1
|
Tropea MR, Melone M, Li Puma DD, Vacanti V, Aceto G, Bandiera B, Trovato RC, Torrisi SA, Leggio GM, Palmeri A, D'Ascenzo M, Conti F, Grassi C, Puzzo D. Blockade of dopamine D3 receptors improves hippocampal synaptic function and rescues age-related cognitive phenotype. Aging Cell 2024; 23:e14291. [PMID: 39236310 DOI: 10.1111/acel.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Carmela Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marcello D'Ascenzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
2
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Zeng P, Wang T, Zhang L, Guo F. Exploring the causes of augmentation in restless legs syndrome. Front Neurol 2023; 14:1160112. [PMID: 37840917 PMCID: PMC10571710 DOI: 10.3389/fneur.2023.1160112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Long-term drug treatment for Restless Legs Syndrome (RLS) patients can frequently result in augmentation, which is the deterioration of symptoms with an increased drug dose. The cause of augmentation, especially derived from dopamine therapy, remains elusive. Here, we review recent research and clinical progress on the possible mechanism underlying RLS augmentation. Dysfunction of the dopamine system highly possibly plays a role in the development of RLS augmentation, as dopamine agonists improve desensitization of dopamine receptors, disturb receptor interactions within or outside the dopamine receptor family, and interfere with the natural regulation of dopamine synthesis and release in the neural system. Iron deficiency is also indicated to contribute to RLS augmentation, as low iron levels can affect the function of the dopamine system. Furthermore, genetic risk factors, such as variations in the BTBD9 and MEIS1 genes, have been linked to an increased risk of RLS initiation and augmentation. Additionally, circadian rhythm, which controls the sleep-wake cycle, may also contribute to the worsening of RLS symptoms and the development of augmentation. Recently, Vitamin D deficiency has been suggested to be involved in RLS augmentation. Based on these findings, we propose that the progressive reduction of selective receptors, influenced by various pathological factors, reverses the overcompensation of the dopamine intensity promoted by short-term, low-dose dopaminergic therapy in the development of augmentation. More research is needed to uncover a deeper understanding of the mechanisms underlying the RLS symptom and to develop effective RLS augmentation treatments.
Collapse
Affiliation(s)
- Pengyu Zeng
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tiantian Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Center for Sleep Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisan Zhang
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Sleep Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Estrada-Sánchez AM, Rangel-Barajas C, Howe AG, Barton SJ, Mach RH, Luedtke RR, Rebec GV. Selective Activation of D3 Dopamine Receptors Ameliorates DOI-Induced Head Twitching Accompanied by Changes in Corticostriatal Processing. Int J Mol Sci 2023; 24:ijms24119300. [PMID: 37298250 DOI: 10.3390/ijms24119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) at behavioral and electrophysiological levels. Mice received an intraperitoneal injection of either a full D3 agonist, WC 44 [4-(2-fluoroethyl)-N-[4-[4-(2-methoxyphenyl)piperazin 1-yl]butyl]benzamide] or a partial D3 agonist, WW-III-55 [N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide] five minutes before the intraperitoneal administration of DOI. Compared to the control group, both D3 agonists delayed the onset of the DOI-induced head-twitch response and reduced the total number and frequency of the head twitches. Moreover, the simultaneous recording of neuronal activity in the motor cortex (M1) and dorsal striatum (DS) indicated that D3 activation led to slight changes in a single unit activity, mainly in DS, and increased its correlated firing in DS or between presumed cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs). Our results confirm the role of D3 receptor activation in controlling DOI-induced involuntary movements and suggest that this effect involves, at least in part, an increase in correlated corticostriatal activity. A further understanding of the underlying mechanisms may provide a suitable target for treating neuropathologies in which involuntary movements occur.
Collapse
Affiliation(s)
- Ana María Estrada-Sánchez
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055, Colonia Lomas 4a Sección, San Luis Potosi C.P. 78216, Mexico
| | - Claudia Rangel-Barajas
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Andrew G Howe
- Psychology Department, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intelligent Systems Laboratory, HRL Laboratories, LLC., Malibu, CA 90265, USA
| | - Scott J Barton
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th St., Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - George V Rebec
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Kang X, Liu L, Wang W, Wang Y. Effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potentials in rats with global cerebral ischemia-reperfusion injury. J Stroke Cerebrovasc Dis 2023; 32:107142. [PMID: 37105127 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE To explore the effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potential in rats with global cerebral ischemia-reperfusion injury. METHODS A total of 75 SPF Sprague-Dawley male rats were randomly divided into sham group (n=20), model group (n=20), pramipexole administration group (n=35). The rat model of global cerebral ischemia-reperfusion injury was prepared by the modified Pulsinelli's four-vessel occlusion method. Pramipexole administration group was administered intraperitoneally in rats with global cerebral ischemia-reperfusion injury at different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, once a day for 14 consecutive days. Based on the results of modified neurological severity scores, open field test and morphology by Nissl's staining to determine the optimal dose of pramipexole. Mitochondrial membrane potential in the optimal dose of pramipexole administration group were measured by the JC-1 fluorescent probe staining method. RESULTS 1. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg, were used as drug administration in rats with global cerebral ischemia-reperfusion injury for 14 consecutive days, and we found that all four doses of pramipexole could improve the modified neurological severity scores of rats with global cerebral ischemia-reperfusion injury to varying degrees, but only 0.5 mg/kg pramipexole at 1, 3, 7 and 14 days consistently reduced modified neurological severity scores and improved neurological function in rats with global cerebral ischemia-reperfusion injury. In the open-field test, only 0.5 mg/kg pramipexole increased the number of entries into the central zone, duration spent in the central zone, total distance travelled in the open field and average velocity, which improved the spontaneous activities and reduced anxiety and depression of rats with global cerebral ischemia-reperfusion injury. 2. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg for 14 consecutive days significantly increased the number of surviving neurons in the hippocampal CA1 subfield in rats with global cerebral ischemia-reperfusion injury to varying degrees. Based on these results, we tentatively found that 0.5 mg/kg pramipexole may be the optimal dose in all of the above. 3. We found that 0.5 mg/kg pramipexole significantly increased the mitochondrial membrane potential in rats after global cerebral ischemia-reperfusion injury. CONCLUSION Different doses of dopamine receptor agonist pramipexole improved neurological function of rats with global cerebral ischemia-reperfusion injury to varying degrees, and 0.5 mg/kg pramipexole may be the optimal dose in all of the above. Pramipexole may produce neuroprotective effects by protecting neurons in the hippocampus and improving the mitochondrial membrane potential after global cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaoyu Kang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.
| | - Wenzhu Wang
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China; Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Boai hospital, China Rehabilitation Research Center, No. 10, Jiao Men Bei Road, Fengtai District, 100068 Beijing, China
| |
Collapse
|
6
|
Ferré S, Sarasola LI, Quiroz C, Ciruela F. Presynaptic adenosine receptor heteromers as key modulators of glutamatergic and dopaminergic neurotransmission in the striatum. Neuropharmacology 2023; 223:109329. [PMID: 36375695 DOI: 10.1016/j.neuropharm.2022.109329] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A1 and A2A receptors (A1Rs and A2ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. A1Rs and A2ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form A1R-A2AR and A2AR-cannabinoid CB1 receptor (CB1R) heteromers. We then evaluate recent findings on the unique properties of A1R-A2AR and A2AR-CB1R heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the A2AR to demonstrate constitutive activity in the different heteromers, and the ability of some A2AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific A2AR heteromer.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA.
| | - Laura I Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
7
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
8
|
Requie LM, Gómez-Gonzalo M, Speggiorin M, Managò F, Melone M, Congiu M, Chiavegato A, Lia A, Zonta M, Losi G, Henriques VJ, Pugliese A, Pacinelli G, Marsicano G, Papaleo F, Muntoni AL, Conti F, Carmignoto G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat Neurosci 2022; 25:1639-1650. [PMID: 36396976 DOI: 10.1038/s41593-022-01193-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.
Collapse
Affiliation(s)
- Linda Maria Requie
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| | - Michele Speggiorin
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, Università degli Studi di Cagliari, Cagliari, Italy.,Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Angela Chiavegato
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Annamaria Lia
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Losi
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.,Nanoscienze Institute, National Research Council (CNR), Modena, Italy
| | - Vanessa Jorge Henriques
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Giovanni Marsicano
- University of Bordeaux and Interdisciplinary Institute for Neuroscience (CNRS), Bordeaux, France
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| |
Collapse
|
9
|
Stewart A, Mayer FP, Gowrishankar R, Davis GL, Areal LB, Gresch PJ, Katamish RM, Peart R, Stilley SE, Spiess K, Rabil MJ, Diljohn FA, Wiggins AE, Vaughan RA, Hahn MK, Blakely RD. Behaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters. Mol Psychiatry 2022; 27:4869-4880. [PMID: 36117213 DOI: 10.1038/s41380-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023]
Abstract
Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Felix P Mayer
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gwynne L Davis
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Paul J Gresch
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Rania M Katamish
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Rodeania Peart
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Samantha E Stilley
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Keeley Spiess
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian J Rabil
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Angelica E Wiggins
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Maureen K Hahn
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA. .,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
10
|
Hettiarachchi P, Johnson MA. Characterization of D3 Autoreceptor Function in Whole Zebrafish Brain with Fast-Scan Cyclic Voltammetry. ACS Chem Neurosci 2022; 13:2863-2873. [PMID: 36099546 PMCID: PMC10105970 DOI: 10.1021/acschemneuro.2c00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Zebrafish (Danio rerio) are ideal model organisms for investigating nervous system function, both in health and disease. Nevertheless, functional characteristics of dopamine (DA) release and uptake regulation are still not well-understood in zebrafish. In this study, we assessed D3 autoreceptor function in the telencephalon of whole zebrafish brains ex vivo by measuring the electrically stimulated DA release ([DA]max) and uptake at carbon fiber microelectrodes with fast-scan cyclic voltammetry. Treatment with pramipexole and 7-OH-DPAT, selective D3 autoreceptor agonists, sharply decreased [DA]max. Conversely, SB277011A, a selective D3 antagonist, nearly doubled [DA]max and decreased k, the first-order rate constant for the DA uptake, to about 20% of its original value. Treatment with desipramine, a selective norepinephrine transporter blocker, failed to increase current, suggesting that our electrochemical signal arises solely from the release of DA. Furthermore, blockage of DA uptake with nomifensine-reversed 7-OH-DPAT induced decreases in [DA]max. Collectively, our data show that, as in mammals, D3 autoreceptors regulate DA release, likely by inhibiting uptake. The results of this study are useful in the further development of zebrafish as a model organism for DA-related neurological disorders such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
11
|
Lycas MD, Ejdrup AL, Sørensen AT, Haahr NO, Jørgensen SH, Guthrie DA, Støier JF, Werner C, Newman AH, Sauer M, Herborg F, Gether U. Nanoscopic dopamine transporter distribution and conformation are inversely regulated by excitatory drive and D2 autoreceptor activity. Cell Rep 2022; 40:111431. [PMID: 36170827 PMCID: PMC9617621 DOI: 10.1016/j.celrep.2022.111431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.
Collapse
Affiliation(s)
- Matthew D Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Aske L Ejdrup
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Nicolai O Haahr
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Søren H Jørgensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Wei SZ, Yao XY, Wang CT, Dong AQ, Li D, Zhang YT, Ren C, Zhang JB, Mao CJ, Wang F, Liu CF. Pramipexole regulates depression-like behavior via dopamine D3 receptor in a mouse model of Parkinson's disease. Brain Res Bull 2021; 177:363-372. [PMID: 34699917 DOI: 10.1016/j.brainresbull.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Depression is one of the strongest predictors of quality of life in patients with Parkinson's disease (PD). Despite the high prevalence of depression, there is no clear guidance for its treatment in PD because the evidence for the efficacy of most antidepressants remains insufficient. Pramipexole, a dopamine agonist, is one of the few drugs that has proven to be clinically useful. However, the underlying mechanisms of antidepressive effects of pramipexole are still unknown. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, dopamine D2 receptor (DRD2) and D3 receptor (DRD3) knockout mice were used in our study. Compared with other dopamine D2-like receptor agonists and madopar, pramipexole improved depression-like behavior and alleviate bradykinesia in an MPTP-induced mouse model of PD. Pramipexole significantly improved depression-like behavior in DRD2-/- mice but not in DRD3-/- mice. These results demonstrate that the antidepressive effect of pramipexole is mediated by DRD3 but not DRD2. Our findings highlight the need to develop novel dopamine agonists specifically targeting DRD3 for the treatment of depression in PD in the future.
Collapse
Affiliation(s)
- Shi-Zhuang Wei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chen-Tao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - An-Qi Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chao Ren
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; Department of Neurology, Suqian First Hospital, Suqian, China; Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
13
|
Martens MAG, Kaltenboeck A, Halahakoon DC, Browning M, Cowen PJ, Harmer CJ. An Experimental Medicine Investigation of the Effects of Subacute Pramipexole Treatment on Emotional Information Processing in Healthy Volunteers. Pharmaceuticals (Basel) 2021; 14:ph14080800. [PMID: 34451897 PMCID: PMC8401454 DOI: 10.3390/ph14080800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Treatment with the dopamine D2/D3 receptor agonist pramipexole has demonstrated promising clinical effects in patients with depression. However, the mechanisms through which pramipexole might alleviate depressive symptoms are currently not well understood. Conventional antidepressant drugs are thought to work by biasing the processing of emotional information in favour of positive relative to negative appraisal. In this study, we used an established experimental medicine assay to explore whether pramipexole treatment might have a similar effect. Employing a double-blind, parallel-group design, 40 healthy volunteers (aged 18 to 43 years, 50% female) were randomly allocated to 12 to 15 days of treatment with either pramipexole (at a peak daily dose of 1.0 mg pramipexole salt) or placebo. After treatment was established, emotional information processing was assessed on the neural level by measuring amygdala activity in response to positive and negative facial emotional expressions, using functional magnetic resonance imaging (MRI). In addition, behavioural measures of emotional information processing were collected at baseline and on drug, using an established computerized task battery, tapping into different cognitive domains. As predicted, pramipexole-treated participants, compared to those receiving placebo, showed decreased neural activity in response to negative (fearful) vs. positive (happy) facial expressions in bilateral amygdala. Contrary to our predictions, however, pramipexole treatment had no significant antidepressant-like effect on behavioural measures of emotional processing. This study provides the first experimental evidence that subacute pramipexole treatment in healthy volunteers modifies neural responses to emotional information in a manner that resembles the effects of conventional antidepressant drugs.
Collapse
Affiliation(s)
- Marieke Annie Gerdine Martens
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Correspondence:
| | - Alexander Kaltenboeck
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria
| | - Don Chamith Halahakoon
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Philip J. Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| |
Collapse
|
14
|
Ferré S, Guitart X, Quiroz C, Rea W, García-Malo C, Garcia-Borreguero D, Allen RP, Earley CJ. Akathisia and Restless Legs Syndrome: Solving the Dopaminergic Paradox. Sleep Med Clin 2021; 16:249-267. [PMID: 33985651 DOI: 10.1016/j.jsmc.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D1 receptors, which form complexes (heteromers) with dopamine D3 and adenosine A1 receptors. It also proposes that in DRBA-induced akathisia, increased dopamine release depends on inactivation of autoreceptors, whereas in RLS it depends on a brain iron deficiency-induced down-regulation of striatal presynaptic A1 receptors.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Xavier Guitart
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - César Quiroz
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - William Rea
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Celia García-Malo
- Sleep Research Institute, Paseo de la Habana 151, Madrid 28036, Spain
| | | | - Richard P Allen
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Christopher J Earley
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Feng Y, Lu Y. Immunomodulatory Effects of Dopamine in Inflammatory Diseases. Front Immunol 2021; 12:663102. [PMID: 33897712 PMCID: PMC8063048 DOI: 10.3389/fimmu.2021.663102] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine (DA) receptor, a significant G protein-coupled receptor, is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor families, with further formation of homodimers, heteromers, and receptor mosaic. Increasing evidence suggests that the immune system can be affected by the nervous system and neurotransmitters, such as dopamine. Recently, the role of the DA receptor in inflammation has been widely studied, mainly focusing on NLRP3 inflammasome, NF-κB pathway, and immune cells. This article provides a brief review of the structures, functions, and signaling pathways of DA receptors and their relationships with inflammation. With detailed descriptions of their roles in Parkinson disease, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, this article provides a theoretical basis for drug development targeting DA receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Yifei Feng
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Guerrero-Bautista R, Franco-García A, Hidalgo JM, Fernández-Gómez FJ, Ribeiro Do Couto B, Milanés MV, Núñez C. Distinct Regulation of Dopamine D3 Receptor in the Basolateral Amygdala and Dentate Gyrus during the Reinstatement of Cocaine CPP Induced by Drug Priming and Social Stress. Int J Mol Sci 2021; 22:3100. [PMID: 33803578 PMCID: PMC8002864 DOI: 10.3390/ijms22063100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/16/2023] Open
Abstract
Relapse in the seeking and intake of cocaine is one of the main challenges when treating its addiction. Among the triggering factors for the recurrence of cocaine use are the re-exposure to the drug and stressful events. Cocaine relapse engages the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG), which are responsible for emotional and episodic memories. Moreover, D3 receptor (D3R) antagonists have recently arisen as a potential treatment for preventing drug relapse. Thus, we have assessed the impact of D3R blockade in the expression of some dopaminergic markers and the activity of the mTOR pathway, which is modulated by D3R, in the BLA and DG during the reinstatement of cocaine-induced conditioned place preference (CPP) evoked by drug priming and social stress. Reinstatement of cocaine CPP paralleled an increasing trend in D3R and dopamine transporter (DAT) levels in the BLA. Social stress, but not drug-induced reactivation of cocaine memories, was prevented by systemic administration of SB-277011-A (a selective D3R antagonist), which was able, however, to impede D3R and DAT up-regulation in the BLA during CPP reinstatement evoked by both stress and cocaine. Concomitant with cocaine CPP reactivation, a diminution in mTOR phosphorylation (activation) in the BLA and DG occurred, which was inhibited by D3R blockade in both nuclei before the social stress episode and only in the BLA when CPP reinstatement was provoked by a cocaine prime. Our data, while supporting a main role for D3R signalling in the BLA in the reactivation of cocaine memories evoked by social stress, indicate that different neural circuits and signalling mechanisms might mediate in the reinstatement of cocaine-seeking behaviours depending upon the triggering stimuli.
Collapse
Affiliation(s)
- Rocío Guerrero-Bautista
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Juana M. Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Bruno Ribeiro Do Couto
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
- Department of Anatomy and Psychobiology, University of Murcia, 30100 Murcia, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| |
Collapse
|
17
|
Luis-Ravelo D, Fumagallo-Reading F, Castro-Hernandez J, Barroso-Chinea P, Afonso-Oramas D, Febles-Casquero A, Cruz-Muros I, Salas-Hernandez J, Mesa-Infante V, Rodriguez-Nuñez J, Gonzalez-Hernandez T. Prolonged dopamine D 3 receptor stimulation promotes dopamine transporter ubiquitination and degradation through a PKC-dependent mechanism. Pharmacol Res 2021; 165:105434. [PMID: 33484816 DOI: 10.1016/j.phrs.2021.105434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The dopamine transporter (DAT) is a membrane glycoprotein in dopaminergic neurons, which modulates extracellular and intracellular dopamine levels. DAT is regulated by different presynaptic proteins, including dopamine D2 (D2R) and D3 (D3R) receptors. While D2R signalling enhances DAT activity, some data suggest that D3R has a biphasic effect. However, despite the extensive therapeutic use of D2R/D3R agonists in neuropsychiatric disorders, this phenomenon has been little studied. In order to shed light on this issue, DAT activity, expression and posttranslational modifications were studied in mice and DAT-D3R-transfected HEK cells. Consistent with previous reports, acute treatment with D2R/D3R agonists promoted DAT recruitment to the plasma membrane and an increase in DA uptake. However, when the treatment was prolonged, DA uptake and total striatal DAT protein declined below basal levels. These effects were inhibited in mice by genetic and pharmacological inactivation of D3R, but not D2R, indicating that they are D3R-dependent. No changes were detected in mesostriatal tyrosine hydroxylase (TH) protein expression and midbrain TH and DAT mRNAs, suggesting that the dopaminergic system is intact and DAT is posttranslationally regulated. The use of immunoprecipitation and cell surface biotinylation revealed that DAT is phosphorylated at serine residues, ubiquitinated and released into late endosomes through a PKCβ-dependent mechanism. In sum, the results indicate that long-term D3R activation promotes DAT down-regulation, an effect that may underlie neuroprotective and antidepressant actions described for some D2R/D3R agonists.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Felipe Fumagallo-Reading
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Javier Castro-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Alejandro Febles-Casquero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Josmar Salas-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Julia Rodriguez-Nuñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
18
|
Dopamine transporter is downregulated and its association with chaperone protein Hsc70 is enhanced by activation of dopamine D 3 receptor. Brain Res Bull 2020; 165:263-271. [PMID: 33049353 DOI: 10.1016/j.brainresbull.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Synaptic dopamine (DA) concentrations are largely determined by the activities of presynaptic D2 and D3 autoreceptors (D2R and D3R) and DA transporter (DAT). Furthermore, the activity of DAT is regulated by phosphorylation events and protein interactions that affect its surface expression. Because DA autoreceptors and DAT coordinately maintain synaptic DA homeostasis, we hypothesized that D3R might crosstalk with DAT to fine-tune synaptic DA concentrations. To test this hypothesis, we established [3H]DA uptake and DAT surface expression assays in hD3/rDAT-double-transfected HEK-293 cells or limbic forebrain synaptosomal preparations. Ropinirole, a preferential D3R agonist, reduced [3H]DA uptake in HEK-hD3/rDAT cells in a dose-dependent manner, an effect which could be blocked by the D2R/D3R antagonist, raclopride. Furthermore, ropinirole also reduced DAT surface expression in limbic forebrain synaptosomes, and this effect could be blocked by raclopride or the internalization inhibitor, concanavalin A. To identify potential mediators of this apparent D3R-DAT crosstalk, DAT-associated proteins were co-immunoprecipitated from limbic forebrain synaptosomes after D3R activation and identified by MALDI-TOF. From this analysis, the Hsc70 chaperone was identified as a DAT-associated protein. Interestingly, ropinirole induced the association of Hsc70/Hsp70 with DAT, and the Hsc70/Hsp70 inhibitor, apoptozole, prevented the ropinirole-induced reduction of DAT surface expression. Together, these results suggest that D3R negatively regulates DAT activity by promoting the association of DAT and Hsc70/Hsp70.
Collapse
|
19
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Molecular Imaging of the Dopamine Transporter. Cells 2019; 8:cells8080872. [PMID: 31405186 PMCID: PMC6721747 DOI: 10.3390/cells8080872] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Dopamine transporter (DAT) single-photon emission tomography (SPECT) with (123)Ioflupane is a widely used diagnostic tool for patients with suspected parkinsonian syndromes, as it assists with differentiating between Parkinson’s disease (PD) or atypical parkinsonisms and conditions without a presynaptic dopaminergic deficit such as essential tremor, vascular and drug-induced parkinsonisms. Recent evidence supports its utility as in vivo proof of degenerative parkinsonisms, and DAT imaging has been proposed as a potential surrogate marker for dopaminergic nigrostriatal neurons. However, the interpretation of DAT-SPECT imaging may be challenged by several factors including the loss of DAT receptor density with age and the effect of certain drugs on dopamine uptake. Furthermore, a clear, direct relationship between nigral loss and DAT decrease has been controversial so far. Striatal DAT uptake could reflect nigral neuronal loss once the loss exceeds 50%. Indeed, reduction of DAT binding seems to be already present in the prodromal stage of PD, suggesting both an early synaptic dysfunction and the activation of compensatory changes to delay the onset of symptoms. Despite a weak correlation with PD severity and progression, quantitative measurements of DAT binding at baseline could be used to predict the emergence of late-disease motor fluctuations and dyskinesias. This review addresses the possibilities and limitations of DAT-SPECT in PD and, focusing specifically on regulatory changes of DAT in surviving DA neurons, we investigate its role in diagnosis and its prognostic value for motor complications as disease progresses.
Collapse
|
21
|
Weng JJ, Wang LH, Zhu H, Xu WR, Wei YM, Wang ZY, Yu WJ, Li HF. Efficacy of low-dose D 2/D 3 partial agonist pramipexole on neuroleptic-induced extrapyramidal symptoms and symptoms of schizophrenia: a stage-1 open-label pilot study. Neuropsychiatr Dis Treat 2019; 15:2195-2203. [PMID: 31496702 PMCID: PMC6689661 DOI: 10.2147/ndt.s205933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Some lines of evidence show that D2/D3 receptor partial agonist pramipexole may be effective in the treatment of extrapyramidal symptoms (EPS) and psychiatric symptoms of schizophrenia. Therefore, we analyzed whether a low dose of pramipexole (0.375-0.75 mg/day) has efficacy on EPS and symptoms of schizophrenia while maintaining tolerability. METHODS Ten subjects with EPS [including drug-induced parkinsonism (DIP) and akathisia] were recruited in a stage-1, open-label pilot study. All the subjects were treated with a low dose of pramipexole. The evaluations were performed at baseline, day 3, week 1, week 2, week 4, week 6, and week 8. The ratings of SAS, BARS, PANSS, CDSS, and CGI-S and adverse effects (AE) were recorded in every visit. RESULTS SAS total scores decreased significantly during the study in patients with DIP (P<0.001), and mild AEs were detected. Treatments with pramipexole did not show an anti-akathisia effect during the study, while 2 subjects experienced deterioration of akathisia and mood symptoms. The psychiatric symptoms of schizophrenia showed a trend of improvement during the study, but there was no improvement in depressive mood. CONCLUSION A low dose of pramipexole can significantly relieve antipsychotic-induced parkinsonism, but not akathisia. Improvements in psychiatric symptoms of schizophrenia were found, but the results of this study need to be validated in a larger sample. No improvement of mood disorder was detected.
Collapse
Affiliation(s)
- Jia Jun Weng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Li Hua Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Wen Rong Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Yu Mei Wei
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Zhi Yang Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Wen Juan Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China
| | - Hua Fang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders , Shanghai, People's Republic of China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Maia TV, Conceição VA. Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account. Biol Psychiatry 2018; 84:332-344. [PMID: 29656800 DOI: 10.1016/j.biopsych.2018.02.1172] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/04/2018] [Accepted: 02/25/2018] [Indexed: 12/28/2022]
Abstract
Tourette syndrome (TS) is thought to involve dopaminergic disturbances, but the nature of those disturbances remains controversial. Existing hypotheses suggest that TS involves 1) supersensitive dopamine receptors, 2) overactive dopamine transporters that cause low tonic but high phasic dopamine, 3) presynaptic dysfunction in dopamine neurons, or 4) dopaminergic hyperinnervation. We review evidence that contradicts the first two hypotheses; we also note that the last two hypotheses have traditionally been considered too narrowly, explaining only small subsets of findings. We review all studies that have used positron emission tomography and single-photon emission computerized tomography to investigate the dopaminergic system in TS. The seemingly diverse findings from those studies have typically been interpreted as pointing to distinct mechanisms, as evidenced by the various hypotheses concerning the nature of dopaminergic disturbances in TS. We show, however, that the hyperinnervation hypothesis provides a simple, parsimonious explanation for all such seemingly diverse findings. Dopaminergic hyperinnervation likely causes increased tonic and phasic dopamine. We have previously shown, using a computational model of the role of dopamine in basal ganglia, that increased tonic dopamine and increased phasic dopamine likely increase the propensities to express and learn tics, respectively. There is therefore a plausible mechanistic link between dopaminergic hyperinnervation and TS via increased tonic and phasic dopamine. To further bolster this argument, we review evidence showing that all medications that are effective for TS reduce signaling by tonic dopamine, phasic dopamine, or both.
Collapse
Affiliation(s)
- Tiago V Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Vasco A Conceição
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Zhan J, Jordan CJ, Bi GH, He XH, Gardner EL, Wang YL, Xi ZX. Genetic deletion of the dopamine D3 receptor increases vulnerability to heroin in mice. Neuropharmacology 2018; 141:11-20. [PMID: 30138692 DOI: 10.1016/j.neuropharm.2018.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Despite extensive research, the neurobiological risk factors that convey vulnerability to opioid abuse are still unknown. Recent studies suggest that the dopamine D3 receptor (D3R) is involved in opioid self-administration, but it remains unclear whether altered D3R availability is a risk factor for the development of opioid abuse and addiction. Here we used dopamine D3 receptor-knockout (D3-KO) mice to investigate the role of this receptor in the different phases of opioid addiction. D3-KO mice learned to self-administer heroin faster and took more heroin than wild-type mice during acquisition and maintenance of self-administration. D3R-KO mice also displayed higher motivation to work to obtain heroin reward during self-administration under progressive-ratio reinforcement, as well as elevated heroin-seeking during extinction and reinstatement testing. In addition, deletion of the D3R induced higher baseline levels of extracellular dopamine (DA) in the nucleus accumbens (NAc), higher basal levels of locomotion, and reduced NAc DA and locomotor responses to lower doses of heroin. These findings suggest that the D3R is critically involved in regulatory processes that normally limit opioid intake via DA-related mechanisms. Deletion of D3R augments opioid-taking and opioid-seeking behaviors. Therefore, low D3R availability in the brain may represent a risk factor for the development of opioid abuse and addiction.
Collapse
Affiliation(s)
- Jia Zhan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA; Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Xiang-Hu He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA; Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
24
|
Siddique YH, Naz F, Khan W, Jyoti S, Raj Singh B, Naqvi AH. Effect of pramipexole alginate nanodispersion (PAND) on the transgenic Drosophila expressing human alpha synuclein in the brain. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Won JH, Kim SK, Shin IC, Ha HC, Jang JM, Back MJ, Kim DK. Dopamine transporter trafficking is regulated by neutral sphingomyelinase 2/ceramide kinase. Cell Signal 2018; 44:171-187. [DOI: 10.1016/j.cellsig.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022]
|
26
|
Wang J, Jia Y, Li G, Wang B, Zhou T, Zhu L, Chen T, Chen Y. The Dopamine Receptor D3 Regulates Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Int J Neuropsychopharmacol 2018; 21:448-460. [PMID: 29390063 PMCID: PMC5932470 DOI: 10.1093/ijnp/pyy005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The altered expression and function of dopamine receptor D3 (D3R) in patients and animal models have been correlated with depression disease severity. However, the morphological alterations and biological effects of D3R in the brain after inflammation-induced depressive-like behavior remain elusive. METHODS In the present study, we ascertained the changes of D3R expression in the brain regions after depressive-like behavior induced by peripheral administration of lipopolysaccharide (LPS). Protein levels of proinflammatory cytokines, brain-derived neurotrophic factor (BDNF), and extracellular signal-regulated kinase (ERK1/2)-cAMP-response element-binding protein (CREB) signaling pathway after activation or inhibition of D3R in the brain of depressive mice were also investigated. RESULTS LPS caused a significant reduction of D3R in the ventral tegmental area (VTA), medial prefrontal cortex (mPFC), and nucleus accumbens (NAc), which are areas related to the mesolimbic dopaminergic system. Pretreatment with pramipexole (PPX), a preferential D3R agonist, showed antidepressant effects on LPS-induced depression-like behavior through preventing changes in LPS-induced proinflammatory cytokines (tumour necrosis factor-α, interleukin-1β, and interleukin-6), BDNF, and ERK1/2-CREB signaling pathway in the VTA and NAc. In opposition, treatment with a D3R selective antagonist NGB 2904 alone made mice susceptible to depression-like effects and caused changes in accordance with the LPS-induced alterations in proinflammatory cytokines, BDNF, and the ERK1/2-CREB signaling pathway in the mPFC and NAc. CONCLUSIONS These findings provide a relevant mechanism for D3R in LPS-induced depressive-like behavior via its mediation of proinflammatory cytokines and potential cross-effects between BDNF and the ERK1/2-CREB signaling pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuwei Jia
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Guodong Li
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Zhu
- Forensic Medicine College of Xi’an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi’an, China
| | - Teng Chen
- Forensic Medicine College of Xi’an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi’an, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China,Forensic Medicine College of Xi’an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi’an, China,Correspondence: Yanjiong Chen, PhD, Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China ()
| |
Collapse
|
27
|
Luis-Ravelo D, Estévez-Silva H, Barroso-Chinea P, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Acevedo-Arozena A, Marcellino D, González-Hernández T. Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease. Exp Neurol 2018; 299:137-147. [DOI: 10.1016/j.expneurol.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
|
28
|
Maia TV, Conceição VA. The Roles of Phasic and Tonic Dopamine in Tic Learning and Expression. Biol Psychiatry 2017; 82:401-412. [PMID: 28734459 DOI: 10.1016/j.biopsych.2017.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 01/26/2023]
Abstract
Tourette syndrome (TS) prominently involves dopaminergic disturbances, but the precise nature of those disturbances has remained elusive. A substantial body of empirical work and recent computational models have characterized the specific roles of phasic and tonic dopamine (DA) in action learning and selection, respectively. Using insights from this work and models, we suggest that TS involves increases in both phasic and tonic DA, which produce increased propensities for tic learning and expression, respectively. We review the evidence from reinforcement-learning and habit-learning studies in TS, which supports the idea that TS involves increased phasic DA responses; we also review the evidence that tics engage the habit-learning circuitry. On the basis of these findings, we suggest that tics are exaggerated, maladaptive, and persistent motor habits reinforced by aberrant, increased phasic DA responses. Increased tonic DA amplifies the tendency to execute learned tics and also provides a fertile ground of motor hyperactivity for tic learning. We review evidence suggesting that antipsychotics may counter both the increased propensity for tic expression, by increasing excitability in the indirect pathway, and the increased propensity for tic learning, by shifting plasticity in the indirect pathway toward long-term potentiation (and possibly also through more complex mechanisms). Finally, we review evidence suggesting that low doses of DA agonists that effectively treat TS decrease both phasic and tonic DA, thereby also reducing the propensity for both tic learning and tic expression, respectively.
Collapse
Affiliation(s)
- Tiago V Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Vasco A Conceição
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Lewis MM, Sterling NW, Du G, Lee EY, Shyu G, Goldenberg M, Allen T, Stetter C, Kong L, Snipes SA, Jones BC, Chen H, Mailman RB, Huang X. Lateralized Basal Ganglia Vulnerability to Pesticide Exposure in Asymptomatic Agricultural Workers. Toxicol Sci 2017; 159:170-178. [PMID: 28633499 PMCID: PMC5837257 DOI: 10.1093/toxsci/kfx126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pesticide exposure is linked to Parkinson's disease, a neurodegenerative disorder marked by dopamine cell loss in the substantia nigra of the basal ganglia (BG) that often presents asymmetrically. We previously reported that pesticide-exposed agricultural workers (AW) have nigral diffusion tensor imaging (DTI) changes. The current study sought to confirm this finding, and explore its hemisphere and regional specificity within BG structures using an independent sample population. Pesticide exposure history, standard neurological exam, high-resolution magnetic resonance imaging (T1/T2-weighted and DTI), and [123I]ioflupane SPECT images (to quantify striatal dopamine transporters) were obtained from 20 AW with chronic pesticide exposure and 11 controls. Based on median cumulative days of pesticide exposure, AW were subdivided into high (AWHi, n = 10) and low (AWLo, n = 10) exposure groups. BG (nigra, putamen, caudate, and globus pallidus [GP]) fractional anisotropy (FA), mean diffusivity (MD), and striatal [123I]ioflupane binding in each hemisphere were quantified, and compared across exposure groups using analysis of variance. Left, but not right, nigral and GP FA were significantly lower in AW compared with controls (p's < .029). None of the striatal (putamen and caudate) DTI or [123I]ioflupane binding measurements differed between AW and controls. Subgroup analyses indicated that significant left nigral and GP DTI changes were present only in the AWHi (p ≤ .037) but not the AWLo subgroup. AW, especially those with higher pesticide exposure history, demonstrate lateralized microstructural changes in the nigra and GP, whereas striatal areas appear relatively unaffected. Future studies should elucidate how environmental toxicants cause differential lateralized- and regionally specific brain vulnerability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Allen
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - Christy Stetter
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - Lan Kong
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - Shedra Amy Snipes
- Department of Biobehavioral Health, Pennsylvania State University University Park, Pennsylvania 16802
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824
| | | | - Xuemei Huang
- Department of Neurology
- Department of Pharmacology
- Department of Radiology, and Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| |
Collapse
|
30
|
Striatal Dopamine Transporter Modulation After Rotigotine: Results From a Pilot Single-Photon Emission Computed Tomography Study in a Group of Early Stage Parkinson Disease Patients. Clin Neuropharmacol 2017; 40:34-36. [PMID: 27941527 DOI: 10.1097/wnf.0000000000000198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Several in vitro data have reported negative interference by dopamine-agonists on the expression of dopamine transporter (DAT), whereas the majority of imaging studies have shown that neither L-dopa nor dopamine-agonists interfere with DAT availability. As yet, there are no in vivo studies on DAT expression after treatment with rotigotine. METHODS We evaluated presynaptic nigrostriatal function in 8 patients with de novo Parkinson disease (age, 59 ± 6.2 years; male/female sex, 5/3) using 123-I- N-ω-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane (FP-CIT) single-photon emission computed tomography before and after 3 months of treatment with rotigotine (mean dose, 7.75 ± 1.98 mg). For data analysis, specific (left and right caudate, left and right putamen) to nonspecific (occipital cortex) binding ratios, putamen-to-caudate ratios, and asymmetry indices were calculated. RESULTS After rotigotine, motor symptoms improved in all patients (Unified Parkinson Disease Rating Scale III mean score, 11.88 ± 2.59 vs 7.63 ± 1.92 on therapy; P = 0.0022). Striatal FP-CIT levels showed a significant improvement in every patient at the follow-up scan. Comparisons between before and after treatment in the whole group revealed a significant improvement in FP-CIT uptake in both caudate and putamen (P < 0.001 in each nucleus). Putamen-to-caudate ratio and asymmetry indices did not show any significant difference before and after treatment. DISCUSSION Although the study population was small, we found DAT overexpression after chronic treatment with rotigotine, presumably related to its pharmacological profile. The DAT upregulation by rotigotine in an opposite direction with respect to early Parkinson disease compensatory mechanisms might reduce the risk of dyskinesia, but it could imply less motor benefit because of less stimulation by the dopamine itself on dopaminergic receptors.
Collapse
|
31
|
Papp M, Gruca P, Lason-Tyburkiewicz M, Litwa E, Niemczyk M, Tota-Glowczyk K, Willner P. Dopaminergic mechanisms in memory consolidation and antidepressant reversal of a chronic mild stress-induced cognitive impairment`. Psychopharmacology (Berl) 2017; 234:2571-2585. [PMID: 28567697 PMCID: PMC5548836 DOI: 10.1007/s00213-017-4651-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/12/2017] [Indexed: 01/27/2023]
Abstract
Cognitive deficits in depression can be modelled using the novel object recognition (NOR) test, performance in which is impaired by chronic mild stress (CMS). We aimed to examine the involvement of mesocorticolimbic DA terminal regions, and to establish the substrate for CMS-induced impairment of NOR and its reversal by chronic antidepressant treatment. In experiments 1 and 2, we examined the effect of infusions into medial PFC, dorsal hippocampus (HPC), and nucleus accumbens (NAc) shell of D1 and D2 antagonists and D3 agonist, which were predicted to impair NOR with a short (1 h) delay, and of D1 and D2 agonists and D3 antagonist, which were predicted to facilitate NOR with a long (24 h) delay. Using optimal doses identified in experiment 2, in experiments 3 and 4, we examined effects on drug-stimulated NOR of CMS and chronic treatment with venlafaxine (VFX) or risperidone (RSP). We found a wide involvement of DA systems in memory for NOR: D1 receptors in PFC, HPC, and NAc; D3 receptors in PFC and HPC; and D2 receptors in PFC. CMS impaired D2- and D3-mediated effects in PFC and HPC; antidepressants rescued those effects in PFC but not HPC. The involvement of DA in NOR is multifaceted, but the effects of CMS and antidepressants are more discrete, involving D2 and D3 receptors in PFC specifically. While raising many difficult questions, these results suggest that the D2 and D3 receptors in the medial PFC may be an important substrate for cognitive deficits in depression and their remediation.
Collapse
Affiliation(s)
- Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | | | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
32
|
Heightened Dopaminergic Response to Amphetamine at the D 3 Dopamine Receptor in Methamphetamine Users. Neuropsychopharmacology 2016; 41:2994-3002. [PMID: 27353309 PMCID: PMC5101546 DOI: 10.1038/npp.2016.108] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 02/05/2023]
Abstract
Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D3 receptor levels in stimulant users prompting the view that D3 antagonism may help prevent relapse. Here we tested whether a 'blunted' response to amphetamine in methamphetamine (MA) users extends to D3-rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D3-preferring probe [11C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [11C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D3-rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported 'drug wanting'. We did not observe a 'blunted' dopamine response to amphetamine in D2-rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [11C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal 'D3-areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction.
Collapse
|
33
|
Millan MJ, Rivet JM, Gobert A. The frontal cortex as a network hub controlling mood and cognition: Probing its neurochemical substrates for improved therapy of psychiatric and neurological disorders. J Psychopharmacol 2016; 30:1099-1128. [PMID: 27756833 DOI: 10.1177/0269881116672342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The highly-interconnected and neurochemically-rich frontal cortex plays a crucial role in the regulation of mood and cognition, domains disrupted in depression and other central nervous system disorders, and it is an important site of action for their therapeutic control. For improving our understanding of the function and dysfunction of the frontal cortex, and for identifying improved treatments, quantification of extracellular pools of neuromodulators by microdialysis in freely-moving rodents has proven indispensable. This approach has revealed a complex mesh of autoreceptor and heteroceptor interactions amongst monoaminergic pathways, and led from selective 5-HT reuptake inhibitors to novel classes of multi-target drugs for treating depression like the mixed α2-adrenoceptor/5-HT reuptake inhibitor, S35966, and the clinically-launched vortioxetine and vilazodone. Moreover, integration of non-monoaminergic actions resulted in the discovery and development of the innovative melatonin receptor agonist/5-HT2C receptor antagonist, Agomelatine. Melatonin levels, like those of corticosterone and the "social hormone", oxytocin, can now be quantified by microdialysis over the full 24 h daily cycle. Further, the introduction of procedures for measuring extracellular histamine and acetylcholine has provided insights into strategies for improving cognition by, for example, blockade of 5-HT6 and/or dopamine D3 receptors. The challenge of concurrently determining extracellular levels of GABA, glutamate, d-serine, glycine, kynurenate and other amino acids, and of clarifying their interactions with monoamines, has also been resolved. This has proven important for characterizing the actions of glycine reuptake inhibitors that indirectly augment transmission at N-methyl-d-aspartate receptors, and of "glutamatergic antidepressants" like ketamine, mGluR5 antagonists and positive modulators of AMPA receptors (including S47445). Most recently, quantification of the neurotoxic proteins Aβ42 and Tau has extended microdialysis studies to the pathogenesis of neurodegenerative disorders, and another frontier currently being broached is microRNAs. The present article discusses the above themes, focusses on recent advances, highlights opportunities for clinical "translation", and suggests avenues for further progress.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Jean-Michel Rivet
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Alain Gobert
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| |
Collapse
|
34
|
Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3472032. [PMID: 27829983 PMCID: PMC5088323 DOI: 10.1155/2016/3472032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.
Collapse
|
35
|
McGinnis MM, Siciliano CA, Jones SR. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter. J Neurochem 2016; 138:821-9. [PMID: 27393374 DOI: 10.1111/jnc.13732] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/20/2016] [Accepted: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Cocaine is a commonly abused central nervous system stimulant that enhances dopamine (DA) neurotransmission through its ability to block dopamine transporters (DATs). Recent evidence suggests there may be an interaction between DATs and D2/D3 autoreceptors that modulates cocaine's effects. The purpose of this study was to explore how D2/D3 autoreceptors modulate the ability of cocaine to inhibit DA uptake through DATs on pre-synaptic DA terminals. Using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from male and female C57BL/6J mice, we first sought to examine the effects of global autoreceptor blockade using the non-selective D2/D3 autoreceptor antagonist, raclopride. We found that the ability of cocaine to inhibit DA uptake was increased by raclopride and that this effect was consistent across sexes. Furthermore, using D2 (L-741,626) or D3 (SB-277011-A) autoreceptor selective antagonists, we discovered that blockade of D3, but not D2, autoreceptors was responsible for the increased cocaine potency. Alterations in cocaine potency were attributable to alterations in uptake inhibition, rather than cocaine effects on vesicular DA release, suggesting that these results may be a product of a functional D3/DAT interaction apart from the canonical inhibitory actions of D3 autoreceptors on DA release. In addition, application of D2 (sumanirole) and D3 (PD 128907) autoreceptor-specific agonists had inverse effects, whereby D2 autoreceptor activation decreased cocaine potency and D3 autoreceptor activation had no effect. Together, these data show that DA autoreceptors dynamically regulate cocaine potency at the DAT, which is important for understanding cocaine's rewarding and addictive properties. We propose a model whereby presynaptic dopamine autoreceptors dynamically modulate cocaine potency through two separate mechanisms. We demonstrate that D2 agonists decrease cocaine potency, whereas D3 antagonists increase cocaine potency, likely through an allosteric mechanism outside of their canonical actions on dopamine release. These findings give important and novel insight into the contribution of D2/D3 autoreceptors to dopamine transporter function.
Collapse
Affiliation(s)
- Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Cody A Siciliano
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
36
|
Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiol Dis 2016; 88:44-54. [PMID: 26777664 DOI: 10.1016/j.nbd.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.
Collapse
|
37
|
Keeler BE, Lallemand P, Patel MM, de Castro Brás LE, Clemens S. Opposing aging-related shift of excitatory dopamine D1 and inhibitory D3 receptor protein expression in striatum and spinal cord. J Neurophysiol 2015; 115:363-9. [PMID: 26561599 DOI: 10.1152/jn.00390.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Normal aging is associated with a decrease in motor function, a concomitant increase in muscle stiffness and tone, and a decrease in dopamine (DA) levels in the spinal cord. The striatum plays a critical role in the control of motor function, and it receives strong DA innervation from the substantia nigra. However, locomotor activity also requires the activation of motoneurons in the lumbar spinal cord, which in the mouse express all five DA receptor subtypes (D1-D5). Of these, the D3 receptor (D3R) expresses the highest affinity to DA and mediates inhibitory actions, while activation of the lower-affinity D1 receptor (D1R) system promotes excitatory effects. To test whether the aging-related decrease in DA levels is associated with corresponding changes in DA receptor protein expression levels, we probed with Western blot and immunohistochemical techniques for D1R and D3R protein expression levels over the normal life span of the mouse. We found that with age D1R expression levels increased in both striatum and spinal cord, while D3R expression levels remained stable in the striatum or slightly decreased in the spinal cord. The resulting D1-to-D3 ratio indicates a strong upregulation of D1R-mediated pathways in old animals, which is particularly pronounced in the lumbar spinal cord. These data suggest that aging may be associated with a shift in DA-mediated pathways in striatum and spinal cord, which in turn could be an underlying factor in the emergence of aging- and DA-related motor dysfunctions such as Parkinson's disease or Restless Legs Syndrome (RLS).
Collapse
Affiliation(s)
- Benjamin E Keeler
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Perrine Lallemand
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Mukund M Patel
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
38
|
De Gois S, Slama P, Pietrancosta N, Erdozain AM, Louis F, Bouvrais-Veret C, Daviet L, Giros B. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane. J Biol Chem 2015; 290:17848-17862. [PMID: 26048990 DOI: 10.1074/jbc.m115.646315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking.
Collapse
Affiliation(s)
- Stéphanie De Gois
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada
| | - Patrick Slama
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Nicolas Pietrancosta
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; CNRS, UMR 8601, 75006 Paris, France
| | - Amaia M Erdozain
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Franck Louis
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Caroline Bouvrais-Veret
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | | | - Bruno Giros
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada.
| |
Collapse
|