1
|
Karimi-Sani I, Sharifi M, Abolpour N, Lotfi M, Atapour A, Takhshid MA, Sahebkar A. Drug repositioning for Parkinson's disease: An emphasis on artificial intelligence approaches. Ageing Res Rev 2025; 104:102651. [PMID: 39755176 DOI: 10.1016/j.arr.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's disease (PD) is one of the most incapacitating neurodegenerative diseases (NDDs). PD is the second most common NDD worldwide which affects approximately 1-2 percent of people over 65 years. It is an attractive pursuit for artificial intelligence (AI) to contribute to and evolve PD treatments through drug repositioning by repurposing existing drugs, shelved drugs, or even candidates that do not meet the criteria for clinical trials. A search was conducted in three databases Web of Science, Scopus, and PubMed. We reviewed the data related to the last years (1975-present) to identify those drugs currently being proposed for repositioning in PD. Moreover, we reviewed the present status of the computational approach, including AI/Machine Learning (AI/ML)-powered pharmaceutical discovery efforts and their implementation in PD treatment. It was found that the number of drug repositioning studies for PD has increased recently. Repositioning of drugs in PD is taking off, and scientific communities are increasingly interested in communicating its results and finding effective treatment alternatives for PD. A better chance of success in PD drug discovery has been made possible due to AI/ML algorithm advancements. In addition to the experimentation stage of drug discovery, it is also important to leverage AI in the planning stage of clinical trials to make them more effective. New AI-based models or solutions that increase the success rate of drug development are greatly needed.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrdad Sharifi
- Emergency Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nahid Abolpour
- Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrzad Lotfi
- Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad-Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
3
|
Wang P, Dai W, Liu H, Liu H, Xu Y. Fenobam modulates distinct electrophysiological mechanisms for regulating excessive gamma oscillations in the striatum of dyskinetic rats. Exp Neurol 2024; 378:114833. [PMID: 38782350 DOI: 10.1016/j.expneurol.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Gamma oscillations have been frequently observed in levodopa-induced dyskinesia (LID), manifest as broadband (60-120 Hz) and narrowband (80-110 Hz) gamma activity in cortico-striatal projection. We investigated the electrophysiological mechanisms and correlation of gamma oscillations with dyskinesia severity, while assessing the administration of fenobam, a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, in regulating dyskinesia-associated gamma activity. We conducted simultaneous electrophysiological recordings in Striatum (Str) and primary motor cortex (M1), together with Abnormal Involuntary Movement Scale scoring (AIMs). Phase-amplitude coupling (PAC), power, coherence, and Granger causality analyses were conducted for electrophysiological data. The findings demonstrated increased beta oscillations with directionality from M1 to Str in parkinsonian state. During on-state dyskinesia, elevated broadband gamma activity was modulated by the phase of theta activity in Str, while M1 → Str gamma causality mediated narrowband gamma oscillations in Str. Striatal gamma power (both periodic and aperiodic power), periodic power, peak frequency, and PAC at 80 min (corresponding to the peak dyskinesia) after repeated levodopa injections across recording days (day 30, 33, 36, 39, and 42) increased progressively, correlating with total AIMs. Additionally, a time-dependent parabolic trend of PAC, peak frequency and gamma power was observed after levodopa injection on day 42 from 20 to 120 min, which also correlated with corresponding AIMs. Fenobam effectively alleviates dyskinesia, suppresses enhanced gamma oscillations in the M1-Str directionality, and reduces PAC in Str. The temporal characteristics of gamma oscillations provide parameters for classifying LID severity. Antagonizing striatal mGluR5, a promising therapeutic target for dyskinesia, exerts its effects by modulating gamma activity.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weina Dai
- School of Basic Medical Science, Sanquan College of Xinxiang Medical University, Henan Province, China
| | - Hongbin Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; NHC Key Laboratory of Prevention and treatment of Cerebrovascular Disease, Henan Key Laboratory of Cerebrovascular Diseases of Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; NHC Key Laboratory of Prevention and treatment of Cerebrovascular Disease, Henan Key Laboratory of Cerebrovascular Diseases of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; NHC Key Laboratory of Prevention and treatment of Cerebrovascular Disease, Henan Key Laboratory of Cerebrovascular Diseases of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
5
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
6
|
Natale G, Colella M, De Carluccio M, Lelli D, Paffi A, Carducci F, Apollonio F, Palacios D, Viscomi MT, Liberti M, Ghiglieri V. Astrocyte Responses Influence Local Effects of Whole-Brain Magnetic Stimulation in Parkinsonian Rats. Mov Disord 2023; 38:2173-2184. [PMID: 37700489 DOI: 10.1002/mds.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Micol Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Maria De Carluccio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Lelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology "Vitorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
7
|
Touati I, Abdalla M, Boulaamane Y, Al-Hoshani N, Alouffi A, Britel MR, Maurady A. Identification of novel dual acting ligands targeting the adenosine A2A and serotonin 5-HT1A receptors. J Biomol Struct Dyn 2023; 42:12580-12595. [PMID: 37850444 DOI: 10.1080/07391102.2023.2270753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
GPCRs are a family of transmembrane receptors that are profoundly linked to various neurological disorders, among which is Parkinson's disease (PD). PD is the second most ubiquitous neurological disorder after Alzheimer's disease, characterized by the depletion of dopamine in the central nervous system due to the impairment of dopaminergic neurons, leading to involuntary movements or dyskinesia. The current standard of care for PD is Levodopa, a dopamine precursor, yet the chronic use of this agent can exacerbate motor symptoms. Recent studies have investigated the effects of combining A2AR antagonist and 5-HT1A agonist on dyskinesia and motor complications in animal models of PD. It has been proved that the drug combination has significantly improved involuntary movements while maintaining motor activity, highlighting as a result new lines of therapy for PD treatments, through the regulation of both receptors. Using a combination of ligand-based pharmacophore modelling, virtual screening, and molecular dynamics simulation, this study intends on identifying potential dual-target compounds from IBScreen. Results showed that the selected models displayed good enrichment metrics with a near perfect receiver operator characteristic (ROC) and Area under the accumulation curve (AUAC) values, signifying that the models are both specific and sensitive. Molecular docking and ADMET analysis revealed that STOCK2N-00171 could be potentially active against A2AR and 5-HT1A. Post-MD analysis confirmed that the ligand exhibits a stable behavior throughout the simulation while maintaining crucial interactions. These results imply that STOCK2N-00171 can serve as a blueprint for the design of novel and effective dual-acting ligands targeting A2AR and 5-HT1A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
8
|
Bi Y, Wang P, Yu J, Wang Z, Yang H, Deng Y, Guan J, Zhang W. Eltoprazine modulated gamma oscillations on ameliorating L-dopa-induced dyskinesia in rats. CNS Neurosci Ther 2023; 29:2998-3013. [PMID: 37122156 PMCID: PMC10493666 DOI: 10.1111/cns.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
AIM Parkinson's disease (PD) is a pervasive neurodegenerative disease, and levodopa (L-dopa) is its preferred treatment. The pathophysiological mechanism of levodopa-induced dyskinesia (LID), the most common complication of long-term L-dopa administration, remains obscure. Accumulated evidence suggests that the dopaminergic as well as non-dopaminergic systems contribute to LID development. As a 5-hydroxytryptamine 1A/1B receptor agonist, eltoprazine ameliorates dyskinesia, although little is known about its electrophysiological mechanism. The aim of this study was to investigate the cumulative effects of chronic L-dopa administration and the potential mechanism of eltoprazine's amelioration of dyskinesia at the electrophysiological level in rats. METHODS Neural electrophysiological analysis techniques were conducted on the acquired local field potential (LFP) data from primary motor cortex (M1) and dorsolateral striatum (DLS) during different pathological states to obtain the information of power spectrum density, theta-gamma phase-amplitude coupling (PAC), and functional connectivity. Behavior tests and AIMs scoring were performed to verify PD model establishment and evaluate LID severity. RESULTS We detected exaggerated gamma activities in the dyskinetic state, with different features and impacts in distinct regions. Gamma oscillations in M1 were narrowband manner, whereas that in DLS had a broadband appearance. Striatal exaggerated theta-gamma PAC in the LID state contributed to broadband gamma oscillation, and aperiodic-corrected cortical beta power correlated robustly with aperiodic-corrected gamma power in M1. M1-DLS coherence and phase-locking values (PLVs) in the gamma band were enhanced following L-dopa administration. Eltoprazine intervention reduced gamma oscillations, theta-gamma PAC in the DLS, and coherence and PLVs in the gamma band to alleviate dyskinesia. CONCLUSION Excessive cortical gamma oscillation is a compelling clinical indicator of dyskinesia. The detection of enhanced PAC and functional connectivity of gamma-band oscillation can be used to guide and optimize deep brain stimulation parameters. Eltoprazine has potential clinical application for dyskinesia.
Collapse
Affiliation(s)
- Yuewei Bi
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianshen Yu
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhuyong Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hanjie Yang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuhao Deng
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianwei Guan
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wangming Zhang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Marino G, Campanelli F, Natale G, De Carluccio M, Servillo F, Ferrari E, Gardoni F, Caristo ME, Picconi B, Cardinale A, Loffredo V, Crupi F, De Leonibus E, Viscomi MT, Ghiglieri V, Calabresi P. Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson's disease restoring striatal synaptic plasticity. SCIENCE ADVANCES 2023; 9:eadh1403. [PMID: 37450585 PMCID: PMC10348672 DOI: 10.1126/sciadv.adh1403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Intensive physical activity improves motor functions in patients with Parkinson's disease (PD) at early stages. However, the mechanisms underlying the beneficial effects of exercise on PD-associated neuronal alterations have not been fully clarified yet. Here, we tested the hypothesis that an intensive treadmill training program rescues alterations in striatal plasticity and early motor and cognitive deficits in rats receiving an intrastriatal injection of alpha-synuclein (α-syn) preformed fibrils. Improved motor control and visuospatial learning in active animals were associated with a recovery of dendritic spine density alterations and a lasting rescue of a physiological corticostriatal long-term potentiation (LTP). Pharmacological analyses of LTP show that modulations of N-methyl-d-aspartate receptors bearing GluN2B subunits and tropomyosin receptor kinase B, the main brain-derived neurotrophic factor receptor, are involved in these beneficial effects. We demonstrate that intensive exercise training has effects on the early plastic alterations induced by α-syn aggregates and reduces the spread of toxic α-syn species to other vulnerable brain areas.
Collapse
Affiliation(s)
- Gioia Marino
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Campanelli
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria De Carluccio
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation IRCCS S.Raffaele-Roma, Rome, Italy
| | - Federica Servillo
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | | | - Barbara Picconi
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
- IRCCS San Raffaele Roma, Lab. Neurofisiologia Sperimentale, Roma, Italy
| | - Antonella Cardinale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- IRCCS San Raffaele Roma, Lab. Neurofisiologia Sperimentale, Roma, Italy
| | - Vittorio Loffredo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
| | - Francesco Crupi
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
| | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Veronica Ghiglieri
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
10
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
11
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
12
|
Cesaroni V, Blandini F, Cerri S. Dyskinesia and Parkinson's disease: animal model, drug targets, and agents in preclinical testing. Expert Opin Ther Targets 2022; 26:837-851. [PMID: 36469635 DOI: 10.1080/14728222.2022.2153036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. PD patients exhibit a classic spectrum of motor symptoms, arising when dopamine neurons in the substantia nigra pars compacta are reduced by 60%. The dopamine precursor L-DOPA represents the most effective therapy for improving PD motor dysfunctions, thus far available. Unfortunately, long-term treatment with L-DOPA is associated with the development of severe side effects, resulting in abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Amantadine is the only drug currently approved for the treatment of LID indicating that LID management is still an unmet need in PD and encouraging the search for novel anti-dyskinetic drugs or the assessment of combined therapies with different molecular targets. AREAS COVERED This review provides an overview of the main preclinical models used to study LID and of the latest preclinical evidence on experimental and clinically available pharmacological approaches targeting non-dopaminergic systems. EXPERT OPINION LIDs are supported by complex molecular and neurobiological mechanisms that are still being studied today. This complexity suggests the need of developing personalized pharmacological approach to obtain an effective amelioration of LID condition and improve the quality of life of PD patients.
Collapse
Affiliation(s)
- Valentina Cesaroni
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| | - Fabio Blandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Silvia Cerri
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| |
Collapse
|
13
|
Synergistic effect of serotonin 1A and serotonin 1B/D receptor agonists in the treatment of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Exp Neurol 2022; 358:114209. [PMID: 35988699 DOI: 10.1016/j.expneurol.2022.114209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The gold standard for symptomatic relief of Parkinson's disease (PD) is L-DOPA. However, long-term treatment often leads to motor complications such as L-DOPA-induced dyskinesia (LID). While amantadine (Gocovri™) is the only approved therapy for dyskinesia in PD patients on the American market, it is associated with neurological side effects and limited efficacy. Thus, there remains a high unmet need for addressing LID in PD patients worldwide. OBJECTIVE The objective of this study was to evaluate the efficacy, safety and performance compared to approved treatments of the serotonin receptor 1A (5-HT1A) and 5-HT1B/D agonists buspirone and zolmitriptan in the 6-hydroxydopamine unilaterally lesioned rat model for PD. METHODS The hemiparkinsonian 6-OHDA-lesioned rats underwent chronic treatment with L-DOPA to induce dyskinesia and were subsequently used for efficacy testing of buspirone, zolmitriptan and comparison with amantadine, measured as abnormal involuntary movement (AIM) scores after L-DOPA challenge. Safety testing was performed in model and naïve animals using forelimb adjusting, rotarod and open field tests. RESULTS 5-HT1A and 5-HT1B/D agonism effectively reduced AIM scores in a synergistic manner. The drug combination of buspirone and zolmitriptan was safe and did not lead to tolerance development following sub-chronic administration. Head-to-head comparison with amantadine showed superior performance of buspirone and zolmitriptan in the model. CONCLUSIONS The strong anti-dyskinetic effect found with combined 5-HT1A and 5-HT1B/D agonism renders buspirone and zolmitriptan together a meaningful treatment for LID in PD.
Collapse
|
14
|
A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia. Neuropharmacology 2022; 218:109205. [DOI: 10.1016/j.neuropharm.2022.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
|
15
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
16
|
Serotonin-Related Functional Genetic Variants Affect the Occurrence of Psychiatric and Motor Adverse Events of Dopaminergic Treatment in Parkinson’s Disease: A Retrospective Cohort Study. J Pers Med 2022; 12:jpm12020266. [PMID: 35207756 PMCID: PMC8875505 DOI: 10.3390/jpm12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
The serotonergic system is important in Parkinson’s disease (PD) pathogenesis as it can take over dopamine production after a large portion of dopaminergic neurons is lost through neurodegeneration. The aim of this study was to evaluate the effect of genetic variability of serotonergic genes on the occurrence of motor complications and psychiatric adverse events (AE) due to dopaminergic treatment. We enrolled 231 patients and their clinical data were collected. Genotyping was performed for eight genetic variants. Logistic regression was used for analysis. Carriers of the HTR1A rs6295 GC genotype (OR = 2.58; 95% CI = 1.15–5.78; p = 0.021), TPH2 rs4290270 AA genotype (OR = 2.78; 95% CI = 1.08–7.03; p = 0.034), and at least one TPH2 rs4570625 T allele (OR = 1.86; 95% CI = 1.00–3.44; p = 0.047) had increased risk for visual hallucinations (VH). Additionally, carriers of at least one SLC6A4 5-HTTPLR rs25531 S (OR = 0.52; 95% CI = 0.28–0.96; p = 0.037) or at least one LG allele (OR = 0.37; 95% CI = 0.14–0.97; p = 0.044) had a decreased chance for VH. Constructed haplotypes of the TPH2 showed increased risk for VH (OR = 1.94; 95% CI = 1.06–3.55; p = 0.032) and impulse control disorders (OR = 5.20; 95% CI = 1.86–14.50; p = 0.002). Finally, individual gene–gene interactions showed decreased odds for the development of motor AE. Our findings suggest that the serotonergic pathway may play an important role in the development of AE resulting from dopaminergic treatment.
Collapse
|
17
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
18
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
19
|
Altwal F, Padovan-Neto FE, Ritger A, Steiner H, West AR. Role of 5-HT1A Receptor in Vilazodone-Mediated Suppression of L-DOPA-Induced Dyskinesia and Increased Responsiveness to Cortical Input in Striatal Medium Spiny Neurons in an Animal Model of Parkinson's Disease. Molecules 2021; 26:molecules26195790. [PMID: 34641332 PMCID: PMC8510243 DOI: 10.3390/molecules26195790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
L-DOPA therapy in Parkinson’s disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Feras Altwal
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.A.); (A.R.W.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Fernando E. Padovan-Neto
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Alexandra Ritger
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Correspondence:
| | - Anthony R. West
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.A.); (A.R.W.)
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| |
Collapse
|
20
|
Natale G, Pignataro A, Marino G, Campanelli F, Calabrese V, Cardinale A, Pelucchi S, Marcello E, Gardoni F, Viscomi MT, Picconi B, Ammassari-Teule M, Calabresi P, Ghiglieri V. Transcranial Magnetic Stimulation Exerts "Rejuvenation" Effects on Corticostriatal Synapses after Partial Dopamine Depletion. Mov Disord 2021; 36:2254-2263. [PMID: 34339069 DOI: 10.1002/mds.28671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. OBJECTIVES We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. METHODS Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. RESULTS Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. CONCLUSIONS Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Medicine, University of Perugia, Perugia, Italy.,Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT) National Research Council, Rome, Italy.,Laboratory of Psychobiology, IRCCS Fondazione Santa Lucia c/o CERC, Rome, Italy
| | - Gioia Marino
- Department of Medicine, University of Perugia, Perugia, Italy.,Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Campanelli
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valeria Calabrese
- Department of Medicine, University of Perugia, Perugia, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Antonella Cardinale
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health Section Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Martine Ammassari-Teule
- Laboratory of Psychobiology, IRCCS Fondazione Santa Lucia c/o CERC, Rome, Italy.,Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy.,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Veronica Ghiglieri
- San Raffaele University, Rome, Italy.,Laboratory of Neurophysiology, IRCCS Fondazione Santa Lucia c/o CERC, Rome, Italy
| |
Collapse
|
21
|
Liu Z, Yan A, Zhao J, Yang S, Song L, Liu Z. The p75 neurotrophin receptor as a novel intermediate in L-dopa-induced dyskinesia in experimental Parkinson's disease. Exp Neurol 2021; 342:113740. [PMID: 33971218 DOI: 10.1016/j.expneurol.2021.113740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
In Parkinson's disease (PD), long-term administration of L-dopa often leads to L-dopa-induced dyskinesia (LID), a debilitating motor complication. The p75 neurotrophin receptor (p75NTR) is likely to play a critical role in the regulation of dendritic spine density and morphology and appears to be associated with neuroinflammation, which previously has been identified as a crucial mechanism in LID. While aberrant modifications of p75NTR in neurological diseases have been extensively documented, only a few studies report p75NTR dysfunction in PD, and no data are available in LID. Here, we explored the functional role of p75NTR in LID. In LID rats, we identified that p75NTR was significantly increased in the lesioned striatum. In 6-hydroxydopamine (6-OHDA)-hemilesioned rats, specific knockdown of striatal p75NTR levels achieved by viral vector injection into the striatum prevented the development of LID and increased striatal structural plasticity. By contrast, we found that in 6-OHDA-hemilesioned rats, striatal p75NTR overexpression exacerbated LID and facilitated striatal dendritic spine losses. Moreover, we observed that the immunomodulatory drug fingolimod attenuated LID without lessening the therapeutic efficacy of L-dopa and normalized p75NTR levels. Together, these data demonstrate for the first time that p75NTR plays a pivotal role in the development of LID and that p75NTR may act as a potential novel target for the management of LID.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jiahao Zhao
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Shuyuan Yang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China.
| |
Collapse
|
22
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
23
|
Chen J, Wang Q, Li N, Huang S, Li M, Cai J, Wang Y, Wen H, Lv S, Wang N, Wang J, Luo F, Zhang W. Dyskinesia is Closely Associated with Synchronization of Theta Oscillatory Activity Between the Substantia Nigra Pars Reticulata and Motor Cortex in the Off L-dopa State in Rats. Neurosci Bull 2021; 37:323-338. [PMID: 33210188 PMCID: PMC7955013 DOI: 10.1007/s12264-020-00606-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 10/22/2022] Open
Abstract
Excessive theta (θ) frequency oscillation and synchronization in the basal ganglia (BG) has been reported in elderly parkinsonian patients and animal models of levodopa (L-dopa)-induced dyskinesia (LID), particularly the θ oscillation recorded during periods when L-dopa is withdrawn (the off L-dopa state). To gain insight into processes underlying this activity, we explored the relationship between primary motor cortex (M1) oscillatory activity and BG output in LID. We recorded local field potentials in the substantia nigra pars reticulata (SNr) and M1 of awake, inattentive resting rats before and after L-dopa priming in Sham control, Parkinson disease model, and LID model groups. We found that chronic L-dopa increased θ synchronization and information flow between the SNr and M1 in off L-dopa state LID rats, with a SNr-to-M1 flow directionality. Compared with the on state, θ oscillational activity (θ synchronization and information flow) during the off state were more closely associated with abnormal involuntary movements. Our findings indicate that θ oscillation in M1 may be consequent to abnormal synchronous discharges in the BG and support the notion that M1 θ oscillation may participate in the induction of dyskinesia.
Collapse
Affiliation(s)
- Jiazhi Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiang Wang
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Nanxiang Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shujie Huang
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Min Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Junbin Cai
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuzheng Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huantao Wen
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Siyuan Lv
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ning Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinyan Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wangming Zhang
- The National Key Clinic Specialty, The Engineering Technology Research Center of the Ministry of Education of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
24
|
Fu JF, Matarazzo M, McKenzie J, Neilson N, Vafai N, Dinelle K, Felicio AC, McKeown MJ, Stoessl AJ, Sossi V. Serotonergic System Impacts Levodopa Response in Early Parkinson's and Future Risk of Dyskinesia. Mov Disord 2020; 36:389-397. [PMID: 33090574 DOI: 10.1002/mds.28340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 10/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The serotonergic system is known to contribute to levodopa-derived dopamine release in advanced Parkinson's disease. OBJECTIVE We investigated the role of the serotonergic system in determining response to treatment in early disease and risk for complications concurrently with dopaminergic alterations. METHODS Eighteen patients with early and stable Parkinson's disease underwent multitracer positron emission tomography using [11 C]dihydrotetrabenazine (vesicular monoamine transporter 2 marker), [11 C]methylphenidate (dopamine transporter marker), [11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB, serotonin transporter marker), and [11 C]raclopride (D2 marker) to investigate relationships between striatal dopaminergic and serotonergic alterations and levodopa-induced dopamine release, related to motor response to treatment and risk for dyskinesias, using a novel joint pattern analysis. RESULTS The joint pattern analysis revealed correlated spatial patterns conceptually related to abnormal dopamine turnover in the putamen (higher dopamine release associated with dopaminergic and serotonergic denervation); response to treatment significantly inversely correlated with turnover-related dopamine release (P < 10-5 ). Patterns identified without inclusion of the DASB data showed no correlation with clinical data, indicating an important contribution from the serotonergic system to a clinically relevant abnormal dopamine release in early disease. Subjects who experienced dyskinesia 3 years after baseline scans showed higher turnover-related dopamine release compared with subjects who remained stable (P < 0.01). CONCLUSIONS Joint analysis of dopaminergic and serotonergic data identified a turnover-related dopamine release component, strongly related to motor response to levodopa in early disease and contributing to higher risk for dyskinesia. These findings suggest that the contribution of the serotonergic system to dopamine release not only increases the risk for motor complications but also fails to provide sustained therapeutic advantage in early disease. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jessie F Fu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michele Matarazzo
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Nasim Vafai
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Katie Dinelle
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Andre C Felicio
- Department of Neurology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Martin J McKeown
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.,Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.,Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Calabrese V, Di Maio A, Marino G, Cardinale A, Natale G, De Rosa A, Campanelli F, Mancini M, Napolitano F, Avallone L, Calabresi P, Usiello A, Ghiglieri V, Picconi B. Rapamycin, by Inhibiting mTORC1 Signaling, Prevents the Loss of Striatal Bidirectional Synaptic Plasticity in a Rat Model of L-DOPA-Induced Dyskinesia. Front Aging Neurosci 2020; 12:230. [PMID: 32848709 PMCID: PMC7431470 DOI: 10.3389/fnagi.2020.00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Levodopa (L-DOPA) treatment is the main gold-standard therapy for Parkinson disease (PD). Besides good antiparkinsonian effects, prolonged use of this drug is associated to the development of involuntary movements known as L-DOPA-induced dyskinesia (LID). L-DOPA-induced dyskinesia is linked to a sensitization of dopamine (DA) D1 receptors located on spiny projection neurons (SPNs) of the dorsal striatum. Several evidences have shown that the emergence of LID can be related to striatal D1/cAMP/PKA/DARPP-32 and extracellular signal-regulated kinases (ERK1/2) pathway overactivation associated to aberrant N-methyl-d-aspartate (NMDA) receptor function. In addition, within striatum, ERK1/2 is also able to modulate in a D1 receptor-dependent manner the activity of the mammalian target of rapamycin complex 1 (mTORC1) pathway under DA depletion and L-DOPA therapy. Consistently, increased mTORC1 signaling appears during chronic administration of L-DOPA and shows a high correlation with the severity of dyskinesia. Furthermore, the abnormal activation of the D1/PKA/DARPP-32 cascade is paralleled by increased phosphorylation of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor at the PKA Ser845 site. The GluA1 promotes excitatory AMPA receptor-mediated transmission and may be implicated in the alterations found at the corticostriatal synapses of dyskinetic animals. In our study, we investigated the role of mTORC1 pathway activation in modulating bidirectional striatal synaptic plasticity in L-DOPA-treated parkinsonian rats. Inhibition of mTORC1 by coadministration of rapamycin to L-DOPA was able to limit the magnitude of LID expression, accounting for a therapeutic effect of this drug. In particular, behavioral data showed that, in L-DOPA-treated rats, rapamycin administration induced a selective decrease of distinct components of abnormal involuntary movements (i.e., axial and orolingual dyskinesia). Furthermore, ex vivo patch clamp and intracellular recordings of SPNs revealed that pharmacological inhibition of mTORC1 also resulted associated with a physiological bidirectional plasticity, when compared to dyskinetic rats treated with L-DOPA alone. This study uncovers the important role of mTORC1 inhibition to prevent the loss of striatal bidirectional plasticity under chronic L-DOPA treatment in rodent models of PD.
Collapse
Affiliation(s)
- Valeria Calabrese
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Gioia Marino
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonella Cardinale
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppina Natale
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Arianna De Rosa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Campanelli
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Mancini
- Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Napolitano
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Veronica Ghiglieri
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Università Telematica San Raffaele, Rome, Italy
| |
Collapse
|
26
|
Muñoz A, Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL. Interactions Between the Serotonergic and Other Neurotransmitter Systems in the Basal Ganglia: Role in Parkinson's Disease and Adverse Effects of L-DOPA. Front Neuroanat 2020; 14:26. [PMID: 32581728 PMCID: PMC7289026 DOI: 10.3389/fnana.2020.00026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. However, other non-dopaminergic neuronal systems such as the serotonergic system are also involved. Serotonergic dysfunction is associated with non-motor symptoms and complications, including anxiety, depression, dementia, and sleep disturbances. This pathology reduces patient quality of life. Interaction between the serotonergic and other neurotransmitters systems such as dopamine, noradrenaline, glutamate, and GABA controls the activity of striatal neurons and are particularly interesting for understanding the pathophysiology of PD. Moreover, serotonergic dysfunction also causes motor symptoms. Interestingly, serotonergic neurons play an important role in the effects of L-DOPA in advanced PD stages. Serotonergic terminals can convert L-DOPA to dopamine, which mediates dopamine release as a "false" transmitter. The lack of any autoregulatory feedback control in serotonergic neurons to regulate L-DOPA-derived dopamine release contributes to the appearance of L-DOPA-induced dyskinesia (LID). This mechanism may also be involved in the development of graft-induced dyskinesias (GID), possibly due to the inclusion of serotonin neurons in the grafted tissue. Consistent with this, the administration of serotonergic agonists suppressed LID. In this review article, we summarize the interactions between the serotonergic and other systems. We also discuss the role of the serotonergic system in LID and if therapeutic approaches specifically targeting this system may constitute an effective strategy in PD.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
27
|
Farajdokht F, Sadigh-Eteghad S, Majdi A, Pashazadeh F, Vatandoust SM, Ziaee M, Safari F, Karimi P, Mahmoudi J. Serotonergic system modulation holds promise for L-DOPA-induced dyskinesias in hemiparkinsonian rats: A systematic review. EXCLI JOURNAL 2020; 19:268-295. [PMID: 32327954 PMCID: PMC7174586 DOI: 10.17179/excli2020-1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/24/2020] [Indexed: 11/10/2022]
Abstract
The alleged effects of serotonergic agents in alleviating levodopa-induced dyskinesias (LIDs) in parkinsonian patients are debatable. To this end, we systematically reviewed the serotonergic agents used for the treatment of LIDs in a 6-hydroxydopamine model of Parkinson's disease in rats. We searched MEDLINE via PubMed, Embase, Google Scholar, and Proquest for entries no later than March 2018, and restricted the search to publications on serotonergic agents used for the treatment of LIDs in hemiparkinsonian rats. The initial search yielded 447 citations, of which 49 articles and one conference paper met our inclusion criteria. The results revealed ten different categories of serotonergic agents, including but not limited to 5-HT1A/BR agonists, 5-HT2AR antagonists, selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitor (SNRIs), and tricyclic antidepressants (TCAs), all of which improved LIDs without imposing considerable adverse effects. Although there is promising evidence regarding the role of these agents in relieving LIDs in hemiparkinsonian rats, further studies are needed for the enlightenment of hidden aspect of these molecules in terms of mechanisms and outcomes. Given this, improving the quality of the pre-clinical studies and designing appropriate clinical trials will help fill the bench-to-bedside gap.
Collapse
Affiliation(s)
- Fereshteh Farajdokht
- Research Center for Evidence-Based Medicine (EBM), Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine (EBM), Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian Evidence-Based Medicine (EBM) Center, a Joanna Briggs Institute Affiliated Group
| | | | - Mojtaba Ziaee
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Phytopharmacology Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Sciaccaluga M, Mazzocchetti P, Bastioli G, Ghiglieri V, Cardinale A, Mosci P, Caccia C, Keywood C, Melloni E, Padoani G, Vailati S, Picconi B, Calabresi P, Tozzi A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology 2020; 170:108024. [PMID: 32142791 DOI: 10.1016/j.neuropharm.2020.108024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS Electrophysiological effects of safinamide (1-100 μM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 μM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Guendalina Bastioli
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Veronica Ghiglieri
- Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Piazza G. Ermini, 1, 06123, Perugia, Italy; Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Antonella Cardinale
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy; Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy
| | - Paolo Mosci
- Department of Veterinary, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Carla Caccia
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Charlotte Keywood
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Gloria Padoani
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Silvia Vailati
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy; University San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Roma, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, via Gambuli, 1, 06132, Perugia, Italy.
| |
Collapse
|
29
|
Calabresi P, Standaert DG. Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection? Neurobiol Dis 2019; 132:104579. [PMID: 31445160 PMCID: PMC6834901 DOI: 10.1016/j.nbd.2019.104579] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Dystonia and levodopa-induced dyskinesia (LID) are both hyperkinetic movement disorders. Dystonia arises most often spontaneously, although it may be seen after stroke, injury, or as a result of genetic causes. LID is associated with Parkinson's disease (PD), emerging as a consequence of chronic therapy with levodopa, and may be either dystonic or choreiform. LID and dystonia share important phenomenological properties and mechanisms. Both LID and dystonia are generated by an integrated circuit involving the cortex, basal ganglia, thalamus and cerebellum. They also share dysregulation of striatal cholinergic signaling and abnormalities of striatal synaptic plasticity. The long duration nature of both LID and dystonia suggests that there may be underlying epigenetic dysregulation as a proximate cause. While both may improve after interventions such as deep brain stimulation (DBS), neither currently has a satisfactory medical therapy, and many people are disabled by the symptoms of dystonia and LID. Further study of the fundamental mechanisms connecting these two disorders may lead to novel approaches to treatment or prevention.
Collapse
Affiliation(s)
- Paolo Calabresi
- Neurological Clinic, Department of Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia 06132, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A, Lafuente JV, Miguelez C, Ugedo L. Dysfunction of serotonergic neurons in Parkinson's disease and dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:259-279. [PMID: 31349930 DOI: 10.1016/bs.irn.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra, the depletion of striatal dopamine and the presence of Lewy aggregates containing alpha-synuclein. Clinically, there are motor impairments involving cardinal movement symptoms, bradykinesia, resting tremor, muscle rigidity, and postural abnormalities, along with non-motor symptoms such as sleep, behavior and mood disorders. The current treatment for PD focuses on restoring dopaminergic neurotransmission by l-3,4-dihydroxyphenylalanine (levodopa), which loses therapeutic efficacy and induces disabling abnormal involuntary movements known as levodopa-induced dyskinesia (LID) after several years. Evidence indicates that the pathophysiology of both PD and LID disorders is also associated with the dysfunctional activity of the serotonergic (5-HT) neurons that may be responsible for motor and non-motor disturbances. The main population of 5-HT neurons is located in the dorsal raphe nuclei (DRN), which provides extensive innervation to almost the entire neuroaxis and controls multiple functions in the brain. The degeneration of DRN 5-HT neurons occurs in early PD. These neurons can also take exogenous levodopa to transform it into dopamine, which may disturb neuron activity. This review will provide an overview of the underlying mechanisms responsible for 5-HT dysfunction and its clinical relevance in PD and dyskinesia.
Collapse
Affiliation(s)
- Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Aristieta
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Jose V Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Nanosurgery, Biocruces Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
31
|
Mineo D, Cacace F, Mancini M, Vannelli A, Campanelli F, Natale G, Marino G, Cardinale A, Calabresi P, Picconi B, Ghiglieri V. Dopamine drives binge-like consumption of a palatable food in experimental Parkinsonism. Mov Disord 2019; 34:821-831. [PMID: 31002748 DOI: 10.1002/mds.27683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/12/2019] [Accepted: 02/04/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Prolonged dopaminergic replacement therapy in PD results in pulsatile dopamine receptors stimulation in both dorsal and ventral striatum causing wearing off, motor fluctuations, and nonmotor side effects such as behavioral addictions. Among impulse control disorders, binge eating can be easily modeled in laboratory animals. OBJECTIVES We hypothesize that manipulation of dopamine levels in a 6-hydroxydopamine-lesioned rats, as a model of PD characterized by a different extent of dopamine denervation between dorsal and ventral striatum, would influence both synaptic plasticity of the nucleus accumbens and binge-like eating behavior. METHODS Food preference, food intake, and weight gain were monitored in sham-operated and unilaterally lesioned rats, subjected to a modified version of Corwin's limited access protocol, modelling binge eating disorder. Electrophysiological properties and long-term potentiation of GABAergic spiny projection neurons of the nucleus accumbens core were studied through ex vivo intracellular and patch-clamp recordings from corticostriatal slices of naïve and l-dopa-treated rats. RESULTS Sham-operated animals with intact nucleus accumbens core plasticity reliably developed food-addiction-like behavior when exposed to intermittent access to a highly palatable food. In contrast, parkinsonian rats were unresponsive to such restriction regimens, and also plasticity was lost in ventral spiny neurons. Chronic l-dopa reestablished long-term potentiation and compulsive eating, but with a different temporal dynamic that follows that of drug administration. CONCLUSIONS Our data indicate that endogenous and exogenous dopamine drive binge-like consumption of a palatable food in healthy and parkinsonian rats with distinct temporal dynamics, providing new insights into the complexity of l-dopa effects on the mesolimbic dopaminergic system. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Désirée Mineo
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fabrizio Cacace
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mancini
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Anna Vannelli
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Giuseppina Natale
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gioia Marino
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonella Cardinale
- Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Pisana e Università San Raffaele, Rome, Italy
| | - Veronica Ghiglieri
- Laboratorio di Neurofisiologia, IRCCS Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Filosofia, scienze sociali, umane e della formazione, Università di Perugia, Perugia, Italy
| |
Collapse
|
32
|
Dopaminergic modulation of striatal function and Parkinson's disease. J Neural Transm (Vienna) 2019; 126:411-422. [PMID: 30937538 DOI: 10.1007/s00702-019-01997-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023]
Abstract
The striatum is richly innervated by mesencephalic dopaminergic neurons that modulate a diverse array of cellular and synaptic functions that control goal-directed actions and habits. The loss of this innervation has long been thought to be the principal cause of the cardinal motor symptoms of Parkinson's disease (PD). Moreover, chronic, pharmacological overstimulation of striatal dopamine (DA) receptors is generally viewed as the trigger for levodopa-induced dyskinesia (LID) in late-stage PD patients. Here, we discuss recent advances in our understanding of the relationship between the striatum and DA, particularly as it relates to PD and LID. First, it has become clear that chronic perturbations of DA levels in PD and LID bring about cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity. Second, perturbations in DA signaling also bring about non-homeostatic aberrations in synaptic plasticity that contribute to disease symptoms. Third, it has become evident that striatal interneurons are major determinants of network activity and behavior in PD and LID. Finally, recent work examining the activity of SPNs in freely moving animals has revealed that the pathophysiology induced by altered DA signaling is not limited to imbalance in the average spiking in direct and indirect pathways, but involves more nuanced disruptions of neuronal ensemble activity.
Collapse
|
33
|
Sellnow RC, Newman JH, Chambers N, West AR, Steece-Collier K, Sandoval IM, Benskey MJ, Bishop C, Manfredsson FP. Regulation of dopamine neurotransmission from serotonergic neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol Commun 2019; 7:8. [PMID: 30646956 PMCID: PMC6332643 DOI: 10.1186/s40478-018-0653-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Levodopa-induced dyskinesias (LID) are a prevalent side effect of chronic treatment with levodopa (L-DOPA) for the motor symptoms of Parkinson’s disease (PD). It has long been hypothesized that serotonergic neurons of the dorsal raphe nucleus (DRN) are capable of L-DOPA uptake and dysregulated release of dopamine (DA), and that this “false neurotransmission” phenomenon is a main contributor to LID development. Indeed, many preclinical studies have demonstrated LID management with serotonin receptor agonist treatment, but unfortunately, promising preclinical data has not been translated in large-scale clinical trials. Importantly, while there is an abundance of convincing clinical and preclinical evidence supporting a role of maladaptive serotonergic neurotransmission in LID expression, there is no direct evidence that dysregulated DA release from serotonergic neurons impacts LID formation. In this study, we ectopically expressed the DA autoreceptor D2Rs (or GFP) in the DRN of 6-hydroxydopamine (6-OHDA) lesioned rats. No negative impact on the therapeutic efficacy of L-DOPA was seen with rAAV-D2Rs therapy. However, D2Rs treated animals, when subjected to a LID-inducing dose regimen of L-DOPA, remained completely resistant to LID, even at high doses. Moreover, the same subjects remained resistant to LID formation when treated with direct DA receptor agonists, suggesting D2Rs activity in the DRN blocked dyskinesogenic L-DOPA priming of striatal neurons. In vivo microdialysis confirmed that DA efflux in the striatum was reduced with rAAV-D2Rs treatment, providing explicit evidence that abnormal DA release from DRN neurons can affect LID. This is the first direct evidence of dopaminergic neurotransmission in DRN neurons and its modulation with rAAV-D2Rs gene therapy confirms the serotonin hypothesis in LID, demonstrating that regulation of serotonergic neurons achieved with a gene therapy approach offers a novel and potent antidyskinetic therapy.
Collapse
|
34
|
Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate. Neuropharmacology 2019; 148:1-10. [PMID: 30612008 DOI: 10.1016/j.neuropharm.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Oscillatory activities within basal ganglia (BG) circuitry in L-DOPA induced dyskinesia (LID), a condition that occurs in patients with Parkinson disease (PD), are not well understood. The aims of this study were firstly to investigate oscillations in main BG input and output structures-the dorsolateral striatum (dStr) and substantia nigra pars reticulata (SNr), respectively- including the direction of oscillation information flow, and secondly to investigate the effects of 5-HT1A/B receptor agonism with eltoprazine on oscillatory activities and abnormal involuntary movements (AIMs) characteristic. To this end, we conducted local field potential (LFP) electrophysiology in the dStr and SNr of LID rats simultaneous with AIM scoring. The LFP data were submitted to power spectral density, coherence, and partial Granger causality analyses. AIM data were analyzed relative to simultaneous oscillatory activities, with and without eltoprazine. We obtained four major findings. 1) Theta band (5-8 Hz) oscillations were enhanced in the dStr and SNr of LID rats. 2) Theta power correlated with AIM scores in the 180-min period after the last LID-inducing L-DOPA injection, but not with daily summed AIM scores during LID development. 3) Oscillatory information flowed from the dStr to the SNr. 4) Chronic eltoprazine reduced BG theta activity in LID rats and normalized information flow directionality, relative to that in LID rats not given eltoprazine. These results indicate that dStr activity plays a determinative role in the causal interactions of theta oscillations and that serotonergic inhibition may suppress dyskinesia by reducing dStr-SNr theta activity and restoring theta network information flow.
Collapse
|
35
|
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis 2019; 121:338-349. [DOI: 10.1016/j.nbd.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022] Open
|
36
|
Jiang H, Yu Y, Liu S, Zhu M, Dong X, Wu J, Zhang Z, Zhang M, Zhang Y. Proteomic Study of a Parkinson's Disease Model of Undifferentiated SH-SY5Y Cells Induced by a Proteasome Inhibitor. Int J Med Sci 2019; 16:84-92. [PMID: 30662332 PMCID: PMC6332475 DOI: 10.7150/ijms.28595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is one of the most common nervous system degenerative diseases. However, the etiology of this disease remains elusive. Here, a proteasome inhibitor (PSI)-induced undifferentiated SH-SY5Y PD model was established to analyze protein alterations through proteomic study. METHODS Cultured undifferentiated SH-SY5Y cells were divided into a control group and a group treated with 2.5 µM PSI (PSI-treated group). An methyl thiazolyl tetrazolium (MTT) assay was applied to detect cell viability. Acridine orange/ethidium bromide (AO/EB), α-synuclein immunofluorescence and hematoxylin and eosin (H&E) staining were applied to evaluate apoptosis and cytoplasmic inclusions, respectively. The protein spots that were significantly changed were separated, analyzed by 2D gel electrophoresis and DIGE De Cyder software, and subsequently identified by MALDI-TOF mass spectrometry and database searching. RESULTS The results of the MTT assay showed that there was a time and dose dependent change in cell viability following incubation with PSI. After 24 h incubation, PSI resulted in early apoptosis, and cytoplasmic inclusions were found in the PSI-treated group through H&E staining and α-synuclein immunofluorescence. Thus, undifferentiated SH-SY5Y cells could be used as PD model following PSI-induced inhibition of proteasomal function. In total, 18 proteins were differentially expressed between the groups, 7 of which were up-regulated and 11 of which were down-regulated. Among them, 5 protein spots were identified as being involved in the ubiquitin proteasome pathway-induced PD process. CONCLUSIONS Mitochondrial heat shock protein 75 (MTHSP75), phosphoglycerate dehydrogenase (PHGDH), laminin binding protein (LBP), tyrosine 3/tryptophan 5-monooxygenase activation protein (14-3-3ε) and YWHAZ protein (14-3-3ζ) are involved in mitochondrial dysfunction, serine synthesis, amyloid clearance, apoptosis process and neuroprotection. These findings may provide new clues to deepen our understanding of PD pathogenesis.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of pediatrics, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Chang Chun, Jilin Province, China.,Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Shicheng Liu
- Department of pediatrics, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingqin Zhu
- Departments of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Dong
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Jinying Wu
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhou Zhang
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Chang Chun, Jilin Province, China
| | - Ying Zhang
- Departments of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
37
|
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisanò CA, Caccia C, Mellone M, Melloni E, Padoani G, Sosti V, Vailati S, Keywood C. Safinamide Modulates Striatal Glutamatergic Signaling in a Rat Model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther 2018; 367:442-451. [DOI: 10.1124/jpet.118.251645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
|
38
|
Bordia T, Perez XA. Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias. Eur J Neurosci 2018; 49:859-868. [PMID: 29923650 DOI: 10.1111/ejn.14048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
L-dopa induced dyskinesias (LIDs) are a disabling motor complication of L-dopa therapy for Parkinson's disease (PD) management. Treatment options remain limited and the underlying network mechanisms remain unclear due to a complex pathophysiology. What is well-known, however, is that aberrant striatal signaling plays a key role in LIDs development. Here, we discuss the specific contribution of striatal cholinergic interneurons (ChIs) and GABAergic medium spiny projection neurons (MSNs) with a particular focus on how cholinergic signaling may integrate multiple striatal systems to modulate LIDs expression. Enhanced ChI transmission, altered MSN activity and the associated abnormal downstream signaling responses that arise with nigrostriatal damage are well known to contribute to LIDs development. In fact, enhancing M4 muscarinic receptor activity, a receptor favorably expressed on D1 dopamine receptor-expressing MSNs dampens their activity to attenuate LIDs. Likewise, ChI activation via thalamostriatal neurons is shown to interrupt cortical signaling to enhance D2 dopamine receptor-expressing MSN activity via M1 muscarinic receptors, which may interrupt ongoing motor activity. Notably, numerous preclinical studies also show that reducing nicotinic cholinergic receptor activity decreases LIDs. Taken together, these studies indicate the importance of cholinergic control of striatal neuronal activity and point to muscarinic and nicotinic receptors as significant pharmacological targets for alleviating LIDs in PD patients.
Collapse
Affiliation(s)
- Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| |
Collapse
|
39
|
Johnston TH, Lacoste AMB, Visanji NP, Lang AE, Fox SH, Brotchie JM. Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease. Neuropharmacology 2018; 147:11-27. [PMID: 29907424 DOI: 10.1016/j.neuropharm.2018.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
Abstract
In this review, we discuss the opportunity for repurposing drugs for use in l-DOPA-induced dyskinesia (LID) in Parkinson's disease. LID is a particularly suitable indication for drug repurposing given its pharmacological diversity, translatability of animal-models, availability of Phase II proof-of-concept (PoC) methodologies and the indication-specific regulatory environment. A compound fit for repurposing is defined as one with appropriate human safety-data as well as animal safety, toxicology and pharmacokinetic data as found in an Investigational New Drug (IND) package for another indication. We first focus on how such repurposing candidates can be identified and then discuss development strategies that might progress such a candidate towards a Phase II clinical PoC. We discuss traditional means for identifying repurposing candidates and contrast these with newer approaches, especially focussing on the use of computational and artificial intelligence (AI) platforms. We discuss strategies that can be categorised broadly as: in vivo phenotypic screening in a hypothesis-free manner; in vivo phenotypic screening based on analogy to a related disorder; hypothesis-driven evaluation of candidates in vivo and in silico screening with a hypothesis-agnostic component to the selection. To highlight the power of AI approaches, we describe a case study using IBM Watson where a training set of compounds, with demonstrated ability to reduce LID, were employed to identify novel repurposing candidates. Using the approaches discussed, many diverse candidates for repurposing in LID, originally envisaged for other indications, will be described that have already been evaluated for efficacy in non-human primate models of LID and/or clinically. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Tom H Johnston
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Atuka Inc., Toronto, ON, Canada.
| | | | - Naomi P Visanji
- Edmund J Safra Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Anthony E Lang
- Edmund J Safra Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Susan H Fox
- Edmund J Safra Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Jonathan M Brotchie
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Atuka Inc., Toronto, ON, Canada
| |
Collapse
|
40
|
Du JJ, Chen SD. Current Nondopaminergic Therapeutic Options for Motor Symptoms of Parkinson's Disease. Chin Med J (Engl) 2018; 130:1856-1866. [PMID: 28748860 PMCID: PMC5547839 DOI: 10.4103/0366-6999.211555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: The aim of this study was to summarize recent studies on nondopaminergic options for the treatment of motor symptoms in Parkinson's disease (PD). Data Sources: Papers in English published in PubMed, Cochrane, and Ovid Nursing databases between January 1988 and November 2016 were searched using the following keywords: PD, nondopaminergic therapy, adenosine, glutamatergic, adrenergic, serotoninergic, histaminic, and iron chelator. We also reviewed the ongoing clinical trials in the website of clinicaltrials.gov. Study Selection: Articles related to the nondopaminergic treatment of motor symptoms in PD were selected for this review. Results: PD is conventionally treated with dopamine replacement strategies, which are effective in the early stages of PD. Long-term use of levodopa could result in motor complications. Recent studies revealed that nondopaminergic systems such as adenosine, glutamatergic, adrenergic, serotoninergic, histaminic, and iron chelator pathways could include potential therapeutic targets for motor symptoms, including motor fluctuations, levodopa-induced dyskinesia, and gait disorders. Some nondopaminergic drugs, such as istradefylline and amantadine, are currently used clinically, while most such drugs are in preclinical testing stages. Transitioning of these agents into clinically beneficial strategies requires reliable evaluation since several agents have failed to show consistent results despite positive findings at the preclinical level. Conclusions: Targeting nondopaminergic transmission could improve some motor symptoms in PD, especially the discomfort of dyskinesia. Although nondopaminergic treatments show great potential in PD treatment as an adjunct therapy to levodopa, further investigation is required to ensure their success.
Collapse
Affiliation(s)
- Juan-Juan Du
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
41
|
Yang X, Zhu Z, Ding X, Wang X, Cui G, Hua F, Xiang J. CaMKII inhibition ameliorated levodopa-induced dyskinesia by downregulating tyrosine hydroxylase activity in an experimental model of Parkinson's disease. Brain Res 2018; 1687:66-73. [PMID: 29452071 DOI: 10.1016/j.brainres.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Levodopa (L-dopa) remains the best treatment for Parkinson's disease (PD). However, long-term L-dopa treatment induces dyskinesia. The mechanism of L-dopa-induced dyskinesia (LID) is not fully understood. Enhanced activity of protein kinase A (PKA) and pulsatile dopamine (DA) stimulation plays an important role in LID. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for DA synthesis. Decreased TH activity causes reduced pulsatile DA stimulation, which in turn reduces LID. Moreover, TH is a substrate of CaMKII. However, it is unknown whether inhibition of CaMKII reduces LID by downregulating the activity of TH. In this study, we found that CaMKII antagonist KN-93 reduced DA released in PC12 cells; in the meantime, KN-93 reduced phosphorylated levels of CaMKIIα and TH at Ser 40. Intrastriatal administration of KN-93 reduced LID without affecting the antiparkinsonian effect of L-dopa in PD mice. Mechanistically, KN-93 treatmentreduced phosphorylated CaMKIIα levels and subsequently downregulated phosphorylated TH at Ser 40 expression. Consequently, extracellular DA efflux was reduced andthe activation threshold of the PKA pathway was lowered. Moreover, KN-93 treatment reduced the expression of Arc and Penk, two immediate early genes, induced by chronic L-dopa. These data indicate that inhibition of CaMKIIα decreases LID at least partially by suppressing TH activity and subsequently reducing extracellular DA efflux and the activity of the PKA pathway, suggesting that CaMKIIα may be an alternative target for the treatment of LID.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Zhongfang Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiqing Ding
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
42
|
Role of adenosine A 2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. J Neural Transm (Vienna) 2018; 125:1273-1286. [PMID: 29396609 DOI: 10.1007/s00702-018-1848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that regulates several physiological functions, at the central and peripheral levels. Besides, adenosine has emerged as a major player in the regulation of motor behavior. In fact, adenosine receptors of the A2A subtype are highly enriched in the caudate-putamen, which is richly innervated by dopamine. Moreover, several studies in experimental animals have consistently demonstrated that the pharmacological antagonism of A2A receptors has a facilitatory influence on motor behavior. Taken together, these findings have envisaged A2A receptors as a promising target for symptomatic therapies aimed at ameliorating motor deficits. Accordingly, A2A receptor antagonists have been extensively studied as new agents for the treatment of Parkinson's disease (PD), the epitome of motor disorders. In this review, we provide an overview of the effects that adenosine A2A receptor antagonists elicit in rodent and primate experimental models of PD, with regard to the counteraction of motor deficits as well as to manifestation of dyskinesia and motor fluctuations. Moreover, we briefly present the results of clinical trials of A2A receptor antagonists in PD patients experiencing motor fluctuations, with particular regard to dyskinesia. Finally, we discuss the interaction between A2A receptor antagonists and serotonin receptor agonists, since combined administration of these drugs has recently emerged as a new potential therapeutic strategy in the treatment of dyskinesia.
Collapse
|
43
|
Serotonergic targets for the treatment of L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018; 125:1203-1216. [PMID: 29305656 DOI: 10.1007/s00702-017-1837-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022]
Abstract
Dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) continues to be the gold-standard treatment for Parkinson's disease (PD). Despite clear symptomatic benefit, long-term L-DOPA use often results in the development of L-DOPA-induced dyskinesia (LID), significantly reducing quality of life and increasing costs for PD patients and their caregivers. Accumulated research has demonstrated that several pre- and post-synaptic mechanisms contribute to LID development and expression. In particular, raphe-striatal hyperinnervation and unregulated DA release from 5-HT terminals is postulated to play a central role in LID manifestation. As such, manipulation of the 5-HT system has garnered considerable attention. Both pre-clinical and clinical research has supported the potential of modulating the 5-HT system for LID prevention and treatment. This review discusses the rationale for continued investigation of several potential anti-dyskinetic strategies including 5-HT stimulation of 5-HT1A and 5-HT1B receptors and blockade of 5-HT2A receptors and SERT. We present the latest findings from experimental and clinical investigations evaluating these 5-HT targets with the goal of identifying those with translational promise and the challenges associated with each.
Collapse
|
44
|
Tronci E, Francardo V. Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse. J Neural Transm (Vienna) 2017; 125:1137-1144. [PMID: 29242978 DOI: 10.1007/s00702-017-1825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Appearance of L-DOPA-induced dyskinesia (LID) represents a major limitation in the pharmacological therapy with the dopamine precursor L-DOPA. Indeed, the vast majority of parkinsonian patients develop dyskinesia within 9-10 years of L-DOPA oral administration. This makes the discovery of new therapeutic strategies an important need. In the last decades, several animal models of Parkinson's disease (PD) have been developed, to both study mechanisms underlying PD pathology and treatment-induced side effects (i.e., LID) and to screen for new potential anti-parkinsonian and anti-dyskinetic treatments. Among all the models developed, the 6-OHDA-lesioned rodents represent the models of choice to mimic PD motor symptoms and LID, thanks to their reproducibility and translational value. Under L-DOPA treatment, rodents sustaining 6-OHDA lesions develop abnormal involuntary movements with dystonic and hyperkinetic features, resembling what seen in dyskinetic PD patients. These models have been extensively validated by the evidence that dyskinetic behaviors are alleviated by compounds reducing dyskinesia in patients and non-human primate models of PD. This article will focus on the translational value of the 6-OHDA rodent models of LID, highlighting their main features, advantages and disadvantages in preclinical research.
Collapse
Affiliation(s)
- Elisabetta Tronci
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Cittadella Universitaria, SS554 Km 4.5, 09042, Monserrato, Italy.
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Picconi B, Hernández LF, Obeso JA, Calabresi P. Motor complications in Parkinson's disease: Striatal molecular and electrophysiological mechanisms of dyskinesias. Mov Disord 2017; 33:867-876. [PMID: 29219207 DOI: 10.1002/mds.27261] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Long-term levodopa (l-dopa) treatment in patients with Parkinson´s disease (PD) is associated with the development of motor complications (ie, motor fluctuations and dyskinesias). The principal etiopathogenic factors are the degree of nigro-striatal dopaminergic loss and the duration and dose of l-dopa treatment. In this review article we concentrate on analysis of the mechanisms underlying l-dopa-induced dyskinesias, a phenomenon that causes disability in a proportion of patients and that has not benefited from major therapeutic advances. Thus, we discuss the main neurotransmitters, receptors, and pathways that have been thought to play a role in l-dopa-induced dyskinesias from the perspective of basic neuroscience studies. Some important advances in deciphering the molecular pathways involved in these abnormal movements have occurred in recent years to reveal potential targets that could be used for therapeutic purposes. However, it has not been an easy road because there have been a plethora of components involved in the generation of these undesired movements, even bypassing the traditional and well-accepted dopamine receptor activation, as recently revealed by optogenetics. Here, we attempt to unify the available data with the hope of guiding and fostering future research in the field of striatal activation and abnormal movement generation. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Ledia F Hernández
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain.,Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Jose A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain.,Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Paolo Calabresi
- Fondazione Santa Lucia, IRCCS, Rome, Italy.,Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy
| |
Collapse
|
46
|
Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F. Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 2017; 108:54-64. [PMID: 28823933 DOI: 10.1016/j.nbd.2017.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 11/26/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological conditions where NMDAR composition is significantly altered.
Collapse
Affiliation(s)
- Jennifer Stanic
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Manuela Mellone
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Francesco Napolitano
- Ceinge Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Claudia Racca
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elisa Zianni
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Daiana Minocci
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Veronica Ghiglieri
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, 00143 Roma, Italy; Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Perugia, Italy
| | - Marie-Laure Thiolat
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Qin Li
- Motac Neuroscience Ltd, Manchester, United Kingdom; Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Annalisa Longhi
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | | | - Barbara Picconi
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, 00143 Roma, Italy
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom; Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Paolo Calabresi
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, 00143 Roma, Italy; Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - Monica Di Luca
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Alessandro Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Fabrizio Gardoni
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy.
| |
Collapse
|
47
|
Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson's disease. Curr Opin Neurobiol 2017; 48:9-16. [PMID: 28843800 DOI: 10.1016/j.conb.2017.08.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
The striatum is a hub in the basal ganglia circuitry controlling goal directed actions and habits. The loss of its dopaminergic (DAergic) innervation in Parkinson's disease (PD) disrupts the ability of the two principal striatal projection systems to respond appropriately to cortical and thalamic signals, resulting in the hypokinetic features of the disease. New tools to study brain circuitry have led to significant advances in our understanding of striatal circuits and how they adapt in PD models. This short review summarizes some of these recent studies and the gaps that remain to be filled.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
48
|
Cerri S, Siani F, Blandini F. Investigational drugs in Phase I and Phase II for Levodopa-induced dyskinesias. Expert Opin Investig Drugs 2017; 26:777-791. [PMID: 28535734 DOI: 10.1080/13543784.2017.1333598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Prolonged treatment of Parkinson's disease (PD) with levodopa (L-DOPA) results in motor complications, including motor fluctuations and involuntary movements known as L-DOPA induced dyskinesias (LIDs). LIDs represent an additional cause of disability for PD patients and a major challenge for the clinical neurologist. Preclinical research has provided invaluable insights into the molecular and neural substrates of LIDs, identifying a number of potential targets for new anti-dyskinetic strategies. Areas covered: This review article is centered on drugs currently in Phase I and II clinical trials for LIDs and their relative pharmacological targets, which include glutamate, acetylcholine, serotonin, adrenergic receptors and additional targets of potential therapeutic interest. Expert opinion: LIDs are sustained by complex molecular and neurobiological mechanisms that are difficult to disentangle or target, unless one or more prevalent mechanisms are identified. In this context, the role of the serotonergic system and mGluR5 glutamate receptors seem to stand out. Interesting results have been obtained, for example, with partial 5-HT1A/5-HT1B receptor agonist eltoprazine and mGluR5 negative allosteric modulator dipraglurant. Confirmation of these results through large-scale, Phase III clinical trials will be needed, to obtain new pharmacological tools that may be used to optimize the treatment of PD patients with motor complications.
Collapse
Affiliation(s)
- Silvia Cerri
- a Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases , C. Mondino National Neurological Institute , Pavia , Italy
| | - Francesca Siani
- a Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases , C. Mondino National Neurological Institute , Pavia , Italy
| | - Fabio Blandini
- a Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases , C. Mondino National Neurological Institute , Pavia , Italy
| |
Collapse
|
49
|
Long-term treatment of Parkinson's disease with levodopa and other adjunctive drugs. J Neural Transm (Vienna) 2017; 125:35-43. [PMID: 28091751 PMCID: PMC5754456 DOI: 10.1007/s00702-016-1671-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/18/2016] [Indexed: 01/11/2023]
Abstract
We report a long-term treatment of Parkinson’s disease in out-patient clinics. The patients with Parkinson’s disease were evaluated at the time of clinic visit from September 1st, 2015 to February 29th, 2016. Total number of the patients was 498. The age at the evaluation was 69.9 ± 9.3 years and the age of onset was 60.2 ± 11.3. Hoehn and Yahr severity was 3.28 ± 0.94 in patients who were from 16 to 20 years (n = 53) and 3.00 ± 0.86 in patients from 21 years or more (n = 38) from the onset of the disease to the evaluation. The dose of levodopa was 741 ± 295 mg per day and the number of levodopa dosing was 5.85 ± 2.59 times in 16–20 years from the onset to the evaluation and 703 ± 251 mg/day and 6.03 ± 3.20 times a day in 21 years or more from the onset to the evaluation. Levodopa was given in most cases into an empty stomach. The incidence of wearing off was 73.6% and dyskinesia was 37.7% in the 16–20 years group and 76.3% and 55.3% in 21 years or more group, respectively. The patients who had 15 years or less from the onset to the evaluation had much milder severity of the disease. Hoehn and Yahr severity, the dose of levodopa, and the incidence of wearing off were about the same as in the literature. But the incidence of dyskinesia was much lower than those appeared in the literature. We discussed reasons why the incidence of dyskinesia was lower in our study.
Collapse
|
50
|
Wang Q, Zhang W. Maladaptive Synaptic Plasticity in L-DOPA-Induced Dyskinesia. Front Neural Circuits 2016; 10:105. [PMID: 28066191 PMCID: PMC5168436 DOI: 10.3389/fncir.2016.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023] Open
Abstract
The emergence of L-DOPA-induced dyskinesia (LID) in patients with Parkinson disease (PD) could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons (MSNs) in the striatum. In addition, evidence demonstrating the occurrence of plastic adaptations, including aberrant morphological and functional features, in multiple components of cortico-basal ganglionic circuitry, such as primary motor cortex (M1) and basal ganglia (BG) output nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we briefly review recent studies that have addressed maladaptive plastic changes within the cortico-BG loop in dyskinetic animal models of PD and patients with PD.
Collapse
Affiliation(s)
- Qiang Wang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Wangming Zhang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|