wang K, Li C, Liu YE, Zhang YQ, Zhou J, Lv J, Jiang WJ. Molecular mechanism of long-term neuroprotective effects of gradual flow restoration on cerebral ischemia reperfusion injury in MCAO rats. J Stroke Cerebrovasc Dis 2020; 29:105041. [PMID: 32807453 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischemia-reperfusion injuries (IRIs) can aggravate the condition of some patients with acute occlusion of major intracranial artery (AOMIA) who received endovascular thrombectomy. Here, we provided data confirming the association of Repressor Element-1 Silencing Transcription factor (REST) with the long-term neuroprotective effect of the middle cerebral artery occlusion (MCAO) rats underwent Gradual Flow Restoration (GFR). METHODS Long term neuroprotective effects of GFR intervention were evaluated on MCAO rats model after 3d and 7d reperfusion. The neurological deficit score and TTC staining were performed to evaluate the degree of brain damage in GFR and other interventions at different time. Differentially expressed genes related to cerebral ischemia reperfusion injury (CIRI) were initially screened and identified using GSE32529 microarray analysis. REST protein expression in rat brain cortex infarction was detected by Western blot analysis. RESULTS MCAO rats intervened with GFR exhibited reduced neurological deficit (P < 0.05) and alleviated brain infarction volume (P < 0.01). The REST gene with up-regulated expression and its downstream genes with down-regulated expression were screened by Microarray analysis. The brain cortex infarction in MCAO rats produced high levels of REST expression. The GFR intervention inhibited REST expression, and alleviated brain injury on MCAO rats. CONCLUSION Our results demonstrated that GFR intervention plays a long-term neuroprotective role and reduces brain edema and damage at reperfusion, possibly by inhibiting REST expression.
Collapse
Affiliation(s)
- Ai-Ping Zhang
- Medical College of Soochow University, Suzhou, Jiangsu 215123; The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China; Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Ying-Ying Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Ao-Fei Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Kai Wang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Chen Li
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Yun-E Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Yi-Qun Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Ji Zhou
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Jin Lv
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China; Central Laboratory of Research Department, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR china.
| | - Wei-Jian Jiang
- Medical College of Soochow University, Suzhou, Jiangsu 215123; The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China; Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China.
| |
Collapse
|
13
|
Pignataro G, Brancaccio P, Laudati G, Valsecchi V, Anzilotti S, Casamassa A, Cuomo O, Vinciguerra A. Sodium/calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance. Cell Calcium 2020; 87:102183. [PMID: 32120196 DOI: 10.1016/j.ceca.2020.102183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger.
Collapse
Affiliation(s)
- G Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| | - P Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - G Laudati
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - V Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | | | - A Casamassa
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
14
|
Natale S, Anzilotti S, Petrozziello T, Ciccone R, Serani A, Calabrese L, Severino B, Frecentese F, Secondo A, Pannaccione A, Fiorino F, Cuomo O, Vinciguerra A, D'Esposito L, Sadile AG, Cabib S, Di Renzo G, Annunziato L, Molinaro P. Genetic Up-Regulation or Pharmacological Activation of the Na +/Ca 2+ Exchanger 1 (NCX1) Enhances Hippocampal-Dependent Contextual and Spatial Learning and Memory. Mol Neurobiol 2020; 57:2358-2376. [PMID: 32048166 DOI: 10.1007/s12035-020-01888-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 01/23/2023]
Abstract
The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes.
Collapse
Affiliation(s)
- Silvia Natale
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucia D'Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Simona Cabib
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, 00185, Rome, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
15
|
Annunziato L, Secondo A, Pignataro G, Scorziello A, Molinaro P. New perspectives for selective NCX activators in neurodegenerative diseases. Cell Calcium 2020; 87:102170. [PMID: 32106022 DOI: 10.1016/j.ceca.2020.102170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
The Na+/Ca2+ exchanger plays a relevant role in several neurological disorders, thus the pharmacological modulation of its isoforms might represent a promising strategy to ameliorate the course of some neurological pathologies including stroke, neonatal hypoxia, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer Disease (AD), and spinal muscular atrophy (SMA). This review will summarize heterocyclic, peptidergic, genetic and epigenetic compounds activating or inhibiting the expression/activity of each NCX isoform. In addition, we will focus our attention on the development of new strategies aimed to ameliorate the pathophysiological conditions in which NCX isoform changes are found.
Collapse
Affiliation(s)
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.
| |
Collapse
|
16
|
Valsecchi V, Anzilotti S, Serani A, Laudati G, Brancaccio P, Guida N, Cuomo O, Pignataro G, Annunziato L. miR-206 Reduces the Severity of Motor Neuron Degeneration in the Facial Nuclei of the Brainstem in a Mouse Model of SMA. Mol Ther 2020; 28:1154-1166. [PMID: 32075715 DOI: 10.1016/j.ymthe.2020.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting infants caused by alterations of the survival motor neuron gene, which results in progressive degeneration of motor neurons (MNs). Although an effective treatment for SMA patients has been recently developed, the molecular pathway involved in selective MN degeneration has not been yet elucidated. In particular, miR-206 has been demonstrated to play a relevant role in the regeneration of neuromuscular junction in several MN diseases, and particularly it is upregulated in the quadriceps, tibialis anterior, spinal cord, and serum of SMA mice. In the present paper, we demonstrated that miR-206 was transiently upregulated also in the brainstem of the mouse model of SMA, SMAΔ7, in the early phase of the disease paralleling MN degeneration and was down-regulated in the late symptomatic phase. To prevent this downregulation, we intracerebroventricularly injected miR-206 in SMA pups, demonstrating that miR-206 reduced the severity of SMA pathology, slowing down disease progression, increasing survival rate, and improving behavioral performance of mice. Interestingly, exogenous miRNA-206-induced upregulation caused a reduction of the predicted target sodium calcium exchanger isoform 2, NCX2, one of the main regulators of intracellular [Ca2+] and [Na+]. Therefore, we hypothesized that miR-206 might exert part of its neuroprotective effect modulating NCX2 expression in SMA disease.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | |
Collapse
|
17
|
Larrick JW, Mendelsohn AR. Increased REST to Optimize Life Span? Rejuvenation Res 2019; 22:529-532. [PMID: 31762373 DOI: 10.1089/rej.2019.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reduced levels of neural activity are associated with a longer life span in the nematode Caenorhabditis elegans and in mice. Augmented neural activity is associated with a shorter life span. Recent studies show that levels of repressor element 1-silencing transcription factor (REST) increase with normal aging in mice and humans, and reduce neuronal excitation. In C. elegans, increased expression of spr-4, a functional REST homologue, increased the worm life span and is required for classical life span increase mediated by reduced DAF-2/insulin-IGF-1 and increased DAF-16. Preliminary evidence shows that REST and FOXO1, a DAF-16, homologue increase during mammalian aging, and that REST activity is needed for the age-related FOXO1 increase. On the contrary, REST is activated in epilepsy and plays a role in the pathogenesis of Huntington's disease. A simple unifying hypothesis suggests that REST is a "goldilocks-effect factor": too little REST promotes excitotoxic activity, which in turn leads to neurodegenerative diseases such as Alzheimer's. Appropriate increased levels of REST maintain the excitation/inhibition (E-I) balance by reducing potential excitotoxic activity. Increased levels of REST beyond this are toxic as neurons become dysfunctional due to loss of a neuronal phenotype.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
18
|
Morris-Blanco KC, Kim T, Bertogliat MJ, Mehta SL, Chokkalla AK, Vemuganti R. Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Mol Neurobiol 2019; 56:2542-2550. [PMID: 30039336 PMCID: PMC6344325 DOI: 10.1007/s12035-018-1254-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023]
Abstract
Cerebral ischemia is known to activate the repressor element-1 (RE1)-silencing transcription factor (REST) which silences neural genes via epigenetic remodeling and promotes neurodegeneration. We presently determined if REST inhibition derepresses target genes involved in synaptic plasticity and promotes functional outcome after experimental stroke. Following transient focal ischemia induced by middle cerebral artery occlusion (MCAO) in adult rats, REST expression was upregulated significantly from 12 h to 1 day of reperfusion compared to sham control. At 1 day of reperfusion, REST protein levels were increased and observed in the nuclei of neurons in the peri-infarct cortex. REST knockdown by intracerebral REST siRNA injection significantly reduced the post-ischemic expression of REST and increased the expression of several REST target genes, compared to control siRNA group. REST inhibition also decreased post-ischemic markers of apoptosis, reduced cortical infarct volume, and improved post-ischemic functional recovery on days 5 and 7 of reperfusion compared to the control siRNA group. REST knockdown resulted in a global increase in synaptic plasticity gene expression at 1 day of reperfusion compared to the control siRNA group and significantly increased several synaptic plasticity genes containing RE-1 sequences in their regulatory regions. These results demonstrate that direct inhibition of the epigenetic remodeler REST prevents secondary brain damage in the cortex and improves functional outcome potentially via de-repression of plasticity-related genes after stroke.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA.
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Resveratrol treatment reduces the vulnerability of SH-SY5Y cells and cortical neurons overexpressing SOD1-G93A to Thimerosal toxicity through SIRT1/DREAM/PDYN pathway. Neurotoxicology 2018; 71:6-15. [PMID: 30503815 DOI: 10.1016/j.neuro.2018.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
In humans, mutation of glycine 93 to alanine of Cu++/Zn++ superoxide dismutase type-1 (SOD1-G93 A) has been associated to some familial cases of Amyotrophic Lateral Sclerosis (ALS). Several evidence proposed the involvement of environmental pollutants that like mercury could accelerate ALS symptoms. SH-SY5Y cells stably transfected with SOD1 and G93 A mutant of SOD1 constructs were exposed to non-toxic concentrations (0.01 μM) of ethylmercury thiosalicylate (thimerosal) for 24 h. Interestingly, we found that thimerosal, in SOD1-G93 A cells, but not in SOD1 cells, reduced cell survival. Furthermore, thimerosal-induced cell death occurred in a concentration dependent-manner and was prevented by the Sirtuin 1 (SIRT1) activator Resveratrol (RSV). Moreover, thimerosal decreased the protein expression of transcription factor Downstream Regulatory Element Antagonist Modulator (DREAM), but not DREAM gene. Interestingly, DREAM reduction was blocked by co-treatment with RSV, suggesting the participation of SIRT1 in determining this effect. Immunoprecipitation experiments in SOD1-G93 A cells exposed to thimerosal demonstrated that RSV increased DREAM deacetylation and reduced its polyubiquitination. In addition, RSV counteracted thimerosal-enhanced prodynorphin (PDYN) mRNA, a DREAM target gene. Furthermore, cortical neurons transiently transfected with SOD1-G93 A construct and exposed to thimerosal (0.5 μM/24 h) showed a reduction of DREAM and an up-regulation of the prodynorphin gene. Importantly, both the treatment with RSV or the transfection of siRNA against prodynorphin significantly reduced thimerosal-induced neurotoxicity, while DREAM knocking-down potentiated thimerosal-reduced cell survival. These results demonstrate the particular vulnerability of SOD1-G93 A neuronal cells to thimerosal and that RSV via SIRT1 counteracts the neurodetrimental effect of this toxicant by preventing DREAM reduction and prodynorphin up-regulation.
Collapse
|
20
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
21
|
Hwang JY, Zukin RS. REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol 2018; 48:193-200. [PMID: 29351877 DOI: 10.1016/j.conb.2017.12.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
The restrictive element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor (NRSF) is a transcriptional repressor which acts via epigenetic remodeling to silence target genes. Emerging evidence indicates that REST is a master transcriptional regulator of neuron-specific genes not only in neurogenesis and neuronal differentiation, but also in differentiated neurons during the critical period in postnatal brain development, where it plays a role in fine-tuning of genes involved in synaptic plasticity, and in normal aging, where it promotes neuroprotection by repressing genes involved in oxidative stress and β-amyloid toxicity. This review focuses on recent findings that dysregulation of REST and REST-dependent epigenetic remodeling provide a central mechanism critical to the progressive neurodegeneration associated with neurologic disorders and diseases including global ischemia, stroke, epilepsy, Alzheimer's and Huntington's disease.
Collapse
Affiliation(s)
- Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 610, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 610, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| |
Collapse
|
22
|
Guida N, Laudati G, Serani A, Mascolo L, Molinaro P, Montuori P, Di Renzo G, Canzoniero LM, Formisano L. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death. Biochem Pharmacol 2017; 142:229-241. [DOI: 10.1016/j.bcp.2017.06.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
23
|
The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 2017; 18:347-361. [PMID: 28515491 DOI: 10.1038/nrn.2017.46] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms - including DNA methylation, histone post-translational modifications and changes in nucleosome positioning - regulate gene expression, cellular differentiation and development in almost all tissues, including the brain. In adulthood, changes in the epigenome are crucial for higher cognitive functions such as learning and memory. Striking new evidence implicates the dysregulation of epigenetic mechanisms in neurodegenerative disorders and diseases. Although these disorders differ in their underlying causes and pathophysiologies, many involve the dysregulation of restrictive element 1-silencing transcription factor (REST), which acts via epigenetic mechanisms to regulate gene expression. Although not somatically heritable, epigenetic modifications in neurons are dynamic and reversible, which makes them good targets for therapeutic intervention.
Collapse
|
24
|
Guida N, Laudati G, Mascolo L, Valsecchi V, Sirabella R, Selleri C, Di Renzo G, Canzoniero LMT, Formisano L. p38/Sp1/Sp4/HDAC4/BDNF Axis Is a Novel Molecular Pathway of the Neurotoxic Effect of the Methylmercury. Front Neurosci 2017; 11:8. [PMID: 28154524 PMCID: PMC5243805 DOI: 10.3389/fnins.2017.00008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022] Open
Abstract
The molecular pathways involved in methylmercury (MeHg)-induced neurotoxicity are not fully understood. Since pan-Histone deacetylases (HDACs) inhibition has been found to revert the neurodetrimental effect of MeHg, it appeared of interest to investigate whether the pattern of HDACs isoform protein expression is modified during MeHg-induced neurotoxicity and the transcriptional/transductional mechanisms involved. SH-SY5Y neuroblastoma cells treated with MeHg 1 μM for 12 and 24 h showed a significant increase of HDAC4 protein and gene expression, whereas the HDACs isoforms 1–3, 5, and 6 were unmodified. Furthermore, MeHg-induced HDAC4 increase was reverted when cells were transfected with siRNAs against specificity protein 1 (Sp1) and Sp4, that were both increased during MeHg exposure. Next we studied the role of extracellular-signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (MAPKs) in MeHg—induced increase of Sp1, Sp4, and HDAC4 expression. As shown by Western Blot analysis MeHg exposure increased the phosphorylation of p38, but not of ERK and JNK. Notably, when p38 was pharmacologically blocked, MeHg-induced Sp1, Sp4 protein expression, and HDAC4 protein and gene expression was reverted. In addition, MeHg exposure increased the binding of HDAC4 to the promoter IV of the Brain-derived neurotrophic factor (BDNF) gene, determining its mRNA reduction, that was significantly counteracted by HDAC4 knocking down. Furthermore, rat cortical neurons exposed to MeHg (1 μM/24 h) showed an increased phosphorylation of p38, in parallel with an up-regulation of Sp1, Sp4, and HDAC4 and a down-regulation of BDNF proteins. Importantly, transfection of siRNAs against p38, Sp1, Sp4, and HDAC4 or transfection of vector overexpressing BDNF significantly blocked MeHg-induced cell death in cortical neurons. All these results suggest that p38/Sp1-Sp4/HDAC4/BDNF may represent a new pathway involved in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples Naples, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno Salerno, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples Naples, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of NaplesNaples, Italy; Division of Pharmacology, Department of Science and Technology, University of SannioBenevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of NaplesNaples, Italy; Division of Pharmacology, Department of Science and Technology, University of SannioBenevento, Italy
| |
Collapse
|
25
|
Mao HF, Xie J, Chen JQ, Tang CF, Chen W, Zhou BC, Chen R, Qu HL, Wu CZ. Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury. Neural Regen Res 2017; 12:596-602. [PMID: 28553340 PMCID: PMC5436358 DOI: 10.4103/1673-5374.205099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I), a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX-I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration.
Collapse
Affiliation(s)
- Hai-Feng Mao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.,College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Jun Xie
- College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Jia-Qin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Wei Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Bo-Cun Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Rui Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Hong-Lin Qu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.,College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Chu-Zu Wu
- College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| |
Collapse
|
26
|
Molinaro P, Sirabella R, Pignataro G, Petrozziello T, Secondo A, Boscia F, Vinciguerra A, Cuomo O, Philipson KD, De Felice M, Di Lauro R, Di Renzo G, Annunziato L. Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt. J Cereb Blood Flow Metab 2016; 36:1790-1803. [PMID: 26661211 PMCID: PMC5076784 DOI: 10.1177/0271678x15611913] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
Three different Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are expressed in brain where they play a relevant role in maintaining Na+ and Ca2+ homeostasis. Although the neuroprotective roles of NCX2 and NCX3 in stroke have been elucidated, the relevance of NCX1 is still unknown because of embryonic lethality of its knocking-out, heart dysfunctions when it is overexpressed, and the lack of selectivity in currently available drugs. To overcome these limitations we generated two conditional genetically modified mice that upon tamoxifen administration showed a selective decrease or increase of NCX1 in cortical and hippocampal neurons. Interestingly, in cortex and hippocampus NCX1 overexpression increased, where NCX1 knock-out reduced, both exchanger activity and Akt1 phosphorylation, a neuronal survival signaling. More important, mice overexpressing NCX1 showed a reduced ischemic volume and an amelioration of focal and general deficits when subjected to transient middle cerebral artery occlusion. Conversely, NCX1-knock-out mice displayed a worsening of brain damage, focal and neurological deficits with a decrease in Akt phosphorylation. These results support the idea that NCX1 overexpression/activation may represent a feasible therapeutic opportunity in stroke intervention.
Collapse
Affiliation(s)
- Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Rossana Sirabella
- Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Kenneth D Philipson
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechology, "Federico II" University of Naples, Naples, Italy IRGS, Biogem S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Roberto Di Lauro
- Department of Molecular Medicine and Medical Biotechology, "Federico II" University of Naples, Naples, Italy IRGS, Biogem S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
27
|
Cuomo O, Pignataro G, Sirabella R, Molinaro P, Anzilotti S, Scorziello A, Sisalli MJ, Di Renzo G, Annunziato L. Sumoylation of LYS590 of NCX3 f-Loop by SUMO1 Participates in Brain Neuroprotection Induced by Ischemic Preconditioning. Stroke 2016; 47:1085-93. [PMID: 26979866 DOI: 10.1161/strokeaha.115.012514] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning. In this study, we evaluated whether NCX3 is a target for sumoylation and whether this posttranslational modification participates in ischemic preconditioning-induced neuroprotection. To test these hypotheses, we analyzed (1) SUMO1 conjugation pattern after ischemic preconditioning; (2) the effect of SUMO1 knockdown on the ischemic damage after transient middle cerebral artery occlusion and ischemic preconditioning, (3) the possible interaction between SUMO1 and NCX3 and (4) the molecular determinants of NCX3 sequence responsible for sumoylation. METHODS Focal brain ischemia and ischemic preconditioning were induced in rats by middle cerebral artery occlusion. SUMOylation was evaluated by western blot and immunohistochemistry. SUMO1 and NCX3 interaction was analyzed by site-directed mutagenesis and immunoprecipitation assay. RESULTS We found that (1) SUMO1 knockdown worsened ischemic damage and reduced the protective effect of preconditioning; (2) SUMO1 bound to NCX3 at lysine residue 590, and its silencing increased NCX3 degradation; and (3) NCX3 sumoylation participates in SUMO1 protective role during ischemic preconditioning. Thus, our results demonstrate that NCX3 sumoylation confers additional neuroprotection in ischemic preconditioning. CONCLUSIONS Finally, this study suggests that NCX3 sumoylation might be a new target to enhance ischemic preconditioning-induced neuroprotection.
Collapse
Affiliation(s)
- Ornella Cuomo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Giuseppe Pignataro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Rossana Sirabella
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Pasquale Molinaro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Serenella Anzilotti
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Antonella Scorziello
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Maria Josè Sisalli
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Gianfranco Di Renzo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Lucio Annunziato
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.).
| |
Collapse
|
28
|
Mehta SL, Kim T, Vemuganti R. Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. J Neurosci 2015; 35:16443-9. [PMID: 26674869 PMCID: PMC4679824 DOI: 10.1523/jneurosci.2943-15.2015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/15/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022] Open
Abstract
Ischemia induces extensive temporal changes in cerebral transcriptome that influences the neurologic outcome after stroke. In addition to protein-coding RNAs, many classes of noncoding RNAs, including long noncoding RNAs (LncRNAs), also undergo changes in the poststroke brain. We currently evaluated the functional significance of an LncRNA called Fos downstream transcript (FosDT) that is cogenic with Fos gene. Following transient middle cerebral artery occlusion (MCAO) in adult rats, expression of FosDT and Fos was induced. FosDT knockdown significantly ameliorated the postischemic motor deficits and reduced the infarct volume. Focal ischemia also increased FosDT binding to chromatin-modifying proteins (CMPs) Sin3a and coREST (corepressors of the transcription factor REST). Furthermore, FosDT knockdown derepressed REST-downstream genes GRIA2, NFκB2, and GRIN1 in the postischemic brain. Thus, FosDT induction and its interactions with REST-associated CMPs, and the resulting regulation of REST-downstream genes might modulate ischemic brain damage. LncRNAs, such as FosDT, can be therapeutically targeted to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Mammalian brain is abundantly enriched with long noncoding RNAs (LncRNAs). Functional roles of LncRNAs in normal and pathological states are not yet understood. This study identified that LncRNA FosDT induced after transient focal ischemia modulates poststroke behavioral deficits and brain damage. These effects of FosDT in part are due to its interactions with chromatin-modifying proteins Sin3a and coREST (corepressors of the transcription factor REST) and subsequent derepression of REST-downstream genes GRIA2, NFκB2, and GRIN1. Therefore, LncRNA-mediated epigenetic remodeling could determine stroke outcome.
Collapse
Affiliation(s)
| | - TaeHee Kim
- Department of Neurological Surgery, Neuroscience Training Program, and
| | - Raghu Vemuganti
- Department of Neurological Surgery, Neuroscience Training Program, and Cellular and Molecular Pathology Training Program, University of Wisconsin, Madison, Wisconsin 53792
| |
Collapse
|
29
|
Methylmercury upregulates RE-1 silencing transcription factor (REST) in SH-SY5Y cells and mouse cerebellum. Neurotoxicology 2015; 52:89-97. [PMID: 26610923 DOI: 10.1016/j.neuro.2015.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023]
Abstract
Methylmercury (MeHg) is a highly neurotoxic compound that, in adequate doses, can cause damage to the brain, including developmental defects and in severe cases cell death. The RE-1-silencing transcription factor (REST) has been found to be involved in the neurotoxic effects of environmental pollutants such as polychlorinated biphenyls (PCBs). In this study, we investigated the effects of MeHg treatment on REST expression and its role in MeHg-induced neurotoxicity in neuroblastoma SH-SY5Y cells. We found that MeHg exposure caused a dose- and time- dependent apoptotic cell death, as evidenced by the appearance of apoptotic hallmarks including caspase-3 processing and annexin V uptake. Moreover, MeHg increased REST gene and gene product expression. MeHg-induced apoptotic cell death was completely abolished by REST knockdown. Interestingly, MeHg (1μM/24h) increased the expression of REST Corepressor (Co-REST) and its binding with REST whereas the other REST cofactor mammalian SIN3 homolog A transcription regulator (mSin3A) was not modified. In addition, we demonstrated that the acetylation of histone protein H4 was reduced after MeHg treatment and was critical for MeHg-induced apoptosis. Accordingly, the pan-histone deacetylase inhibitor trichostatin-A (TSA) prevented MeHg-induced histone protein H4 deacetylation, thereby reverting MeHg-induced neurotoxic effect. Male mice subcutaneously injected with 10mg/kg of MeHg for 10 days showed an increase in REST expression in the granule cell layer of the cerebellum together with a decrease in histone H4 acetylation. Collectively, we demonstrated that methylmercury exposure can cause neurotoxicity by activating REST gene expression and H4 deacetylation.
Collapse
|
30
|
Guida N, Laudati G, Anzilotti S, Secondo A, Montuori P, Di Renzo G, Canzoniero LMT, Formisano L. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death. Toxicol Appl Pharmacol 2015; 288:387-98. [PMID: 26307266 DOI: 10.1016/j.taap.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.
Collapse
Affiliation(s)
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, 'Federico II' University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
31
|
Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci 2015; 35:7332-48. [PMID: 25972164 DOI: 10.1523/jneurosci.2174-14.2015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E. Furthermore, by transient middle cerebral artery occlusion (tMCAO) in rats, the transcriptional repressors Sp3 and REST colocalized with the two histone-deacetylases (HDACs) HDAC1 and HDAC2 on the ncx1-Br, with a consequent hypoacetylation. Contrarily, in PC+tMCAO the transcriptional activators Sp1 and HIF-1 colocalized with histone acetyltransferase p300 on ncx1-Br with a consequent hyperacetylation. In addition, in neurons silenced with siRNA of NCX1 and subjected to oxygen and glucose deprivation (OGD) (3 h) plus reoxygenation (RX) (24 h), the neuroprotection of Class I HDAC inhibitor MS-275 was counteracted, whereas in neurons overexpressing NCX1 and subjected to ischemic preconditioning (PC+OGD/RX), the neurotoxic effect of p300 inhibitor C646 was prevented. Collectively, these results demonstrate that NCX1 expression is regulated by the Sp3/REST/HDAC1/HDAC2 complex in tMCAO and by the Sp1/HIF-1/p300 complex in PC+tMCAO and that epigenetic intervention, by modulating the acetylation of ncx1-Br, may be a strategy for the development of innovative therapeutic intervention in stroke.
Collapse
|
32
|
Formisano L, Guida N, Laudati G, Mascolo L, Di Renzo G, Canzoniero LMT. MS-275 inhibits aroclor 1254-induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter. J Pharmacol Exp Ther 2015; 352:236-43. [PMID: 25467131 DOI: 10.1124/jpet.114.219345] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polychlorinated biphenyl (PCB) exposure has been associated with neurodegenerative diseases, such as Parkinson's disease, amyotrophic lateral sclerosis, and dementia. Neuronal death elicited by the PCB mixture Aroclor 1254 (A1254) has been attributed to an increase in RE-1-silencing transcription factor (REST), which, in turn, correlates with a decrease in the synapsin-1 promoter gene. Although histone deacetylase (HDAC) inhibitors are known to be neuroprotective in several neurologic disorders, the core mechanisms governing this effect are not yet understood. Here, to examine how HDAC class I [N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)aminomethyl]-benzamide (MS-275)] and HDAC class II [3-[5-(3-(3-fluorophenyl)-3-oxopropen-1-yl)-1-methyl-1H-pyrrol-2-yl]-N-hydroxy-2-propenamide (MC-1568)] inhibitors prevent A1254-induced neuronal cell death, we exposed SH-SY5Y neuroblastoma cells to A1254. Exposure to A1254 (30.6 μM) for 24 and 48 hours resulted in a time-dependent cell death. Indeed, after 48 hours, MS-275, but not MC-1568, reverted A1254-induced cell death in a dose-dependent manner. Furthermore, A1254 significantly increased HDAC3, but not HDAC1 or HDAC2. Interestingly, REST physically interacted with HDAC3 after A1254 exposure. Chromatin immunoprecipitation assays revealed that MS-275 reverted the increased levels of HDAC3 binding and decreased acetylation of histone H3 within the synapsin-1 promoter region, thus reverting synapsin-1 mRNA reduction. Moreover, REST knockdown by small interfering RNA (siRNA) prevented HDAC3 from binding to the synapsin-1 promoter. Likewise, HDAC3 siRNA significantly reduced A1254-induced cell toxicity in SH-SY5Y cells and cortical neurons. Hence, this study demonstrates that inhibition of HDAC class I attenuates A1254-induced neuronal cell death by preventing HDAC3 binding and histone deacetylation within the synapsin-1 promoter region.
Collapse
Affiliation(s)
- Luigi Formisano
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy (L.F., L.M.T.C.); and Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.F., N.G., G.L., L.M., G.D.R., L.M.T.C.)
| | - Natascia Guida
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy (L.F., L.M.T.C.); and Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.F., N.G., G.L., L.M., G.D.R., L.M.T.C.)
| | - Giusy Laudati
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy (L.F., L.M.T.C.); and Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.F., N.G., G.L., L.M., G.D.R., L.M.T.C.)
| | - Luigi Mascolo
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy (L.F., L.M.T.C.); and Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.F., N.G., G.L., L.M., G.D.R., L.M.T.C.)
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy (L.F., L.M.T.C.); and Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.F., N.G., G.L., L.M., G.D.R., L.M.T.C.)
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy (L.F., L.M.T.C.); and Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy (L.F., N.G., G.L., L.M., G.D.R., L.M.T.C.)
| |
Collapse
|
33
|
A new cell-penetrating peptide that blocks the autoinhibitory XIP domain of NCX1 and enhances antiporter activity. Mol Ther 2014; 23:465-76. [PMID: 25582710 DOI: 10.1038/mt.2014.231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/26/2014] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane Na(+)/Ca(2+) exchanger (NCX) is a high-capacity ionic transporter that exchanges 3Na(+) ions for 1Ca(2+) ion. The first 20 amino acids of the f-loop, named exchanger inhibitory peptide (XIP(NCX1)), represent an autoinhibitory region involved in the Na(+)-dependent inactivation of the exchanger. Previous research has shown that an exogenous peptide having the same amino acid sequence as the XIP(NCX1) region exerts an inhibitory effect on NCX activity. In this study, we identified another regulatory peptide, named P1, which corresponds to the 562-688aa region of the exchanger. Patch-clamp analysis revealed that P1 increased the activity of the exchanger, whereas the XIP inhibited it. Furthermore, P1 colocalized with NCX1 thus suggesting a direct binding interaction. In addition, site-directed mutagenesis experiments revealed that the binding and the stimulatory effect of P1 requires a functional XIP(NCX1) domain on NCX1 thereby suggesting that P1 increases the exchanger activity by counteracting the action of this autoinhibitory sequence. Taken together, these results open a new strategy for developing peptidomimetic compounds that, by mimicking the functional pharmacophore of P1, might increase NCX1 activity and thus exert a therapeutic action in those diseases in which an increase in NCX1 activity might be helpful.
Collapse
|
34
|
Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol Appl Pharmacol 2014; 280:190-8. [DOI: 10.1016/j.taap.2014.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/24/2022]
|
35
|
Formisano L, Guida N, Laudati G, Boscia F, Esposito A, Secondo A, Di Renzo G, Canzoniero LMT. Extracellular signal-related kinase 2/specificity protein 1/specificity protein 3/repressor element-1 silencing transcription factor pathway is involved in Aroclor 1254-induced toxicity in SH-SY5Y neuronal cells. J Neurosci Res 2014; 93:167-77. [PMID: 25093670 DOI: 10.1002/jnr.23464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) cause a wide spectrum of toxic effects in the brain through undefined mechanisms. Exposure to the PCB mixture Aroclor-1254 (A1254) increases the repressor element-1 silencing transcription factor (REST) expression, leading to neuronal death. This study sought to understand the sequence of some molecular mechanisms to determine whether A1254 could increase REST expression and the cytoprotective effect of the phorbol ester tetradecanoylphorbol acetate (TPA) on A1254-induced toxicity in SH-SY5Y cells. As shown by Western blot analysis, A1254 (10 µg/ml) downregulates extracellular signal-related kinase 2 (ERK2) phosphorylation in a time-dependent manner, thereby triggering the binding of specificity protein 1 (Sp1) and Sp3 to the REST gene promoter as revealed by chromatin immunoprecipitation analysis. This chain of events results in an increase in REST mRNA and cell death, as assessed by quantitative real-time polymerase chain reaction and dimethylthiazolyl-2-5-diphenyltetrazolium-bromide assay, respectively. Accordingly, TPA prevented both the A1254-induced decrease in ERK2 phosphorylation and the A1254-induced increase in Sp1, Sp3, and REST protein expression. After 48 hr, TPA prevented A1254-induced cell death. ERK2 overexpression counteracted the A1254-induced increase in Sp1 and Sp3 protein expression and prevented A1254-induced Sp1 and Sp3 binding to the REST gene promoter, thus counteracting the increase in REST mRNA expression induced by the toxicant. In neuroblastoma SH-SY5Y cells, ERK2/Sp1/SP3/REST is a new pathway underlying the neurotoxic effect of PCB. The ERK2/Sp1/Sp3/REST pathway, which underlies A1254-induced neuronal death, might represent a new drug signaling cascade in PCB-induced neuronal toxicity.
Collapse
Affiliation(s)
- Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fernandes J, Vieira M, Carreto L, Santos MAS, Duarte CB, Carvalho AL, Santos AE. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS One 2014; 9:e99958. [PMID: 24960035 PMCID: PMC4069008 DOI: 10.1371/journal.pone.0099958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022] Open
Abstract
Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD, total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes, whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD, confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins, such as those encoding for PICK1, GRIP1, TARPγ3, calsyntenin-2/3, SAPAP2 and SNAP-25, were down-regulated after OGD. Additionally, OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors, but increased the mRNA expression of the GluN3A subunit, thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together, our results present the expression profile elicited by in vitro ischemia in hippocampal neurons, and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins, suggesting that the synaptic proteome may change after ischemia.
Collapse
Affiliation(s)
- Joana Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Marta Vieira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Laura Carreto
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| | - Armanda E. Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. Mol Ther 2014; 22:1829-38. [PMID: 24954474 DOI: 10.1038/mt.2014.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022] Open
Abstract
Na(+)/Ca2+ exchanger (NCX) is a plasma membrane transporter that, by regulating Ca2+ and Na(+) homeostasis, contributes to brain stroke damage. The objectives of this study were to investigate whether there might be miRNAs in the brain able to regulate NCX1 expression and, thereafter, to set up a valid therapeutic strategy able to reduce stroke-induced brain damage by regulating NCX1 expression. Thus, we tested whether miR-103-1, a microRNA belonging to the miR-103/107 family that on the basis of sequence analysis might be a potential NCX1 regulator, could control NCX1 expression. The role of miR-103-1 was assessed in a rat model of transient cerebral ischemia by evaluating the effect of the correspondent antimiRNA on both brain infarct volume and neurological deficits. NCX1 expression was dramatically reduced when cortical neurons were exposed to miR-103-1. This alleged tight regulation of NCX1 by miR-103-1 was further corroborated by luciferase assay. Notably, antimiR-103-1 prevented NCX1 protein downregulation induced by the increase in miR-103-1 after brain ischemia, thereby reducing brain damage and neurological deficits. Overall, the identification of a microRNA able to selectively regulate NCX1 in the brain clarifies a new important molecular mechanism of NCX1 regulation in the brain and offers the opportunity to develop a new therapeutic strategy for stroke.
Collapse
|
38
|
Does Na⁺/Ca²⁺ exchanger, NCX, represent a new druggable target in stroke intervention? Transl Stroke Res 2013; 5:145-55. [PMID: 24323727 DOI: 10.1007/s12975-013-0308-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 12/22/2022]
Abstract
Stroke causes a rapid cell death in the core of the injured region and triggers mechanisms in surrounding penumbra area that leads to changes in concentrations of several ions like intracellular Ca²⁺, Na⁺, H⁺, K⁺, and radicals such as reactive oxygen species and reactive nitrogen species. When a dysregulation of homeostasis of these messengers occurs, it can trigger cell death. In particular, it is widely accepted that a critical factor in determining neuronal death during cerebral ischemia is progressive dysregulation of Ca²⁺, Na⁺, K⁺, and H⁺ homeostasis that activate several death pathways, including oxidative and nitrosative stress, mitochondrial dysfunction, protease activation, and apoptosis. In the last decade, several seminal experimental works are markedly changing the scenario of research of principal players of an ischemic event. Indeed, some plasma membrane channels and transporters, involved in the control of Ca²⁺, Na⁺, K⁺, and H⁺ ion influx or efflux and, therefore, responsible for maintaining the homeostasis of these four cations, might function as crucial players in initiation of brain ischemic process. Indeed, these proteins, by regulating ionic homeostasis, may provide the molecular basis underlying glutamate-independent Ca²⁺ and Na⁺ overload mechanisms in neuronal ischemic cell death and, most importantly, may represent more suitable molecular targets for therapeutic intervention. Recently, a great deal of interest has been devoted to clarify the role of the plasma membrane protein known as Na⁺/Ca²⁺ exchanger, a transporter able to control Na⁺ and Ca²⁺ homeostasis. In this review, the pathophysiological role of NCX and its implication as a potential target in stroke intervention will be examined.
Collapse
|