1
|
Li J, Wang H, Li Y, Wang C, Feng H, Pang Y, Ren J, Li C, Gao E, Zhang D, Hu D, Zhao P, Ding H, Fan B, Zhang T, Song X, Wei Z, Ning G, Li YQ, Feng S. Novel carbon dots with dual Modulatory effects on the bone marrow and spleen as a potential therapeutic candidate for treating spinal cord injury. Bioact Mater 2025; 45:534-550. [PMID: 39759534 PMCID: PMC11696655 DOI: 10.1016/j.bioactmat.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Spinal cord injury triggers leukocyte mobilization from the peripheral circulation to the injury site, exacerbating spinal cord damage. Simultaneously, bone marrow hematopoietic stem cells (HSCs) and splenic leukocytes rapidly mobilize to replenish the depleted peripheral blood leukocyte pool. However, current treatments for spinal cord injuries overlook interventions targeting peripheral immune organs and tissues, highlighting the need to develop novel drugs capable of effectively regulating peripheral immunity and treating spinal cord injuries. In this study, we designed, synthesized, and characterized novel Ejiao carbon dots (EJCDs) that inhibit myeloid cell proliferation and peripheral migration by promoting HSC self-renewal, and distinct differentiation into erythroid progenitors in vitro and in vivo. Additionally, EJCDs attenuate the immune response in the spleen, leukocytes' reservoir, following spinal cord injury by diminishing the local infiltration of monocytes and macrophages while promoting motor function recovery. These effects are mediated through the downregulation of CCAAT enhancer binding protein-β expression in the spleen and the upregulation of FZD4 protein expression in Lin- Sca-1+ c-kit+ cells (LSKs) within the bone marrow. Our findings demonstrate that EJCDs effectively reduce myeloid cell infiltration post-spinal cord injury and promote neurological recovery, making them promising therapeutic candidates for treating spinal cord injuries.
Collapse
Affiliation(s)
- Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Yuanquan Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chunzhen Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Yilin Pang
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jie Ren
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chuanhao Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Erke Gao
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Dejing Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Dunxu Hu
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Pengtian Zhao
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Han Ding
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Baoyou Fan
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Tao Zhang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Xiaomeng Song
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Zhijian Wei
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guangzhi Ning
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| |
Collapse
|
2
|
Kim HS, Jee SA, Einisadr A, Seo Y, Seo HG, Jang BS, Park HH, Chung WS, Kim BG. Detrimental influence of Arginase-1 in infiltrating macrophages on poststroke functional recovery and inflammatory milieu. Proc Natl Acad Sci U S A 2025; 122:e2413484122. [PMID: 39951507 PMCID: PMC11848331 DOI: 10.1073/pnas.2413484122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Poststroke inflammation critically influences functional outcomes following ischemic stroke. Arginase-1 (Arg1) is considered a marker for anti-inflammatory macrophages, associated with the resolution of inflammation and promotion of tissue repair in various pathological conditions. However, its specific role in poststroke recovery remains to be elucidated. This study investigates the functional impact of Arg1 expressed in macrophages on poststroke recovery and inflammatory milieu. We observed a time-dependent increase in Arg1 expression, peaking at 7 d after photothrombotic stroke in mice. Cellular mapping analysis revealed that Arg1 was predominantly expressed in LysM-positive infiltrating macrophages. Using a conditional knockout (cKO) mouse model, we examined the role of Arg1 expressed in infiltrating macrophages. Contrary to its presumed beneficial effects, Arg1 cKO in LysM-positive macrophages significantly improved skilled forelimb motor function recovery after stroke. Mechanistically, Arg1 cKO attenuated fibrotic scar formation, enhanced peri-infarct remyelination, and increased synaptic density while reducing microglial synaptic elimination in the peri-infarct cortex. Gene expression analysis of fluorescence-activated single cell sorting (FACS)-sorted CD45low microglia revealed decreased transforming growth factor-β (TGF-β) signaling and proinflammatory cytokine activity in peri-infarct microglia from Arg1 cKO animals. In vitro coculture experiments demonstrated that Arg1 activity in macrophages modulates microglial synaptic phagocytosis, providing evidence for macrophage-microglia interaction. These findings present unique insights into the function of Arg1 in central nervous system injury and highlight an interaction between infiltrating macrophages and resident microglia in shaping the poststroke inflammatory milieu. Our study identifies Arg1 in macrophages as a potential therapeutic target for modulating poststroke inflammation and improving functional recovery.
Collapse
Affiliation(s)
- Hyung Soon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Seung Ah Jee
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Ariandokht Einisadr
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hyo Gyeong Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Byeong Seong Jang
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- Center for Vascular Biology, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon16499, Republic of Korea
| |
Collapse
|
3
|
Pu Z, Luo D, Shuai B, Xu Y, Liu M, Zhao J. Focusing on Formyl Peptide Receptors after Traumatic Spinal Cord Injury: from Immune Response to Neurogenesis. Neurochem Res 2025; 50:98. [PMID: 39920516 DOI: 10.1007/s11064-025-04347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
The intricate pathophysiological cascades following spinal cord injury (SCI), encompassing cellular demise, axonal degeneration, and the formation of glial scars, pose formidable barriers to neural regeneration and restoration. Notably, neuroinflammation and glial scars emerge as pivotal barrier to post-SCI repair. Formyl peptide receptors (FPRs) emerge as critical regulators of immune responses, exerting significant influence over inflammatory modulation and nerve regeneration subsequent to SCI. Beyond their classical expression in myeloid cells, FPRs demonstrate a pronounced presence within the central nervous system (CNS) with roles in the progression of neurodegenerative disorders and neurological malignancies. Post-SCI, the equilibrium of the inflammatory microenvironment is recalibrated through the strategic modulation of FPRs, including facilitating a balance in microglial polarization, stimulating neural stem cells (NSCs) migration, and promoting neural axon elongation. These observations enlighten the potential of FPRs as innovative targets for neuronal regenerations bolstering SCI repair. This review endeavors to delineate the distribution and function of FPRs in the aftermath of SCI, with a special attention to their roles in inflammatory regulation, NSCs mobilization, and synaptic growth. By elucidating these mechanisms, we aspire to contribute novel insights and strategies for SCI therapy.
Collapse
Affiliation(s)
- Ziheng Pu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Luo
- Yu-Yue Pathology Scientific Research Center, Chongqing, China
| | - Beining Shuai
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuzhao Xu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingyong Liu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.
| | - Jianhua Zhao
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Ma Z, Meng C, Wang X, Zhao Y, Wang J, Chen Y, Li Y, Jiang Y, Ouyang F, Li J, Zheng M, Cheng L, Jing J. Trehalose enhances macrophage autophagy to promote myelin debris clearance after spinal cord injury. Cell Biosci 2025; 15:11. [PMID: 39881390 PMCID: PMC11781065 DOI: 10.1186/s13578-025-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI. RESULTS We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro. In vivo, trehalose administration markedly reduced myelin debris accumulation, inhibited foamy macrophage formation, suppressed inflammatory responses, decreased fibrotic scarring, and promoted axonal growth and motor function recovery after SCI. These beneficial effects of trehalose may be related to the overexpression of transcription factor EB (TFEB), a key regulator of the autophagy-lysosomal system, which can rescue autophagic dysfunction in foamy macrophages and inhibit inflammatory responses. Additionally, the effects of trehalose on macrophages were abolished by chloroquine, an autophagy inhibitor, suggesting trehalose's potential as a therapeutic candidate for enhancing myelin debris clearance post-SCI. CONCLUSIONS Our findings underscore the pivotal role of trehalose in modulating myelin debris clearance within macrophages, providing new perspectives for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Zhida Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Congpeng Meng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yihao Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yiteng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Jiang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
5
|
Liu X, Li Z, Tong J, Wu F, Jin H, Liu K. Characterization of the Expressions and m6A Methylation Modification Patterns of mRNAs and lncRNAs in a Spinal Cord Injury Rat Model. Mol Neurobiol 2025; 62:806-818. [PMID: 38907070 PMCID: PMC11711147 DOI: 10.1007/s12035-024-04297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease with no effective treatment strategy presently due to its complex pathogenic mechanism. N6-methyladenosine (m6A) methylation modification plays an important role in diverse physiological and pathological processes. However, our understanding of the potential mechanisms of messenger RNA (mRNA) and long non-coding RNAs (lncRNA) m6A methylation in SCI is currently limited. Here, comprehensive m6A profiles and gene expression patterns of mRNAs and lncRNAs in spinal cord tissues after SCI were identified using microarray analysis of immunoprecipitated methylated RNAs. A total of 3745 mRNAs (2343 hypermethylated and 1402 hypomethylated) and 738 lncRNAs (488 hypermethylated and 250 hypomethylated) were differentially methylated with m6A modifications in the SCI and sham rats. Functional analysis revealed that differentially m6A-modified mRNAs were mainly involved in immune inflammatory response, nervous system development, and focal adhesion pathway. In contrast, differentially m6A-modified lncRNAs were mainly related to antigen processing and presentation, the apoptotic process, and the mitogen-activated protein kinases (MAPKs) signaling pathway. In addition, combined analysis of m6A methylation and RNA expression results revealed that 1636 hypermethylated mRNAs and 262 hypermethylated lncRNAs were up-regulated, and 1571 hypomethylated mRNAs and 204 lncRNAs were down-regulated. Furthermore, we validated the altered levels of m6A methylation and RNA expression of five mRNAs (CD68, Gpnmb, Lilrb4, Lamp5, and Snap25) and five lncRNAs (XR_360518, uc.393 + , NR_131064, uc.280 - , and XR_597251) using MeRIP-qPCR and qRT-PCR. This study expands our understanding of the molecular mechanisms underlying m6A modification in SCI and provides novel insights to promote functional recovery after SCI.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, Guangdong, China
| | - Zhiling Li
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Juncheng Tong
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Fan Wu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Hui Jin
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China.
- Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Kaiqing Liu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Stewart AN, Bosse-Joseph CC, Kumari R, Bailey WM, Park KA, Slone VK, Gensel JC. Nonresolving Neuroinflammation Regulates Axon Regeneration in Chronic Spinal Cord Injury. J Neurosci 2025; 45:e1017242024. [PMID: 39510834 DOI: 10.1523/jneurosci.1017-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic spinal cord injury (SCI) lesions retain increased densities of microglia and macrophages. In acute SCI, macrophages induce growth cone collapse and facilitate axon retraction away from lesion boundaries. Little is known about the role of sustained inflammation in chronic SCI or whether chronic inflammation affects regeneration. We used the colony-stimulating factor-1 receptor inhibitor, PLX-5622, to deplete microglia and macrophages months after complete crush SCI in female mice. Transcriptional analyses revealed a significant inflammatory depletion within chronic SCI lesions after PLX-5622 treatment. Both transcriptional analyses and immunohistochemistry revealed that Iba1+ cells repopulate to predepleted densities after treatment removal. Neuronal-enriched transcripts were significantly elevated in mice after inflammatory repopulation, but no significant effects were observed with inflammatory depletion alone. Axon densities also significantly increased within the lesion after PLX-5622 treatment and after repopulation. To better examine the effect of chronic inflammation on axon regeneration, we tested PLX-5622 treatment in neuronal-specific phosphatase and tensin homolog protein (PTEN) knock-out (PTEN-KO) mice. PTEN-KO was delivered using spinal injections of retrogradely transported adeno-associated viruses (AAVrg's). PTEN-KO did not further increase axon densities within the lesion beyond the effects induced by PLX-5622. Axons that grew within the lesion were histologically identified as 5-HT+ and CGRP+, both of which are not robustly transduced by AAVrg's. Our work identified that increased macrophage/microglial densities in the chronic SCI environment may be actively retained by homeostatic mechanisms likely affiliated with a sustained elevated expression of CSF1 and other chemokines. Finally, we identify a novel role of sustained inflammation as a prospective barrier to axon regeneration in chronic SCI.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Christopher C Bosse-Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Reena Kumari
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Kennedy A Park
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Victoria K Slone
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
7
|
Yang Q, Jiang P, Tang H, Wen J, Zhou L, Zhao Y, Wang L, Wang J, Yang Q. Shh regulates M2 microglial polarization and fibrotic scar formation after ischemic stroke. Neurochem Int 2024; 180:105862. [PMID: 39307461 DOI: 10.1016/j.neuint.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Fibrotic scar formation is a critical pathological change impacting tissue reconstruction and functional recovery after ischemic stroke. The regulatory mechanisms behind fibrotic scarring in the central nervous system (CNS) remain largely unknown. While macrophages are known to play a role in fibrotic scar formation in peripheral tissues, the involvement of microglia, the resident immune cells of the CNS, in CNS fibrosis requires further exploration. The Sonic Hedgehog (Shh) signaling pathway, pivotal in embryonic development and tissue regeneration, is also crucial in modulating fibrosis in peripheral tissues. However, the impact and regulatory mechanisms of Shh on fibrotic scar formation post-ischemic stroke have not been thoroughly investigated. METHODS This study explores whether Shh can regulate fibrotic scar formation post-ischemic stroke and its underlying mechanisms through in vivo and in vitro manipulation of Shh expression. RESULTS Our results showed that Shh expression was upregulated in the serum of acute ischemic stroke patients, as well as in the serum, CSF, and ischemic regions of MCAO/R mice. Moreover, the upregulation of Shh expression was positively correlated with fibrotic scar formation and M2 microglial polarization. Shh knockdown inhibited fibrotic scar formation and M2 microglial polarization while aggravating neurological deficits in MCAO/R mice. In vitro, adenoviral knockdown or Smoothened Agonist (SAG) activation of Shh expression in BV2 cells following OGD/R regulated their polarization and influenced the expression of TGFβ1 and PDGFA, subsequently affecting fibroblast activation. CONCLUSION These results suggest that Shh regulates M2 microglial polarization and fibrotic scar formation after cerebral ischemia.
Collapse
Affiliation(s)
- Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Shan F, Ye J, Xu X, Liang C, Zhao Y, Wang J, Ouyang F, Li J, Lv J, Wu Z, Yao F, Jing J, Zheng M. Galectin-3 inhibition reduces fibrotic scarring and promotes functional recovery after spinal cord injury in mice. Cell Biosci 2024; 14:128. [PMID: 39407295 PMCID: PMC11481377 DOI: 10.1186/s13578-024-01310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In the context of spinal cord injury (SCI), infiltrating macrophages assume prominence as the primary inflammatory cells within the lesion core, where the fibrotic scar is predominantly orchestrated by platelet-derived growth factor receptor beta (PDGFRβ+) fibroblasts. Galectin-3, a carbohydrate-binding protein of the lectin family, is notably expressed by infiltrating hematogenous macrophages and mediates cell-cell interactions. Although Galectin-3 has been shown to contribute to the endocytic internalization of PDGFRβ in vitro, its specific role in driving fibrotic scar formation after SCI has not been determined. METHODS We employed a crush mid-thoracic (T10) SCI mouse model. Galectin-3 inhibition after SCI was achieved through intrathecal injection of the Galectin-3 inhibitor TD139 or in situ injection of lentivirus carrying Galectin-3-shRNA (Lv-shLgals3). A fibrosis-induced mice model was established by in situ injection of platelet-derived growth factor D (PDGFD) or recombinant Galectin-3 (rGalectin-3) into the uninjured spinal cord. Galectin-3 internalization experiments were conducted in PDGFRβ+ fibroblasts cocultured in conditioned medium in vitro. RESULTS We identified the spatial and temporal correlation between macrophage-derived Galectin-3 and PDGFRβ in fibroblasts from 3 to 56 days post-injury (dpi). Administration of TD139 via intrathecal injection or in situ injection of Lv-shLgals3 effectively mitigated fibrotic scar formation and extracellular matrix deposition within the injured spinal cord, leading to better neurological outcomes and function recovery after SCI. Furthermore, the fibrosis-inducing effects of exogenous PDGFD in the uninjured spinal cord could be blocked by TD139. In vitro experiments further demonstrated the ability of PDGFRβ+ fibroblasts to internalize Galectin-3, with Galectin-3 inhibition resulting in reduced PDGFRβ expression. CONCLUSIONS Our finding underscores the pivotal role of macrophage-derived Galectin-3 in modulating the sustained internalized activation of PDGFRβ within fibroblasts, providing a novel mechanistic insight into fibrotic scarring post-SCI.
Collapse
Affiliation(s)
- Fangli Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianan Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Orthopaedics, Suzhou 100 Hospital, Suzhou, 215000, China
| | - Xinzhong Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhonghan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
9
|
Yu Z, Zhang H, Li L, Li Z, Chen D, Pang X, Ji Y, Wang Y. Microglia-mediated pericytes migration and fibroblast transition via S1P/S1P3/YAP signaling pathway after spinal cord injury. Exp Neurol 2024; 379:114864. [PMID: 38866101 DOI: 10.1016/j.expneurol.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β positive (PDGFRβ+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.
Collapse
Affiliation(s)
- Ziyuan Yu
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Huabin Zhang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Linxi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Zhi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Danmin Chen
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Xiao Pang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yunxiang Ji
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yezhong Wang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China.
| |
Collapse
|
10
|
Zhang ZH, Wu TY, Ju C, Zuo XS, Wang XK, Ma YG, Luo L, Zhu ZJ, Song ZW, Yao Z, Zhou J, Wang Z, Hu XY. Photobiomodulation Increases M2-Type Polarization of Macrophages by Inhibiting Versican Production After Spinal Cord Injury. Mol Neurobiol 2024; 61:6950-6967. [PMID: 38363534 DOI: 10.1007/s12035-024-03980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- General Hospital of Northern Theater Command, Shenyang, 110000, Liaoning Province, China
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting-Yu Wu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao-Shuang Zuo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xuan-Kang Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yang-Guang Ma
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Jie Zhu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Wen Song
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Xue-Yu Hu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
11
|
Akhlaghpasand M, Tavanaei R, Hosseinpoor M, Yazdani KO, Soleimani A, Zoshk MY, Soleimani M, Chamanara M, Ghorbani M, Deylami M, Zali A, Heidari R, Oraee-Yazdani S. Safety and potential effects of intrathecal injection of allogeneic human umbilical cord mesenchymal stem cell-derived exosomes in complete subacute spinal cord injury: a first-in-human, single-arm, open-label, phase I clinical trial. Stem Cell Res Ther 2024; 15:264. [PMID: 39183334 PMCID: PMC11346059 DOI: 10.1186/s13287-024-03868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Neurological and functional impairments are commonly observed in individuals with spinal cord injury (SCI) due to insufficient regeneration of damaged axons. Exosomes play a crucial role in the paracrine effects of mesenchymal stem cells (MSCs) and have emerged as a promising therapeutic approach for SCI. Thus, this study aimed to evaluate the safety and potential effects of intrathecal administration of allogeneic exosomes derived from human umbilical cord MSCs (HUC-MSCs) in patients with complete subacute SCI. METHODS This study was a single-arm, open-label, phase I clinical trial with a 12-month follow-up period. HUC-MSCs were extracted from human umbilical cord tissue, and exosomes were isolated via ultracentrifugation. After intrathecal injection, each participant a underwent complete evaluation, including neurological assessment using the American Spinal Injury Association (ASIA) scale, functional assessment using the Spinal Cord Independence Measure (SCIM-III), neurogenic bowel dysfunction (NBD) assessment using the NBD score, modified Ashworth scale (MAS), and lower urinary tract function questionnaire. RESULTS Nine patients with complete subacute SCI were recruited. The intrathecal injection of allogeneic HUC-MSCs-exosomes was safe and well tolerated. No early or late adverse event (AE) attributable to the study intervention was observed. Significant improvements in ASIA pinprick (P-value = 0.039) and light touch (P-value = 0.038) scores, SCIM III total score (P-value = 0.027), and NBD score (P-value = 0.042) were also observed at 12-month after the injection compared with baseline. CONCLUSIONS This study demonstrated that intrathecal administration of allogeneic HUC-MSCs-exosomes is safe in patients with subacute SCI. Moreover, it seems that this therapy might be associated with potential clinical and functional improvements in these patients. In this regard, future larger phase II/III clinical trials with adequate power are highly required. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT20200502047277N1. Registered 2 October 2020, https://en.irct.ir/trial/48765 .
Collapse
Affiliation(s)
- Mohammadhosein Akhlaghpasand
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Roozbeh Tavanaei
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran
| | - Maede Hosseinpoor
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kaveh Oraii Yazdani
- Department of cardiovascular diseases, Zahedan university of medical science, Zahedan, Iran
| | - Afsane Soleimani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Department of Pediatrics, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Deylami
- Department of ICU &Critical care, Faculty of Medicine, Loghman-e Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran.
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran.
| |
Collapse
|
12
|
Li Z, Zhou T, Bao Z, Wu M, Mao Y. The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair. Tissue Eng Regen Med 2024; 21:809-827. [PMID: 39004636 PMCID: PMC11286913 DOI: 10.1007/s13770-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND In the intricate pathological milieu post-spinal cord injury (SCI), neural stem cells (NSCs) frequently differentiate into astrocytes rather than neurons, significantly limiting nerve repair. Hence, the utilization of biocompatible hydrogel scaffolds in conjunction with exogenous factors to foster the differentiation of NSCs into neurons has the potential for SCI repair. METHODS In this study, we engineered a 3D-printed porous SilMA hydrogel scaffold (SM) supplemented with pH-/temperature-responsive paclitaxel nanoparticles (PTX-NPs). We analyzed the biocompatibility of a specific concentration of PTX-NPs and its effect on NSC differentiation. We also established an SCI model to explore the ability of composite scaffolds for in vivo nerve repair. RESULTS The physical adsorption of an optimal PTX-NPs dosage can simultaneously achieve pH/temperature-responsive release and commendable biocompatibility, primarily reflected in cell viability, morphology, and proliferation. An appropriate PTX-NPs concentration can steer NSC differentiation towards neurons over astrocytes, a phenomenon that is also efficacious in simulated injury settings. Immunoblotting analysis confirmed that PTX-NPs-induced NSC differentiation occurred via the MAPK/ERK signaling cascade. The repair of hemisected SCI in rats demonstrated that the composite scaffold augmented neuronal regeneration at the injury site, curtailed astrocyte and fibrotic scar production, and enhanced motor function recovery in rat hind limbs. CONCLUSION The scaffold's porous architecture serves as a cellular and drug carrier, providing a favorable microenvironment for nerve regeneration. These findings corroborate that this strategy amplifies neuronal expression within the injury milieu, significantly aiding in SCI repair.
Collapse
Affiliation(s)
- Zhixiang Li
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China
| | - Tao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China
| | - Zhengqi Bao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China
| | - Min Wu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China.
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China.
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China.
- Anhui Engineering Research Center of Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
13
|
Liu Y, Liu X, Dorizas CA, Hao Z, Lee RK. Macrophages Modulate Optic Nerve Crush Injury Scar Formation and Retinal Ganglion Cell Function. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 39140963 PMCID: PMC11328886 DOI: 10.1167/iovs.65.10.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Purpose Optic nerve (ON) injuries can result in vision loss via structural damage and cellular injury responses. Understanding the immune response, particularly the role of macrophages, in the cellular response to ON injury is crucial for developing therapeutic approaches which affect ON injury repair. The present study investigates the role of macrophages in ON injury response, fibrotic scar formation, and retinal ganglion cell (RGC) function. Methods The study utilizes macrophage Fas-induced apoptosis (MaFIA) mice to selectively deplete hematogenous macrophages and explores the impact macrophages have on ON injury responses. Histological and immunofluorescence analyses were used to evaluate macrophage expression levels and fibrotic scar formation. Pattern electroretinogram (PERG) recordings were used to assess RGC function as result of ON injury. Results Successful macrophage depletion was induced in MaFIA mice, which led to reduced fibrotic scar formation in the ON post-injury. Despite an increase in activated macrophages in the retina, RGC function was preserved, as demonstrated by normal PERG waveforms for up to 2 months post-injury. The study suggests a neuroprotective role for macrophage depletion in ON damage repair and highlights the complex immune response to ON injury. Conclusions To our knowledge, this study is the first to use MaFIA mice to demonstrate that targeted depletion of hematogenous macrophages leads to a significant reduction in scar size and the preservation of RGC functionality after ON injury. These findings highlight the key role of hematogenous macrophages in the response to ON injury and opens new avenues for therapeutic interventions in ON injuries. Future research should focus on investigating the distinct roles of macrophage subtypes in ON injury and potential macrophage-associated molecular targets to improve ON regeneration and repair.
Collapse
Affiliation(s)
- Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Xiangxiang Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Christopher A Dorizas
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Zixuan Hao
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
14
|
Xue X, Wu X, Fan Y, Han S, Zhang H, Sun Y, Yin Y, Yin M, Chen B, Sun Z, Zhao S, Zhang Q, Liu W, Zhang J, Li J, Shi Y, Xiao Z, Dai J, Zhao Y. Heterogeneous fibroblasts contribute to fibrotic scar formation after spinal cord injury in mice and monkeys. Nat Commun 2024; 15:6321. [PMID: 39060269 PMCID: PMC11282111 DOI: 10.1038/s41467-024-50564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI. Crabp2 + /Emb+ fibroblasts (CE-F) derived from meninges primarily localize in the central region of fibrotic scars, demonstrating enhanced cholesterol synthesis and secretion of type I collagen and fibronectin. In contrast, perivascular/pial Lama1 + /Lama2+ fibroblasts (LA-F) are predominantly found at the periphery of the lesion, expressing laminin and type IV collagen and functionally involved in angiogenesis and lipid transport. These findings may provide a comprehensive understanding for remodeling heterogeneous fibrotic scars after SCI.
Collapse
Affiliation(s)
- Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyu Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaijing Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Holl D, Hau WF, Julien A, Banitalebi S, Kalkitsas J, Savant S, Llorens-Bobadilla E, Herault Y, Pavlovic G, Amiry-Moghaddam M, Dias DO, Göritz C. Distinct origin and region-dependent contribution of stromal fibroblasts to fibrosis following traumatic injury in mice. Nat Neurosci 2024; 27:1285-1298. [PMID: 38849523 PMCID: PMC11239523 DOI: 10.1038/s41593-024-01678-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.
Collapse
Affiliation(s)
- Daniel Holl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wing Fung Hau
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shatin, Hong Kong
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shervin Banitalebi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jannis Kalkitsas
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Soniya Savant
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Enric Llorens-Bobadilla
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shatin, Hong Kong
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David Oliveira Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Center for Neuromusculoskeletal Restorative Medicine, Shatin, Hong Kong.
| |
Collapse
|
16
|
Zhang C, Shao Q, Zhang Y, Liu W, Kang J, Jin Z, Huang N, Ning B. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury. CNS Neurosci Ther 2024; 30:e14826. [PMID: 38973179 PMCID: PMC11228357 DOI: 10.1111/cns.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
AIM We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFβ, and the influence of nicotinamide on TGFβ-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFβ/SMADs pathway. CONCLUSION Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFβ/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qiang Shao
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjing Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jianning Kang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Zhengxin Jin
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Nana Huang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
17
|
Li X, Yang Q, Jiang P, Wen J, Chen Y, Huang J, Tian M, Ren J, Yang Q. Inhibition of CK2 Diminishes Fibrotic Scar Formation and Improves Outcomes After Ischemic Stroke via Reducing BRD4 Phosphorylation. Neurochem Res 2024; 49:1254-1267. [PMID: 38381246 PMCID: PMC10991067 DOI: 10.1007/s11064-024-04112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-β1 (TGF-β1), SB431542 (a TGF-β1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-β1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-β1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-β1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The Second People's Hospital of Chongqing Banan District, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
18
|
Cheng LF, You CQ, Peng C, Ren JJ, Guo K, Liu TL. Mesenchymal stem cell-derived exosomes as a new drug carrier for the treatment of spinal cord injury: A review. Chin J Traumatol 2024; 27:134-146. [PMID: 38570272 PMCID: PMC11138942 DOI: 10.1016/j.cjtee.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.
Collapse
Affiliation(s)
- Lin-Fei Cheng
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China
| | - Chao-Qun You
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Cheng Peng
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Jia-Ji Ren
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Kai Guo
- Department of Orthopaedics, The Central Hospital of Shanghai Putuo District, Shanghai, 200333, China
| | - Tie-Long Liu
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China.
| |
Collapse
|
19
|
Stewart AN, Bosse-Joseph CC, Kumari R, Bailey WM, Park KA, Slone VK, Gensel JC. Non-resolving neuroinflammation regulates axon regeneration in chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590106. [PMID: 38712123 PMCID: PMC11071389 DOI: 10.1101/2024.04.19.590106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chronic spinal cord injury (SCI) lesions retain increased densities of microglia and macrophages. In acute SCI, macrophages induce growth cone collapse, facilitate axon retraction away from lesion boundaries, as well as play a key role in orchestrating the growth-inhibitory glial scar. Little is known about the role of sustained inflammation in chronic SCI, or whether chronic inflammation affects repair and regeneration. We performed transcriptional analysis using the Nanostring Neuropathology panel to characterize the resolution of inflammation into chronic SCI, to characterize the chronic SCI microenvironment, as well as to identify spinal cord responses to macrophage depletion and repopulation using the CSF1R inhibitor, PLX-5622. We determined the ability for macrophage depletion and repopulation to augment axon growth into chronic lesions both with and without regenerative stimulation using neuronal-specific PTEN knockout (PTEN-KO). PTEN-KO was delivered with spinal injections of retrogradely transported adeno associated viruses (AAVrg's). Both transcriptional analyses and immunohistochemistry revealed the ability for PLX-5622 to significantly deplete inflammation around and within chronic SCI lesions, with a return to pre-depleted inflammatory densities after treatment removal. Neuronal-specific transcripts were significantly elevated in mice after inflammatory repopulation, but no significant effects were observed with macrophage depletion alone. Axon densities significantly increased within the lesion after PLX-5622 treatment with a more consistent effect observed in mice with inflammatory repopulation. PTEN-KO did not further increase axon densities within the lesion beyond effects induced by PLX-5622. We identified that PLX-5622 increased axon densities within the lesion that are histologically identified as 5-HT+and CGRP+, both of which are not robustly transduced by AAVrg's. Our work identified that increased macrophage/microglia densities in the chronic SCI environment may be actively retained by homeostatic mechanisms likely affiliated with a sustained elevated expression of CSF1 and other chemokines. Finally, we identify a novel role of sustained inflammation as a prospective barrier to axon regeneration in chronic SCI.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Christopher C. Bosse-Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Reena Kumari
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - William M. Bailey
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Kennedy A. Park
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Victoria K. Slone
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - John C. Gensel
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
20
|
Tan X, Wang J, Liu X, Xie G, Ouyang F. M2 macrophage-derived paracrine factor TNFSF13 affects the fibrogenic alterations in endothelial cells and cardiac fibroblasts by mediating the NF-κB and Akt pathway. J Biochem Mol Toxicol 2024; 38:e23707. [PMID: 38622979 DOI: 10.1002/jbt.23707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Jintang Wang
- People's Hospital of Wangcheng District Changsha, Changsha, Hunan, China
| | - Xiangyang Liu
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Genyuan Xie
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
21
|
Lozinski BM, Ghorbani S, Yong VW. Biology of neurofibrosis with focus on multiple sclerosis. Front Immunol 2024; 15:1370107. [PMID: 38596673 PMCID: PMC11002094 DOI: 10.3389/fimmu.2024.1370107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.
Collapse
Affiliation(s)
| | | | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Ke H, Bai F, Li Z, Zhu Y, Zhang C, Li Y, Talifu Z, Pan Y, Liu W, Xu X, Gao F, Yang D, Du L, Yu Y, Li J. Inhibition of phospholipase D promotes neurological function recovery and reduces neuroinflammation after spinal cord injury in mice. Front Cell Neurosci 2024; 18:1352630. [PMID: 38572075 PMCID: PMC10987874 DOI: 10.3389/fncel.2024.1352630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Han Ke
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zihan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunjia Zhang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zuliyaer Talifu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yunzhu Pan
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Wubo Liu
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Xu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Feng Gao
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Degang Yang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Liangjie Du
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Yu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Jianjun Li
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Yang Y, Fan R, Li H, Chen H, Gong H, Guo G. Polysaccharides as a promising platform for the treatment of spinal cord injury: A review. Carbohydr Polym 2024; 327:121672. [PMID: 38171685 DOI: 10.1016/j.carbpol.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord injury is incurable and often results in irreversible damage to motor function and autonomic sensory abilities. To enhance the effectiveness of therapeutic substances such as cells, growth factors, drugs, and nucleic acids for treating spinal cord injuries, as well as to reduce the toxic side effects of chemical reagents, polysaccharides have been gained attention due to their immunomodulatory properties and the biocompatibility and biodegradability of polysaccharide scaffolds. Polysaccharides hold potential as drug delivery systems in treating spinal cord injuries. This article aims to present an extensive evaluation of the potential applications of polysaccharide materials in scaffold construction, drug delivery, and immunomodulation over the past five years so that offering new directions and opportunities for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Guo J, Yang T, Zhang W, Yu K, Xu X, Li W, Song L, Gu X, Cao R, Cui S. Inhibition of CD44 suppresses the formation of fibrotic scar after spinal cord injury via the JAK2/STAT3 signaling pathway. iScience 2024; 27:108935. [PMID: 38323002 PMCID: PMC10846335 DOI: 10.1016/j.isci.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Fibrotic scar is one of the main impediments to axon regeneration following spinal cord injury (SCI). In this study, we found that CD44 was upregulated during the formation of fibrotic scar, and blocking CD44 by IM7 caused downregulation of fibrosis-related extracellular matrix proteins at both 2 and 12 weeks post-spinal cord injury. More Biotinylated dextran amine (BDA)-traced corticospinal tract axons crossed the scar area and extended into the distal region after IM7 administration. A recovery of motor and sensory function was observed based on Basso Mouse Scale (BMS) scores and tail-flick test. In vitro experiments revealed that inhibiting CD44 and JAK2/STAT3 signaling pathway decreased the proliferation, differentiation, and migration of fibroblasts induced by the inflammatory supernatant. Collectively, these findings highlight the critical role of CD44 and its downstream JAK2/STAT3 signaling pathway in fibrotic scar formation, suggesting a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhong Zhang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| |
Collapse
|
25
|
Huang J, Chen Y, Zhou L, Ren J, Tian M, Yang Q, Wang L, Wu Y, Wen J, Yang Q. M2a macrophages regulate fibrosis and affect the outcome after stroke via PU.1/mTOR pathway in fibroblasts. Neurochem Int 2024; 173:105674. [PMID: 38184171 DOI: 10.1016/j.neuint.2024.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The moderate formation of the fibrotic scar plays an important role in functional recovery after stroke. M2a macrophages have been identified as an important source of early fibrosis after cerebral ischemia. However, the underlying mechanisms by which macrophages interact with fibroblasts in this context remain largely unknown. Therefore, our study aimed to further investigate the potential mechanisms underlying the effects of macrophages on fibroblasts following ischemic stroke. In vitro and in vivo, recombinant rat interleukin 4 (IL4) was used to induce macrophages to polarize into M2a macrophages. In vitro, primary Sprague-Dawley newborn rat meningeal-derived fibroblasts were treated with PU.1 knockdown, the PU.1 inhibitor DB1976 or the mTOR inhibitor rapamycin, which were then co-cultured with M2a macrophage conditioned medium (MCM). In vivo, Sprague-Dawley adult rats were infected with negative control adenoviruses or PU.1-shRNA adenoviruses. Ten days after infection, an injury model of middle cerebral artery occlusion/reperfusion (MCAO/R) was constructed. Subsequently, IL4 was injected intracerebroventricularly to induce M2a macrophages polarization. In vitro, M2a MCM upregulated PU.1 expression and promoted the differentiation, proliferation, migration and extracellular matrix generation of fibroblasts, which could be reversed by treatment with the PU.1 inhibitor DB1976 or PU.1 knockdown. In vivo, PU.1 expression in fibroblasts was increased within ischemic core following MCAO/R, and this upregulation was further enhanced by exposure to IL4. Treatment with IL4 promoted fibrosis, increased angiogenesis, reduced apoptosis and infarct volume, as well as mitigated neurological deficits after MCAO/R, and these effects could be reversed by PU.1 knockdown. Furthermore, both in vivo and in vitro studies showed that IL4 treatment increased the levels of phosphorylated Akt and mTOR proteins, which were markedly decreased by PU.1 knockdown. Additionally, the use of an mTOR inhibitor rapamycin obviously suppressed the migration and differentiation of fibroblasts, and Col1 synthesis. In conclusion, our findings suggest for the first time that M2a macrophages, at least in part, regulate fibrosis and affect the outcome after cerebral ischemic stroke via the PU.1/mTOR signaling pathway in fibroblasts.
Collapse
Affiliation(s)
- Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The Second People's Hospital of Yibin, Yibin, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Ryan CB, Choi JS, Kang B, Herr S, Pereira C, Moraes CT, Al-Ali H, Lee JK. PI3K signaling promotes formation of lipid-laden foamy macrophages at the spinal cord injury site. Neurobiol Dis 2024; 190:106370. [PMID: 38049013 PMCID: PMC10804283 DOI: 10.1016/j.nbd.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
After spinal cord injury (SCI), infiltrating macrophages undergo excessive phagocytosis of myelin and cellular debris, forming lipid-laden foamy macrophages. To understand their role in the cellular pathology of SCI, investigation of the foamy macrophage phenotype in vitro revealed a pro-inflammatory profile, increased reactive oxygen species (ROS) production, and mitochondrial dysfunction. Bioinformatic analysis identified PI3K as a regulator of inflammation in foamy macrophages, and inhibition of this pathway decreased their lipid content, inflammatory cytokines, and ROS production. Macrophage-specific inhibition of PI3K using liposomes significantly decreased foamy macrophages at the injury site after a mid-thoracic contusive SCI in mice. RNA sequencing and in vitro analysis of foamy macrophages revealed increased autophagy and decreased phagocytosis after PI3K inhibition as potential mechanisms for reduced lipid accumulation. Together, our data suggest that the formation of pro-inflammatory foamy macrophages after SCI is due to the activation of PI3K signaling, which increases phagocytosis and decreases autophagy.
Collapse
Affiliation(s)
- Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Brian Kang
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Seth Herr
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Claudia Pereira
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Department of Medicine Katz Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America.
| |
Collapse
|
29
|
Holl D, Göritz C. Decoding fibrosis in the human central nervous system. Am J Physiol Cell Physiol 2023; 325:C1415-C1420. [PMID: 37811731 DOI: 10.1152/ajpcell.00243.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Recent advancements in human tissue analyses and animal models have revealed that fibrotic scarring is a common response to various lesions in the central nervous system (CNS). Perivascular cells within the brain or spinal cord give rise to stromal fibroblasts that form fibrotic scar tissue. In this review, we summarize the current understanding of fibrotic scar formation in different CNS lesions and evaluate published human single-cell gene expression datasets to gather information on perivascular cells. Specifically, we highlight the classification of pericytes and fibroblast subtypes and compare the marker expression of perivascular cells across different datasets.
Collapse
Affiliation(s)
- Daniel Holl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Centre, Stellenbosch, South Africa
| |
Collapse
|
30
|
Li Y, Chen Y, Hu X, Ouyang F, Li J, Huang J, Ye J, Shan F, Luo Y, Yu S, Li Z, Yao F, Liu Y, Shi Y, Zheng M, Cheng L, Jing J. Fingolimod (FTY720) Hinders Interferon-γ-Mediated Fibrotic Scar Formation and Facilitates Neurological Recovery After Spinal Cord Injury. J Neurotrauma 2023; 40:2580-2595. [PMID: 36879472 DOI: 10.1089/neu.2022.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Following spinal cord injury (SCI), fibrotic scar inhibits axon regeneration and impairs neurological function recovery. It has been reported that T cell-derived interferon (IFN)-γ plays a pivotal role in promoting fibrotic scarring in neurodegenerative disease. However, the role of IFN-γ in fibrotic scar formation after SCI has not been declared. In this study, a spinal cord crush injury mouse was established. Western blot and immunofluorescence showed that IFN-γ was surrounded by fibroblasts at 3, 7, 14, and 28 days post-injury. Moreover, IFN-γ is mainly secreted by T cells after SCI. Further, in situ injection of IFN-γ into the normal spinal cord resulted in fibrotic scar formation and inflammation response at 7 days post-injection. After SCI, the intraperitoneal injection of fingolimod (FTY720), a sphingosine-1-phosphate receptor 1 (S1PR1) modulator and W146, an S1PR1 antagonist, significantly reduced T cell infiltration, attenuating fibrotic scarring via inhibiting IFN-γ/IFN-γR pathway, while in situ injection of IFN-γ diminished the effect of FTY720 on reducing fibrotic scarring. FTY720 treatment inhibited inflammation, decreased lesion size, and promoted neuroprotection and neurological recovery after SCI. These findings demonstrate that the inhibition of T cell-derived IFN-γ by FTY720 suppressed fibrotic scarring and contributed to neurological recovery after SCI.
Collapse
Affiliation(s)
- Yiteng Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yihao Chen
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Hu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangru Ouyang
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianjian Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxin Huang
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianan Ye
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangli Shan
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Luo
- Scientific Research and Experiment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuisheng Yu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziyu Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Yao
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanchang Liu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Shi
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meige Zheng
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Cheng
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
31
|
Wang W, Li S, Li H, Guo P, Lyu C, Ye P, Yang W, Wang J, Yu D, Lu G, Tan H. Neuroprotective Effects of Microglial Membrane-Derived Biomimetic Particles for Spinal Cord Injury. Adv Healthc Mater 2023; 12:e2301592. [PMID: 37681300 DOI: 10.1002/adhm.202301592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Inhibition of oxidative stress and inflammatory responses caused by secondary injury following traumatic spinal cord injury (SCI) is an attractive strategy in treating traumatic SCI. However, the efficacy of drugs is severely limited owing to the poor penetration of the blood spinal cord barrier (BSCB). Here, inspired by cell chemotaxis and related chemokines production at the lesion sites of SCI, the microglial membrane is selected to construct a drug delivery system with the ability to cross the BSCB and target the lesions. PR@MM is prepared based on the assembly of polylactic-co-glycolic acid (PLGA) and resveratrol (RSV) followed by microglial membrane (MM) coating. Compared to that of the uncoated nanoparticles, the enrichment of PR@MM at the lesion sites of SCI increases, which is beneficial to achieve lesion targeting of RSV and exert therapeutic functions. Both in vitro and in vivo experiments demonstrate that PR@MM has the ability to scavenge reactive oxygen species and anti-inflammatory effects, which ultimately promotes the recovery of locomotory function after SCI. Therefore, this microglial membrane-based drug delivery system provides a promising biomimetic nanomedicine for targeted therapy for SCI.
Collapse
Affiliation(s)
- Wenjing Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shang Li
- Department of Orthopedic, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Haiyan Li
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiqiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghui Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dingle Yu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Guihong Lu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
| |
Collapse
|
32
|
Zhu G, Song X, Sun Y, Xu Y, Xiao L, Wang Z, Sun Y, Zhang L, Zhang X, Geng Z, Qi Q, Wang Y, Wang L, Li J, Zuo L, Hu J. Esculentoside A ameliorates BSCB destruction in SCI rat by attenuating the TLR4 pathway in vascular endothelial cells. Exp Neurol 2023; 369:114536. [PMID: 37690527 DOI: 10.1016/j.expneurol.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1β, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yibo Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Linyu Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | | | - Yijie Sun
- Bengbu Medical College, Bengbu, Anhui, China
| | | | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
33
|
He N, Mao XJ, Ding YM, Zuo T, Chen YY, Wang LL. New insights into the biological roles of immune cells in neural stem cells in post-traumatic injury of the central nervous system. Neural Regen Res 2023; 18:1908-1916. [PMID: 36926707 PMCID: PMC10233778 DOI: 10.4103/1673-5374.367836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Traumatic injuries in the central nervous system, such as traumatic brain injury and spinal cord injury, are associated with tissue inflammation and the infiltration of immune cells, which simultaneously affect the self-renewal and differentiation of neural stem cells. However, the tissue repair process instigated by endogenous neural stem cells is incapable of restoring central nervous system injuries without external intervention. Recently, resident/peripheral immune cells have been demonstrated to exert significant effects on neural stem cells. Thus, the restoration of traumatic injuries in the central nervous system by the immune intervention in neural stem cells represents a potential therapeutic method. In this review, we discuss the roles and possible mechanisms of immune cells on the self-renewal and differentiation of neural stem cells along with the prognosis of central nervous system injuries based on immune intervention. Finally, we discuss remaining research challenges that need to be considered in the future. Further elucidation of these challenges will facilitate the successful application of neural stem cells in central nervous system injuries.
Collapse
Affiliation(s)
- Ning He
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xing-Jia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yue-Min Ding
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang Province, China
| | - Tong Zuo
- University of Chicago College, University of Chicago, Chicago, IL, USA
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
34
|
Wang H, Tang Q, Lu Y, Chen C, Zhao YL, Xu T, Yang CW, Chen XQ. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair. Int J Pharm 2023; 643:123283. [PMID: 37536642 DOI: 10.1016/j.ijpharm.2023.123283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
After spinal cord injury (SCI), local inflammatory response and fibrous scar formation severely hinder nerve regeneration. Berberine (Ber) has a powerful regulatory effect on the local microenvironment, but its limited solubility and permeability through the blood-brain barrier severely limit its systemic efficacy. Human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived small extracellular vesicles (sEVs) are natural nanocarriers with high cargo loading capacity, and can cross the blood-brain barrier. Most importantly, sEVs can improve drug solubility and drug utilization. Therefore, they can overcome many defects of Ber application. This experiment aimed to design a Ber-carrying hUC-MSCs-derived sEVs and GelMA hydrogel. Ber was loaded into sEVs (sEVs-Ber) by ultrasonic co-incubation with a drug loading capacity (LC) of 15.07%. The unhindered release of up to 80% of sEVs-Ber from GelMA hydrogel was accomplished for up to 14 days. And they could be directly absorbed by local cells of injury, allowing for direct local delivery of the drug and enhancing its efficacy. The experimental results confirmed injecting GelMA-sEVs-Ber into spinal cord defects could exert anti-inflammatory effects by regulating the expression of inflammatory factors. It also demonstrated the anti-fibrotic effect of Ber in SCI for the first time. The modulatory effects of sEVs and Ber on the local microenvironment significantly promoted nerve regeneration and recovery of motor function in post-SCI rats. These results demonstrated that the GelMA-sEVs-Ber dual carrier system is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Heng Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qin Tang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yu-Lin Zhao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Tao Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Chang-Wei Yang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Xiao-Qing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
35
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023; 12:cells12060853. [PMID: 36980193 PMCID: PMC10046908 DOI: 10.3390/cells12060853] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
Collapse
|
37
|
Goyal D, Kumar H. In Vivo and 3D Imaging Technique(s) for Spatiotemporal Mapping of Pathological Events in Experimental Model(s) of Spinal Cord Injury. ACS Chem Neurosci 2023; 14:809-819. [PMID: 36787542 DOI: 10.1021/acschemneuro.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Endothelial damage, astrogliosis, microgliosis, and neuronal degeneration are the most common events after spinal cord injury (SCI). Studies highlighted that studying the spatiotemporal profile of these events might provide a deeper understanding of the pathophysiology of SCI. For imaging of these events, available conventional techniques such as 2-dimensional histology and immunohistochemistry (IHC) are well established and frequently used to visualize and detect the altered expression of the protein of interest involved in these events. However, the technique requires the physical sectioning of the tissue, and results are also open to misinterpretation. Currently, researchers are focusing more attention toward the advanced tools for imaging the spinal cord's various physiological and pathological parameters. The tools include two-photon imaging, light sheet fluorescence microscopy, in vivo imaging system with fluorescent probes, and in vivo chemical and fluorescent protein-expressing viral-tracers. These techniques outperform the limitations associated with conventional techniques in various aspects, such as optical sectioning of tissue, 3D reconstructed imaging, and imaging of particular planes of interest. In addition to this, these techniques are minimally invasive and less time-consuming. In this review, we will discuss the various advanced imaging methodologies that will evolve in the future to explore the fundamental mechanisms after SCI.
Collapse
Affiliation(s)
- Divya Goyal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat India, 382355
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat India, 382355
| |
Collapse
|
38
|
Yao F, Luo Y, Chen Y, Li Y, Hu X, You X, Li Z, Yu S, Tian D, Zheng M, Cheng L, Jing J. Myelin Debris Impairs Tight Junctions and Promotes the Migration of Microvascular Endothelial Cells in the Injured Spinal Cord. Cell Mol Neurobiol 2023; 43:741-756. [PMID: 35147836 DOI: 10.1007/s10571-022-01203-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Clearance of myelin debris caused by acute demyelination is an essential process for functional restoration following spinal cord injury (SCI). Microvascular endothelial cells, acting as "amateur" phagocytes, have been confirmed to engulf and degrade myelin debris, promoting the inflammatory response, robust angiogenesis, and persistent fibrosis. However, the effect of myelin debris engulfment on the function of endothelial tight junctions (TJs) remains unclear. Here, we demonstrate that myelin debris uptake impairs TJs and gap junctions of endothelial cells in the lesion core of the injured spinal cord and in vitro, resulting in increased permeability and leakage. We further show that myelin debris acts as an inducer to regulate the endothelial-to-mesenchymal transition in a dose-dependent manner and promotes endothelial cell migration through the PI3K/AKT and ERK signaling pathways. Together, our results indicate that myelin debris engulfment impairs TJs and promotes the migration of endothelial cells. Accelerating myelin debris clearance may help maintain blood-spinal cord barrier integrity, thus facilitating restoration of motor and sensory function following SCI.
Collapse
Affiliation(s)
- Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xingyu You
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
39
|
Quan X, Yu C, Fan Z, Wu T, Qi C, Zhang H, Wu S, Wang X. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury. Exp Neurol 2023; 363:114367. [PMID: 36858281 DOI: 10.1016/j.expneurol.2023.114367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) results in severe motor and sensory dysfunction with no effective therapy. Spinal cord debris (sp) from injured spinal cord evokes secondary SCI continuously. We and other researchers have previously clarified that it is mainly bone marrow derived macrophages (BMDMs) infiltrating in the lesion epicenter to clear sp, rather than local microglia. Unfortunately, the pro-inflammatory phenotype of these infiltrating BMDMs is predominant which impairs wound healing. Hydralazine, as a potent vasodilator and scavenger of acrolein, has protective effects in many diseases. Hydralazine is also confirmed to promote motor function and hypersensitivity in SCI rats through scavenging acrolein. However, few studies have explored the effects of hydralazine on immunomodulation, as well as spontaneous pain and emotional response, the important syndromes in clinical patients. It remains unclear whether hydralazine affects infiltrating BMDMs after SCI. In this study, we targeted BMDMs to explore the influence of hydralazine on immune cells in a mouse model of SCI, and also investigated the contribution of polarized BMDMs to hydralazine-induced neurological function recovery after SCI in male mice. The adult male mice underwent T10 spinal cord compression. The results showed that in addition to improving motor function and hypersensitivity, hydralazine relieved SCI-induced spontaneous pain and emotional response, which is a newly discovered function of hydralazine. Hydralazine inhibited the recruitments of pro-inflammatory BMDMs and educated infiltrated BMDMs to a more reparative phenotype involving in multiple biological processes associated with SCI pathology, including immune/inflammation response, neurogenesis, lipid metabolism, oxidative stress, fibrosis formation, and angiogenesis, etc. As an overall effect, hydralazine-treated BMDMs loaden with sp partially rescued neurological function after SCI. It is concluded that hydralazine plays an immunomodulation role of educating pro-inflammatory BMDMs to a more reparative phenotype; and hydralazine-educated BMDMs contribute to hydralazine-induced improvement of neurological function in SCI mice, which provides support for drug and cell treatment options for SCI therapy.
Collapse
Affiliation(s)
- Xin Quan
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chuchu Qi
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haoying Zhang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xi Wang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
40
|
Luo Y, Yao F, Shi Y, Zhu Z, Xiao Z, You X, Liu Y, Yu S, Tian D, Cheng L, Zheng M, Jing J. Tocilizumab promotes repair of spinal cord injury by facilitating the restoration of tight junctions between vascular endothelial cells. Fluids Barriers CNS 2023; 20:1. [PMID: 36624478 PMCID: PMC9830903 DOI: 10.1186/s12987-022-00399-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Our previous study demonstrated that M1 macrophages could impair tight junctions (TJs) between vascular endothelial cells by secreting interleukin-6 (IL-6) after spinal cord injury (SCI). Tocilizumab, as a humanized IL-6 receptor (IL-6R) monoclonal antibody approved for the clinic, has been applied in the treatment of neurological diseases in recent years, but the treatment effect of Tocilizumab on the TJs restoration of the blood-spinal cord barrier (BSCB) after SCI remains unclear. This study aimed to explore the effect of Tocilizumab on the restoration of TJs between vascular endothelial cells and axon regeneration after SCI. METHODS In this study, the mouse complete spinal cord crush injury model was used, and Tocilizumab was continuously injected intrathecally until the day of sample collection. A PBS injection in the same location was included as a control. At 14 days postinjury (dpi) and 28 dpi, spinal cord tissue sections were examined via tissue immunofluorescence. The Basso Mouse Scale (BMS) scores and footprint analysis were used to verify the effect of Tocilizumab on the recovery of motor function in mice after SCI. RESULTS We demonstrated that depletion of macrophages has no effect on axon regeneration and motor functional recovery after SCI, but mice subjected to Tocilizumab showed a significant increase in axon regeneration and a better recovery in motor function during the chronic phase after SCI. Moreover, our study demonstrated that at 14 and 28 dpi, the expression of claudin-5 (CLDN5) and zonula occludens-1 (ZO-1) between vascular endothelial cells was significantly increased and the leakage of BSCB was significantly reduced in the injured core after daily intrathecal injection of Tocilizumab. Notably, the infiltration of CD68+ macrophages/microglia and the formation of fibrotic scar were decreased in the injured core after Tocilizumab treatment. Tocilizumab treatment could effectively reduce the IL-6 expression in macrophages in the injured core. CONCLUSION The application of Tocilizumab to antagonize IL-6R can effectively reduce the expression of IL-6 in macrophages and facilitate TJs restoration of the BSCB, which is beneficial for axon regeneration and motor functional recovery after SCI. Hence, Tocilizumab treatment is a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yang Luo
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.412679.f0000 0004 1771 3402Department of Orthopedic Disease and Oncology Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Fei Yao
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Yi Shi
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Zhenyu Zhu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Zhaoming Xiao
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Xingyu You
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Yanchang Liu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Shuisheng Yu
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Dasheng Tian
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Li Cheng
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Meige Zheng
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| | - Juehua Jing
- grid.186775.a0000 0000 9490 772XDepartment of Orthopaedics & Spine Surgery, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China ,grid.186775.a0000 0000 9490 772XInstitute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601 China
| |
Collapse
|
41
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
42
|
Li C, Xiong W, Wan B, Kong G, Wang S, Wang Y, Fan J. Role of peripheral immune cells in spinal cord injury. Cell Mol Life Sci 2023; 80:2. [PMID: 36478290 PMCID: PMC9729325 DOI: 10.1007/s00018-022-04644-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.
Collapse
Affiliation(s)
- Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Wan
- Department of Orthopaedics, Subei People's Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, 210029, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingying Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
43
|
Riew TR, Hwang JW, Jin X, Kim HL, Lee MY. Infiltration of meningeal macrophages into the Virchow-Robin space after ischemic stroke in rats: Correlation with activated PDGFR-β-positive adventitial fibroblasts. Front Mol Neurosci 2022; 15:1033271. [PMID: 36644619 PMCID: PMC9837109 DOI: 10.3389/fnmol.2022.1033271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Macrophages play a crucial role in wound healing and fibrosis progression after brain injury. However, a detailed analysis of their initial infiltration and interaction with fibroblasts is yet to be conducted. This study aimed to investigate the possible route for migration of meningeal macrophages into the ischemic brain and whether these macrophages closely interact with neighboring platelet-derived growth factor beta receptor (PDGFR-β)-positive adventitial fibroblasts during this process. A rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) was developed. In sham-operated rats, CD206-positive meningeal macrophages were confined to the leptomeninges and the perivascular spaces, and they were not found in the cortical parenchyma. In MCAO rats, the number of CD206-positive meningeal macrophages increased both at the leptomeninges and along the vessels penetrating the cortex 1 day after reperfusion and increased progressively in the extravascular area of the cortical parenchyma by 3 days. Immunoelectron microscopy and correlative light and electron microscopy showed that in the ischemic brain, macrophages were frequently located in the Virchow-Robin space around the penetrating arterioles and ascending venules at the pial surface. This was identified by cells expressing PDGFR-β, a novel biomarker of leptomeningeal cells. Macrophages within penetrating vessels were localized in the perivascular space between smooth muscle cells and PDGFR-β-positive adventitial fibroblasts. In addition, these PDGFR-β-positive fibroblasts showed morphological and molecular characteristics similar to those of leptomeningeal cells: they had large euchromatic nuclei with prominent nucleoli and well-developed rough endoplasmic reticulum; expressed nestin, vimentin, and type I collagen; and were frequently surrounded by collagen fibrils, indicating active collagen synthesis. In conclusion, the perivascular Virchow-Robin space surrounding the penetrating vessels could be an entry route of meningeal macrophages from the subarachnoid space into the ischemic cortical parenchyma, implying that activated PDGFR-β-positive adventitial fibroblasts could be involved in this process.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Mun-Yong Lee, ✉
| |
Collapse
|
44
|
Jin H, Liu Y, Liu X, Khodeiry MM, Lee JK, Lee RK. Hematogenous Macrophages Contribute to Fibrotic Scar Formation After Optic Nerve Crush. Mol Neurobiol 2022; 59:7393-7403. [PMID: 36181661 DOI: 10.1007/s12035-022-03052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/24/2022] [Indexed: 01/18/2023]
Abstract
Although glial scar formation has been extensively studied after optic nerve injury, the existence and characteristics of traumatic optic nerve fibrotic scar formation have not been previously characterized. Recent evidence suggests infiltrating macrophages are involved in pathological processes after optic nerve crush (ONC), but their role in fibrotic scar formation is unknown. Using wild-type and transgenic mouse models with optic nerve crush injury, we show that macrophages infiltrate and associate with fibroblasts in the traumatic optic nerve lesion fibrotic scar. We dissected the role of hematogenous and resident macrophages, labeled with Dil liposomes intravenously administered, and observed that hematogenous macrophages (Dil+ cells) specifically accumulate in the center of traumatic fibrotic scar while Iba-1+ cells reside predominantly at the margins of optic nerve fibrotic scar. Depletion of hematogenous macrophages results in reduced fibroblast density and decreased extracellular matrix deposition within the fibrotic scar area following ONC. However, retinal ganglion cell degeneration and function loss after optic nerve crush remain unaffected after hematogenous macrophage depletion. We present new and previously not characterized evidence that hematogenous macrophages are selectively recruited into the fibrotic core of the optic nerve crush site and critical for this fibrotic scar formation.
Collapse
Affiliation(s)
- Huiyi Jin
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yuan Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xiangxiang Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohamed M Khodeiry
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
45
|
Yao F, Luo Y, Liu YC, Chen YH, Li YT, Hu XY, You XY, Yu SS, Li ZY, Chen L, Tian DS, Zheng MG, Cheng L, Jing JH. Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflamm Regen 2022; 42:44. [PMID: 36163271 PMCID: PMC9511779 DOI: 10.1186/s41232-022-00223-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Fibrotic scar formation and inflammation are characteristic pathologies of spinal cord injury (SCI) in the injured core, which has been widely regarded as the main barrier to axonal regeneration resulting in permanent functional recovery failure. Pericytes were shown to be the main source of fibroblasts that form fibrotic scar. However, the mechanism of pericyte-fibroblast transition after SCI remains elusive. Methods Fibrotic scarring and microvessels were assessed using immunofluorescence staining after establishing a crush SCI model. To study the process of pericyte-fibroblast transition, we analyzed pericyte marker and fibroblast marker expression using immunofluorescence. The distribution and cellular origin of platelet-derived growth factor (PDGF)-BB were examined with immunofluorescence. Pericyte-fibroblast transition was detected with immunohistochemistry and Western blot assays after PDGF-BB knockdown and blocking PDGF-BB/PDGFRβ signaling in vitro. Intrathecal injection of imatinib was used to selectively inhibit PDGF-BB/PDGFRβ signaling. The Basso mouse scale score and footprint analysis were performed to assess functional recovery. Subsequently, axonal regeneration, fibrotic scarring, fibroblast population, proliferation and apoptosis of PDGFRβ+ cells, microvessel leakage, and the inflammatory response were assessed with immunofluorescence. Results PDGFRβ+ pericytes detached from the blood vessel wall and transitioned into fibroblasts to form fibrotic scar after SCI. PDGF-BB was mainly distributed in the periphery of the injured core, and microvascular endothelial cells were one of the sources of PDGF-BB in the acute phase. Microvascular endothelial cells induced pericyte-fibroblast transition through the PDGF-BB/PDGFRβ signaling pathway in vitro. Pharmacologically blocking the PDGF-BB/PDGFRβ pathway promoted motor function recovery and axonal regeneration and inhibited fibrotic scar formation. After fibrotic scar formation, blocking the PDGFRβ receptor inhibited proliferation and promoted apoptosis of PDGFRβ+ cells. Imatinib did not alter pericyte coverage on microvessels, while microvessel leakage and inflammation were significantly decreased after imatinib treatment. Conclusions We reveal that the crosstalk between microvascular endothelial cells and pericytes promotes pericyte-fibroblast transition through the PDGF-BB/PDGFRβ signaling pathway. Our finding suggests that blocking the PDGF-BB/PDGFRβ signaling pathway with imatinib contributes to functional recovery, fibrotic scarring, and inflammatory attenuation after SCI and provides a potential target for the treatment of SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00223-9.
Collapse
Affiliation(s)
- Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yan-Chang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yi-Hao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yi-Teng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xu-Yang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xing-Yu You
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Shui-Sheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Zi-Yu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Lei Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Da-Sheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Mei-Ge Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China. .,School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Jue-Hua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
46
|
Hemati-Gourabi M, Cao T, Romprey MK, Chen M. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. Front Neurosci 2022; 16:955598. [PMID: 36203815 PMCID: PMC9530187 DOI: 10.3389/fnins.2022.955598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding the regulation of axon growth after injury to the adult central nervous system (CNS) is crucial to improve neural repair. Following acute focal CNS injury, astrocytes are one cellular component of the scar tissue at the primary lesion that is traditionally associated with inhibition of axon regeneration. Advances in genetic models and experimental approaches have broadened knowledge of the capacity of astrocytes to facilitate injury-induced axon growth. This review summarizes findings that support a positive role of astrocytes in axon regeneration and axon sprouting in the mature mammalian CNS, along with potential underlying mechanisms. It is important to recognize that astrocytic functions, including modulation of axon growth, are context-dependent. Evidence suggests that the local injury environment, neuron-intrinsic regenerative potential, and astrocytes’ reactive states determine the astrocytic capacity to support axon growth. An integrated understanding of these factors will optimize therapeutic potential of astrocyte-targeted strategies for neural repair.
Collapse
Affiliation(s)
| | - Tuoxin Cao
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
| | - Megan K. Romprey
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Meifan Chen
- Spinal Cord and Brain Injury Research Center, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meifan Chen,
| |
Collapse
|
47
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina,Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
48
|
Ribeiro M, Ayupe AC, Beckedorff FC, Levay K, Rodriguez S, Tsoulfas P, Lee JK, Nascimento-Dos-Santos G, Park KK. Retinal ganglion cell expression of cytokine enhances occupancy of NG2 cell-derived astrocytes at the nerve injury site: Implication for axon regeneration. Exp Neurol 2022; 355:114147. [PMID: 35738417 PMCID: PMC10648309 DOI: 10.1016/j.expneurol.2022.114147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
Collapse
Affiliation(s)
- Marcio Ribeiro
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Felipe C Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Room 715, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Sara Rodriguez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Jae K Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| |
Collapse
|
49
|
Fibrotic Scar in CNS Injuries: From the Cellular Origins of Fibroblasts to the Molecular Processes of Fibrotic Scar Formation. Cells 2022; 11:cells11152371. [PMID: 35954214 PMCID: PMC9367779 DOI: 10.3390/cells11152371] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023] Open
Abstract
Central nervous system (CNS) trauma activates a persistent repair response that leads to fibrotic scar formation within the lesion. This scarring is similar to other organ fibrosis in many ways; however, the unique features of the CNS differentiate it from other organs. In this review, we discuss fibrotic scar formation in CNS trauma, including the cellular origins of fibroblasts, the mechanism of fibrotic scar formation following an injury, as well as the implication of the fibrotic scar in CNS tissue remodeling and regeneration. While discussing the shared features of CNS fibrotic scar and fibrosis outside the CNS, we highlight their differences and discuss therapeutic targets that may enhance regeneration in the CNS.
Collapse
|
50
|
Corrigendum: Purinergic signaling systems across comparative models of spinal cord injury. Neural Regen Res 2022; 18:689-696. [PMID: 36018196 PMCID: PMC9727416 DOI: 10.4103/1673-5374.350234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
[This corrects the article DOI: 10.4103/1673-5374.338993].
Collapse
|