1
|
Thacker JS, Bettio L, Liang S, Shkolnikov I, Collingridge GL, Christie BR. Adiponectin rescues synaptic plasticity in the dentate gyrus of a mouse model of Fragile X Syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230221. [PMID: 38853554 PMCID: PMC11343265 DOI: 10.1098/rstb.2023.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Jonathan S. Thacker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British ColumbiaV8P 5C2, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, British ColumbiaV8P 5C2, Canada
| | - Stanley Liang
- Division of Medical Sciences, University of Victoria, Victoria, British ColumbiaV8P 5C2, Canada
| | - Irene Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British ColumbiaV8P 5C2, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, British ColumbiaV8P 5C2, Canada
- Island Medical Program, University of British Columbia, Victoria, British ColumbiaV8P 5C2, Canada
- Center for Behavioral Teratology, San Diego State University, San Diego, CA92120, USA
| |
Collapse
|
2
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
3
|
Deng PY, Kumar A, Cavalli V, Klyachko VA. Circuit-based intervention corrects excessive dentate gyrus output in the fragile X mouse model. eLife 2024; 12:RP92563. [PMID: 38345852 PMCID: PMC10942577 DOI: 10.7554/elife.92563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 knockout (KO) mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Ajeet Kumar
- Department of Neuroscience, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSt LouisUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
4
|
Deng PY, Kumar A, Cavalli V, Klyachko VA. Circuit-based intervention corrects excessive dentate gyrus output in the Fragile X mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559792. [PMID: 37808793 PMCID: PMC10557679 DOI: 10.1101/2023.09.27.559792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 KO mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Ajeet Kumar
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| |
Collapse
|
5
|
Svalina MN, Guthman EM, Cea-Del Rio CA, Kushner JK, Baca SM, Restrepo D, Huntsman MM. Hyperexcitability and Loss of Feedforward Inhibition Contribute to Aberrant Plasticity in the Fmr1KO Amygdala. eNeuro 2021; 8:ENEURO.0113-21.2021. [PMID: 33893168 PMCID: PMC8121259 DOI: 10.1523/eneuro.0113-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder (NDD) characterized by intellectual disability, autism spectrum disorders (ASDs), and anxiety disorders. The disruption in the function of the FMR1 gene results in a range of alterations in cellular and synaptic function. Previous studies have identified dynamic alterations in inhibitory neurotransmission in early postnatal development in the amygdala of the mouse model of FXS. However, little is known about how these changes alter microcircuit development and plasticity in the lateral amygdala (LA). Using whole-cell patch clamp electrophysiology, we demonstrate that principal neurons (PNs) in the LA exhibit hyperexcitability with a concomitant increase in the synaptic strength of excitatory synapses in the BLA. Further, reduced feed-forward inhibition appears to enhance synaptic plasticity in the FXS amygdala. These results demonstrate that plasticity is enhanced in the amygdala of the juvenile Fmr1 knock-out (KO) mouse and that E/I imbalance may underpin anxiety disorders commonly seen in FXS and ASDs.
Collapse
Affiliation(s)
- Matthew N Svalina
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - E Mae Guthman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Centro de Investigación Biomédica y Aplicada, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - J Keenan Kushner
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Serapio M Baca
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Molly M Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
6
|
Molecular, physiological and behavioral characterization of the heterozygous Df[h15q13]/+ mouse model associated with the human 15q13.3 microdeletion syndrome. Brain Res 2020; 1746:147024. [PMID: 32712126 DOI: 10.1016/j.brainres.2020.147024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.
Collapse
|
7
|
Ghilan M, Bettio LEB, Noonan A, Brocardo PS, Gil-Mohapel J, Christie BR. Impaired spatial processing in a mouse model of fragile X syndrome. Behav Brain Res 2018; 350:72-79. [PMID: 29778627 DOI: 10.1016/j.bbr.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1-/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1-/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1-/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1-/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks.
Collapse
Affiliation(s)
- Mohamed Ghilan
- Graduate Program in Neuroscience, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Athena Noonan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Island Medical Program, University of British Columbia, Victoria, BC, Canada.
| | - Brian R Christie
- Graduate Program in Neuroscience, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Island Medical Program, University of British Columbia, Victoria, BC, Canada
| |
Collapse
|
8
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
10
|
Behavioral effects of chronic stress in the Fmr1 mouse model for fragile X syndrome. Behav Brain Res 2017; 320:128-135. [PMID: 27939692 DOI: 10.1016/j.bbr.2016.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
Fragile X Syndrome (FXS) is a pervasive developmental disorder due to a mutation in the FMR1 X-linked gene. Despite its clear genetic cause, the expression of FXS symptoms is known to be modulated by environmental factors, including stress. Furthermore, several studies have shown disturbances in stress regulatory systems in FXS patients and Fmr1 mice. These studies have mostly focused on the hormonal responses to stress, using the acute exposure to a single type of stressor. Hence, little is known about the behavioral effects of stress in FXS, and the importance of the nature of the stressing procedure, especially in the context of a repeated exposure that more closely resembles real life conditions. Here we evaluated the effects of chronic exposure to different types of stress (i.e., either repeated restraint or unpredictable stress) on the behavioral phenotype of adult Fmr1 mice. Our results demonstrated that chronic stress induced deficits in social interaction and working memory only in WT mice and the impact of stress depended on the type of stressors and the specific behavior tested. Our data suggest that the behavioral sensitivity to stress is dramatically reduced in FXS, opening new views on the impact of gene-environment interactions in this pathology.
Collapse
|
11
|
Sinclair D, Featherstone R, Naschek M, Nam J, Du A, Wright S, Pance K, Melnychenko O, Weger R, Akuzawa S, Matsumoto M, Siegel SJ. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome. eNeuro 2017; 4:ENEURO.0380-16.2017. [PMID: 28451631 PMCID: PMC5394929 DOI: 10.1523/eneuro.0380-16.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30-80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Featherstone
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Naschek
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nam
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Du
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Wright
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K Pance
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - O Melnychenko
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Weger
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Akuzawa
- Neuroscience Research Unit, DDR, Astellas Pharma Inc., Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - M Matsumoto
- Neuroscience Research Unit, DDR, Astellas Pharma Inc., Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - S J Siegel
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Yau S, Bostrom C, Chiu J, Fontaine C, Sawchuk S, Meconi A, Wortman R, Truesdell E, Truesdell A, Chiu C, Hryciw B, Eadie B, Ghilan M, Christie B. Impaired bidirectional NMDA receptor dependent synaptic plasticity in the dentate gyrus of adult female Fmr1 heterozygous knockout mice. Neurobiol Dis 2016; 96:261-270. [DOI: 10.1016/j.nbd.2016.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 11/29/2022] Open
|
13
|
Hardiman RL, Bratt A. Hypothalamic-pituitary-adrenal axis function in Fragile X Syndrome and its relationship to behaviour: A systematic review. Physiol Behav 2016; 167:341-353. [DOI: 10.1016/j.physbeh.2016.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 01/18/2023]
|
14
|
Bostrom C, Yau SY, Majaess N, Vetrici M, Gil-Mohapel J, Christie BR. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neurosci Biobehav Rev 2016; 68:563-574. [DOI: 10.1016/j.neubiorev.2016.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
15
|
Kwon KJ, Lee EJ, Kim MK, Jeon SJ, Choi YY, Shin CY, Han SH. The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function. Neuroscience 2015; 301:403-14. [PMID: 26047724 DOI: 10.1016/j.neuroscience.2015.05.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/05/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
While prolonged sleep deprivation (SD) could lead to profound negative health consequences, such as impairments in vital biological functions of immunity and cognition, melatonin possesses powerful ameliorating effects against those harmful insults. Melatonin has strong antioxidant and anti-inflammatory effects that help to restore body's immune and cognitive functions. In this study, we investigated the possible role of melatonin in reversing cognitive dysfunction induced by SD in rats. Our experimental results revealed that sleep-deprived animals exhibited spatial memory impairment in the Morris water maze tasks compared with the control groups. Furthermore, there was an increased glial activation most prominent in the hippocampal region of the SD group compared to the normal control (NC) group. Additionally, markers of oxidative stress such as 4-hydroxynonenal (4-HNE) and 7,8-dihydro-8-oxo-deoxyguanine (8-oxo-dG) were significantly increased, while fragile X-mental retardation protein (FMRP) expression was decreased in the SD group. Interestingly, melatonin treatment normalized these events to control levels following SD. Our data demonstrate that SD induces oxidative stress through glial activation and decreases FMRP expression in the neurons. Furthermore, our results suggest the efficacy of melatonin for the treatment of sleep-related neuronal dysfunction, which occurs in neurological disorders such as Alzheimer's disease and autism.
Collapse
Affiliation(s)
- K J Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - E J Lee
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - M K Kim
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - S J Jeon
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Y Y Choi
- Department of Biomedical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - C Y Shin
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - S-H Han
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|