1
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Jain S, LaFrancois JJ, Gerencer K, Botterill JJ, Kennedy M, Criscuolo C, Scharfman HE. Increasing adult-born neurons protects mice from epilepsy. eLife 2024; 12:RP90893. [PMID: 39446467 PMCID: PMC11501206 DOI: 10.7554/elife.90893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Neurogenesis occurs in the adult brain in the hippocampal dentate gyrus, an area that contains neurons which are vulnerable to insults and injury, such as severe seizures. Previous studies showed that increasing adult neurogenesis reduced neuronal damage after these seizures. Because the damage typically is followed by chronic life-long seizures (epilepsy), we asked if increasing adult-born neurons would prevent epilepsy. Adult-born neurons were selectively increased by deleting the pro-apoptotic gene Bax from Nestin-expressing progenitors. Tamoxifen was administered at 6 weeks of age to conditionally delete Bax in Nestin-CreERT2Baxfl/fl mice. Six weeks after tamoxifen administration, severe seizures (status epilepticus; SE) were induced by injection of the convulsant pilocarpine. After mice developed epilepsy, seizure frequency was quantified for 3 weeks. Mice with increased adult-born neurons exhibited fewer chronic seizures. Postictal depression was reduced also. These results were primarily in female mice, possibly because they were more affected by Bax deletion than males, consistent with sex differences in Bax. The female mice with enhanced adult-born neurons also showed less neuronal loss of hilar mossy cells and hilar somatostatin-expressing neurons than wild-type females or males, which is notable because loss of these two hilar cell types is implicated in epileptogenesis. The results suggest that selective Bax deletion to increase adult-born neurons can reduce experimental epilepsy, and the effect shows a striking sex difference. The results are surprising in light of past studies showing that suppressing adult-born neurons can also reduce chronic seizures.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Department of Anatomy, Physiology, & Pharmacology, College of Medicine, University of SaskatchewanSaskatoonCanada
| | - Meghan Kennedy
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Chiara Criscuolo
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Neuroscience & Physiology, Psychiatry, and the Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
3
|
Tipton AE, Del Angel YC, Hixson K, Carlsen J, Strode D, Busquet N, Mesches MH, Gonzalez MI, Napoli E, Russek SJ, Brooks-Kayal AR. Selective Neuronal Knockout of STAT3 Function Inhibits Epilepsy Progression, Improves Cognition, and Restores Dysregulated Gene Networks in a Temporal Lobe Epilepsy Model. Ann Neurol 2023; 94:106-122. [PMID: 36935347 PMCID: PMC10313781 DOI: 10.1002/ana.26644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and hippocampal neural circuit remodeling that results in spontaneous seizures and cognitive dysfunction. Targeting these cascades may provide disease-modifying treatments for TLE patients. Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) inhibitors have emerged as potential disease-modifying therapies; a more detailed understanding of JAK/STAT participation in epileptogenic responses is required, however, to increase the therapeutic efficacy and reduce adverse effects associated with global inhibition. METHODS We developed a mouse line in which tamoxifen treatment conditionally abolishes STAT3 signaling from forebrain excitatory neurons (nSTAT3KO). Seizure frequency (continuous in vivo electroencephalography) and memory (contextual fear conditioning and motor learning) were analyzed in wild-type and nSTAT3KO mice after intrahippocampal kainate (IHKA) injection as a model of TLE. Hippocampal RNA was obtained 24 h after IHKA and subjected to deep sequencing. RESULTS Selective STAT3 knock-out in excitatory neurons reduced seizure progression and hippocampal memory deficits without reducing the extent of cell death or mossy fiber sprouting induced by IHKA injection. Gene expression was rescued in major networks associated with response to brain injury, neuronal plasticity, and learning and memory. We also provide the first evidence that neuronal STAT3 may directly influence brain inflammation. INTERPRETATION Inhibiting neuronal STAT3 signaling improved outcomes in an animal model of TLE, prevented progression of seizures and cognitive co-morbidities while rescuing pathogenic changes in gene expression of major networks associated with epileptogenesis. Specifically targeting neuronal STAT3 may be an effective disease-modifying strategy for TLE. ANN NEUROL 2023;94:106-122.
Collapse
Affiliation(s)
- Allison E. Tipton
- Graduate Program for Neuroscience, Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Yasmin Cruz Del Angel
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kathryn Hixson
- Graduate Program for Neuroscience, Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jessica Carlsen
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dana Strode
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicolas Busquet
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael H. Mesches
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marco I. Gonzalez
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Eleonora Napoli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Shelley J. Russek
- Graduate Program for Neuroscience, Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Amy R. Brooks-Kayal
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
4
|
Arshad MN, Pinto A, van Praag H, Naegele JR. Altered connectomes of adult-born granule cells following engraftment of GABAergic progenitors in the mouse hippocampus. Prog Neurobiol 2023; 226:102450. [PMID: 37061022 PMCID: PMC11351537 DOI: 10.1016/j.pneurobio.2023.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Adult neurogenesis occurs in the dentate gyrus (DG) of the rodent hippocampus throughout life, producing new granule cells (GCs) that migrate from a stem cell niche called the subgranular zone (SGZ) into the adjacent granule cell layer (GCL). Seizures associated with temporal lobe epilepsy alter adult neurogenesis and promote the formation of hyperexcitable circuits. Stem cell therapies for treating intractable seizure disorders are based on the premise that transplantation of GABAergic interneurons will strengthen inhibitory connections within the hippocampus and reduce hyperexcitability. Grafts of medial ganglionic eminence (MGE)-derived fetal GABAergic progenitors into the DG of adult mice with pilocarpine-induced TLE have been shown to suppress spontaneous recurrent seizures. In addition, the transplanted cells formed functional inhibitory synaptic connections with hippocampal neurons, including adult-born GCs. However, it is unknown whether MGE grafts change adult-born GC connectivity. To address this question, we compared the first-order monosynaptic inputs to adult-born GCs in TLE mice with or without MGE-derived interneuron grafts. Here we show that TLE increased excitatory inputs from endogenous hippocampal, entorhinal cortex, and medial septum/diagonal band neurons onto adult-born GCs. In contrast, in TLE mice with grafts, these excitatory inputs were reduced, coinciding with transplanted GABAergic interneuron innervation of adult-born GCs. These findings indicate that GABAergic interneuron transplantation into the dentate gyrus may prevent epilepsy-associated alterations in the connectivity of adult-born GCs.
Collapse
Affiliation(s)
- Muhammad N Arshad
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA
| | - Alejandro Pinto
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Biomedical Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Biomedical Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Janice R Naegele
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA.
| |
Collapse
|
5
|
Kilias A, Tulke S, Barheier N, Ruther P, Häussler U. Integration of the CA2 region in the hippocampal network during epileptogenesis. Hippocampus 2023; 33:223-240. [PMID: 36421040 DOI: 10.1002/hipo.23479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
The CA2 pyramidal cells are mostly resistant to cell death in mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, but they are aberrantly integrated into the epileptic hippocampal network via mossy fiber sprouting. Furthermore, they show increased excitability in vitro in hippocampal slices obtained from human MTLE specimens or animal epilepsy models. Although these changes promote CA2 to contribute to epileptic activity (EA) in vivo, the role of CA2 in the epileptic network within and beyond the sclerotic hippocampus is still unclear. We used the intrahippocampal kainate mouse model for MTLE, which recapitulates most features of the human disease including pharmacoresistant epileptic seizures and hippocampal sclerosis, with preservation of dentate gyrus (DG) granule cells and CA2 pyramidal cells. In vivo recordings with electrodes in CA2 and the DG showed that EA occurs at high coincidence between the ipsilateral DG and CA2 and current source density analysis of silicon probe recordings in dorsal ipsilateral CA2 revealed CA2 as a local source of EA. Cell-specific viral tracing in Amigo2-icreERT2 mice confirmed the preservation of the axonal projection from ipsilateral CA2 pyramidal cells to contralateral CA2 under epileptic conditions and indeed, EA propagated from ipsi- to contralateral CA2 with increasing likelihood with time after KA injection, but always at lower intensity than within the ipsilateral hippocampus. Furthermore, we show that CA2 presents with local theta oscillations and like the DG, shows a pathological reduction of theta frequency already from 2 days after KA onward. The early changes in activity might be facilitated by the loss of glutamic acid decarboxylase 67 (Gad67) mRNA-expressing interneurons directly after the initial status epilepticus in ipsi- but not contralateral CA2. Together, our data highlight CA2 as an active player in the epileptic network and with its contralateral connections as one possible router of aberrant activity.
Collapse
Affiliation(s)
- Antje Kilias
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Susanne Tulke
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Nicole Barheier
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Pacheco ALD, de Melo IS, de Araujo Costa M, Amaral MMC, de Gusmão Taveiros Silva NK, Santos YMO, Gitaí DLG, Duzzioni M, Borbely AU, Silva RS, Donatti ALF, Mestriner L, Fuzo CA, Cummings RD, Garcia-Cairasco N, Dias-Baruffi M, de Castro OW. Neuroprotective Effect of Exogenous Galectin-1 in Status Epilepticus. Mol Neurobiol 2022; 59:7354-7369. [PMID: 36171480 DOI: 10.1007/s12035-022-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).
Collapse
Affiliation(s)
- Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Igor Santana de Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Maisa de Araujo Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Mariah Morais Celestino Amaral
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Nívea Karla de Gusmão Taveiros Silva
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Daniel Leite Góes Gitaí
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Alexandre Urban Borbely
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Robinson Sabino Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ana Luiza Ferreira Donatti
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luisa Mestriner
- Department of Clinical Analyses, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Glycomics Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Norberto Garcia-Cairasco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
7
|
Adenosine A 2A receptors control synaptic remodeling in the adult brain. Sci Rep 2022; 12:14690. [PMID: 36038626 PMCID: PMC9424208 DOI: 10.1038/s41598-022-18884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.
Collapse
|
8
|
Dohm-Hansen S, Donoso F, Lucassen PJ, Clarke G, Nolan YM. The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy? Neurobiol Dis 2022; 170:105746. [DOI: 10.1016/j.nbd.2022.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
|
9
|
OUP accepted manuscript. Brain 2022; 145:1978-1991. [DOI: 10.1093/brain/awab438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/14/2022] Open
|
10
|
Hadjiabadi D, Lovett-Barron M, Raikov IG, Sparks FT, Liao Z, Baraban SC, Leskovec J, Losonczy A, Deisseroth K, Soltesz I. Maximally selective single-cell target for circuit control in epilepsy models. Neuron 2021; 109:2556-2572.e6. [PMID: 34197732 PMCID: PMC8448204 DOI: 10.1016/j.neuron.2021.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Neurological and psychiatric disorders are associated with pathological neural dynamics. The fundamental connectivity patterns of cell-cell communication networks that enable pathological dynamics to emerge remain unknown. Here, we studied epileptic circuits using a newly developed computational pipeline that leveraged single-cell calcium imaging of larval zebrafish and chronically epileptic mice, biologically constrained effective connectivity modeling, and higher-order motif-focused network analysis. We uncovered a novel functional cell type that preferentially emerged in the preseizure state, the superhub, that was unusually richly connected to the rest of the network through feedforward motifs, critically enhancing downstream excitation. Perturbation simulations indicated that disconnecting superhubs was significantly more effective in stabilizing epileptic circuits than disconnecting hub cells that were defined traditionally by connection count. In the dentate gyrus of chronically epileptic mice, superhubs were predominately modeled adult-born granule cells. Collectively, these results predict a new maximally selective and minimally invasive cellular target for seizure control.
Collapse
Affiliation(s)
- Darian Hadjiabadi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Matthew Lovett-Barron
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Santos VR, Melo IS, Pacheco ALD, Castro OWD. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021; 121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
The hippocampal formation is crucial for the generation and regulation of several brain functions, including memory and learning processes; however, it is vulnerable to neurological disorders, such as epilepsy. Temporal lobe epilepsy (TLE), the most common type of epilepsy, changes the hippocampal circuitry and excitability, under the contribution of both neuronal degeneration and abnormal neurogenesis. Classically, neurodegeneration affects sensitive areas of the hippocampus, such as dentate gyrus (DG) hilus, as well as specific fields of the Ammon's horn, CA3, and CA1. In addition, the proliferation, migration, and abnormal integration of newly generated hippocampal granular cells (GCs) into the brain characterize TLE neurogenesis. Robust studies over the years have intensely discussed the effects of death and life in the hippocampus, though there are still questions to be answered about their possible benefits and risks. Here, we review the impacts of death and life in the hippocampus, discussing its influence on TLE, providing new perspectives or insights for the implementation of new possible therapeutic targets. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
12
|
Freiman TM, Häussler U, Zentner J, Doostkam S, Beck J, Scheiwe C, Brandt A, Haas CA, Puhahn-Schmeiser B. Mossy fiber sprouting into the hippocampal region CA2 in patients with temporal lobe epilepsy. Hippocampus 2021; 31:580-592. [PMID: 33720466 DOI: 10.1002/hipo.23323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/28/2023]
Abstract
Hippocampal sclerosis (HS) in Temporal Lobe Epilepsy (TLE) shows neuronal death in cornu ammonis (CA)1, CA3, and CA4. It is known that granule cells and CA2 neurons survive and their axons, the mossy fibers (MF), lose their target cells in CA3 and CA4 and sprout to the granule cell layer and molecular layer. We examined in TLE patients and in a mouse epilepsy model, whether MF sprouting is directed to the dentate gyrus or extends to distant CA regions and whether sprouting is associated with death of target neurons in CA3 and CA4. In 319 TLE patients, HS was evaluated by Wyler grade and International League against Epilepsy (ILAE) types using immunohistochemistry against neuronal nuclei (NeuN). Synaptoporin was used to colocalize MF. In addition, transgenic Thy1-eGFP mice were intrahippocampally injected with kainate and sprouting of eGFP-positive MFs was analyzed together with immunocytochemistry for regulator of G-protein signaling 14 (RGS14). In human HS Wyler III and IV as well as in ILAE 1, 2, and 3 specimens, we found synaptoporin-positive axon terminals in CA2 and even in CA1, associated with the extent of granule cell dispersion. Sprouting was seen in cases with cell death of target neurons in CA3 and CA4 (classical severe HS ILAE type 1) but also without this cell death (atypical HS ILAE type 2). Similarly, in epileptic mice eGFP-positive MFs sprouted to CA2 and beyond. The presence of MF terminals in the CA2 pyramidal cell layer and in CA1 was also correlated with the extent of granule cell dispersion. The similarity of our findings in human specimens and in the mouse model highlights the importance and opens up new chances of using translational approaches to determine mechanisms underlying TLE.
Collapse
Affiliation(s)
- Thomas M Freiman
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Ute Häussler
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Josef Zentner
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Faculty of Medicine, Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Carola A Haas
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Barbara Puhahn-Schmeiser
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Sparks FT, Liao Z, Li W, Grosmark A, Soltesz I, Losonczy A. Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy. Nat Commun 2020; 11:6138. [PMID: 33262339 PMCID: PMC7708476 DOI: 10.1038/s41467-020-19969-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is characterized by recurrent seizures driven by synchronous neuronal activity. The reorganization of the dentate gyrus (DG) in TLE may create pathological conduction pathways for synchronous discharges in the temporal lobe, though critical microcircuit-level detail is missing from this pathophysiological intuition. In particular, the relative contribution of adult-born (abGC) and mature (mGC) granule cells to epileptiform network events remains unknown. We assess dynamics of abGCs and mGCs during interictal epileptiform discharges (IEDs) in mice with TLE as well as sharp-wave ripples (SPW-Rs) in healthy mice, and find that abGCs and mGCs are desynchronized and differentially recruited by IEDs compared to SPW-Rs. We introduce a neural topic model to explain these observations, and find that epileptic DG networks organize into disjoint, cell-type specific pathological ensembles in which abGCs play an outsized role. Our results characterize identified GC subpopulation dynamics in TLE, and reveal a specific contribution of abGCs to IEDs.
Collapse
Affiliation(s)
- F T Sparks
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Z Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - W Li
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - A Grosmark
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - I Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - A Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
|
15
|
Abstract
Compelling evidence indicates that hippocampal dentate granule cells are generated throughout human life and into old age. While animal studies demonstrate that these new neurons are important for memory function, animal research also implicates these cells in the pathogenesis of temporal lobe epilepsy. Several recent preclinical studies in rodents now suggest that targeting these new neurons can have disease-modifying effects in epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
16
|
Baraban SC. Viral tracing of presynaptic inputs to newly born dentate granule cells in a rodent model of mesial temporal lobe epilepsy. Ann Neurol 2019; 81:769-771. [PMID: 28470692 DOI: 10.1002/ana.24945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco San Francisco, CA
| |
Collapse
|
17
|
Zhou QG, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, Dymecki SM, Najm IM, Suh H. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest 2018; 129:310-323. [PMID: 30507615 DOI: 10.1172/jci95731] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus-mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus-mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated-specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | | | - Daehoon Lee
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eun Jeoung Ro
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, and
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
19
|
|
20
|
Christenson Wick Z, Krook-Magnuson E. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Front Cell Neurosci 2018; 12:151. [PMID: 29962936 PMCID: PMC6010559 DOI: 10.3389/fncel.2018.00151] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is a powerful and rapidly expanding set of techniques that use genetically encoded light sensitive proteins such as opsins. Through the selective expression of these exogenous light-sensitive proteins, researchers gain the ability to modulate neuronal activity, intracellular signaling pathways, or gene expression with spatial, directional, temporal, and cell-type specificity. Optogenetics provides a versatile toolbox and has significantly advanced a variety of neuroscience fields. In this review, using recent epilepsy research as a focal point, we highlight how the specificity, versatility, and continual development of new optogenetic related tools advances our understanding of neuronal circuits and neurological disorders. We additionally provide a brief overview of some currently available optogenetic tools including for the selective expression of opsins.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
21
|
Koyama R, Ikegaya Y. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting. Front Neurol 2018; 9:382. [PMID: 29896153 PMCID: PMC5986954 DOI: 10.3389/fneur.2018.00382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/11/2018] [Indexed: 01/25/2023] Open
Abstract
The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully) supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS) network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies.
Collapse
Affiliation(s)
- Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Godale CM, Danzer SC. Signaling Pathways and Cellular Mechanisms Regulating Mossy Fiber Sprouting in the Development of Epilepsy. Front Neurol 2018; 9:298. [PMID: 29774009 PMCID: PMC5943493 DOI: 10.3389/fneur.2018.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 02/04/2023] Open
Abstract
The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the dentate inner molecular layer is one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy. Decades of research in animal models have revealed that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippocampus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. Conducting definitive experiments to test this hypothesis, however, has been challenging due to the difficulty of dissociating this sprouting from the many other changes occurring during epileptogenesis. The field has been largely driven, therefore, by correlative data. Recently, the development of powerful transgenic mouse technologies and the discovery of novel drug targets has provided new tools to assess the role of mossy fiber sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in rodent epilepsy models, providing new insights into the granule cell subpopulations that participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are also coming to light, providing new targets for pharmacological intervention. Surprisingly, many investigators have found that blocking mossy fiber sprouting has no effect on seizure occurrence, while seizure frequency can be reduced by treatments that have no effect on this sprouting. These results raise new questions about the role of mossy fiber sprouting in epilepsy. Here, we will review these findings with particular regard to the contributions of new granule cells to mossy fiber sprouting and the regulation of this sprouting by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
23
|
Szabo GG, Du X, Oijala M, Varga C, Parent JM, Soltesz I. Extended Interneuronal Network of the Dentate Gyrus. Cell Rep 2018; 20:1262-1268. [PMID: 28793251 DOI: 10.1016/j.celrep.2017.07.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Local interneurons control principal cells within individual brain areas, but anecdotal observations indicate that interneuronal axons sometimes extend beyond strict anatomical boundaries. Here, we use the case of the dentate gyrus (DG) to show that boundary-crossing interneurons with cell bodies in CA3 and CA1 constitute a numerically significant and diverse population that relays patterns of activity generated within the CA regions back to granule cells. These results reveal the existence of a sophisticated retrograde GABAergic circuit that fundamentally extends the canonical interneuronal network.
Collapse
Affiliation(s)
- Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Xi Du
- Neuroscience Graduate Program, Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mikko Oijala
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Csaba Varga
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jack M Parent
- Neuroscience Graduate Program, Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Ureña-Guerrero ME, Feria-Velasco AI, Beas-Zarate C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals (Basel) 2018; 11:ph11010017. [PMID: 29414852 PMCID: PMC5874713 DOI: 10.3390/ph11010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Undoubtedly, one of the most interesting topics in the field of neuroscience is the ability of the central nervous system to respond to different stimuli (normal or pathological) by modifying its structure and function, either transiently or permanently, by generating neural cells and new connections in a process known as neuroplasticity. According to the large amount of evidence reported in the literature, many stimuli, such as environmental pressures, changes in the internal dynamic steady state of the organism and even injuries or illnesses (e.g., epilepsy) may induce neuroplasticity. Epilepsy and neuroplasticity seem to be closely related, as the two processes could positively affect one another. Thus, in this review, we analysed some neuroplastic changes triggered in the hippocampus in response to seizure-induced neuronal damage and how these changes could lead to the establishment of temporal lobe epilepsy, the most common type of focal human epilepsy.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Neurotransmission Biology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Alfredo I Feria-Velasco
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Carlos Beas-Zarate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| |
Collapse
|
25
|
Hosford BE, Rowley S, Liska JP, Danzer SC. Ablation of peri-insult generated granule cells after epilepsy onset halts disease progression. Sci Rep 2017; 7:18015. [PMID: 29269775 PMCID: PMC5740143 DOI: 10.1038/s41598-017-18237-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/08/2017] [Indexed: 11/15/2022] Open
Abstract
Aberrant integration of newborn hippocampal granule cells is hypothesized to contribute to the development of temporal lobe epilepsy. To test this hypothesis, we used a diphtheria toxin receptor expression system to selectively ablate these cells from the epileptic mouse brain. Epileptogenesis was initiated using the pilocarpine status epilepticus model in male and female mice. Continuous EEG monitoring was begun 2–3 months after pilocarpine treatment. Four weeks into the EEG recording period, at a time when spontaneous seizures were frequent, mice were treated with diphtheria toxin to ablate peri-insult generated newborn granule cells, which were born in the weeks just before and after pilocarpine treatment. EEG monitoring continued for another month after cell ablation. Ablation halted epilepsy progression relative to untreated epileptic mice; the latter showing a significant and dramatic 300% increase in seizure frequency. This increase was prevented in treated mice. Ablation did not, however, cause an immediate reduction in seizures, suggesting that peri-insult generated cells mediate epileptogenesis, but that seizures per se are initiated elsewhere in the circuit. These findings demonstrate that targeted ablation of newborn granule cells can produce a striking improvement in disease course, and that the treatment can be effective when applied months after disease onset.
Collapse
Affiliation(s)
- Bethany E Hosford
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - John P Liska
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA. .,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
26
|
Sprouted Mossy Fiber Connections of Adult-Born Granule Cells: Detonate or Fizzle? Epilepsy Curr 2017; 17:379-380. [PMID: 29217987 DOI: 10.5698/1535-7597.17.6.379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Santos VR, Pun RYK, Arafa SR, LaSarge CL, Rowley S, Khademi S, Bouley T, Holland KD, Garcia-Cairasco N, Danzer SC. PTEN deletion increases hippocampal granule cell excitability in male and female mice. Neurobiol Dis 2017; 108:339-351. [PMID: 28855130 DOI: 10.1016/j.nbd.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
Deletion of the mTOR pathway inhibitor PTEN from postnatally-generated hippocampal dentate granule cells causes epilepsy. Here, we conducted field potential, whole cell recording and single cell morphology studies to begin to elucidate the mechanisms by which granule cell-specific PTEN-loss produces disease. Cells from both male and female mice were recorded to identify sex-specific effects. PTEN knockout granule cells showed altered intrinsic excitability, evident as a tendency to fire in bursts. PTEN knockout granule cells also exhibited increased frequency of spontaneous excitatory synaptic currents (sEPSCs) and decreased frequency of inhibitory currents (sIPSCs), further indicative of a shift towards hyperexcitability. Morphological studies of PTEN knockout granule cells revealed larger dendritic trees, more dendritic branches and an impairment of dendrite self-avoidance. Finally, cells from both female control and female knockout mice received more sEPSCs and more sIPSCs than corresponding male cells. Despite the difference, the net effect produced statistically equivalent EPSC/IPSC ratios. Consistent with this latter observation, extracellularly evoked responses in hippocampal slices were similar between male and female knockouts. Both groups of knockouts were abnormal relative to controls. Together, these studies reveal a host of physiological and morphological changes among PTEN knockout cells likely to underlie epileptogenic activity. SIGNIFICANCE STATEMENT Hyperactivation of the mTOR pathway is associated with numerous neurological diseases, including autism and epilepsy. Here, we demonstrate that deletion of the mTOR negative regulator, PTEN, from a subset of hippocampal dentate granule impairs dendritic patterning, increases excitatory input and decreases inhibitory input. We further demonstrate that while granule cells from female mice receive more excitatory and inhibitory input than males, PTEN deletion produces mostly similar changes in both sexes. Together, these studies provide new insights into how the relatively small number (≈200,000) of PTEN knockout granule cells instigates the development of the profound epilepsy syndrome evident in both male and female animals in this model.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Salwa R Arafa
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; University of Cincinnati, College of Pharmacy, Cincinnati, OH 45267, United States
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shadi Khademi
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Tom Bouley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
28
|
Thodeson DM, Brulet R, Hsieh J. Neural stem cells and epilepsy: functional roles and disease-in-a-dish models. Cell Tissue Res 2017; 371:47-54. [PMID: 28831605 DOI: 10.1007/s00441-017-2675-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023]
Abstract
Epilepsy is a disorder of the central nervous system characterized by spontaneous recurrent seizures. Although current therapies exist to control the number and severity of clinical seizures, there are no pharmacological cures or disease-modifying treatments available. Use of transgenic mouse models has allowed an understanding of neural stem cells in their relation to epileptogenesis in mesial temporal lobe epilepsy. Further, with the significant discovery of factors necessary to reprogram adult somatic cell types into pluripotent stem cells, it has become possible to study monogenic epilepsy-in-a-dish using patient-derived neurons. This discovery along with some of the newest technological advances in recapitulating brain development in a dish has brought us closer than ever to a platform in which to study and understand the mechanisms of this disease. These technologies will be critical in understanding the mechanism of epileptogenesis and ultimately lead to improved therapies and precision medicine for patients with epilepsy.
Collapse
Affiliation(s)
- Drew M Thodeson
- Departments of Pediatrics and Neurology and Neurotherapeutics, Division of Child Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rebecca Brulet
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny Hsieh
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
29
|
Du X, Zhang H, Parent JM. Rabies tracing of birthdated dentate granule cells in rat temporal lobe epilepsy. Ann Neurol 2017; 81:790-803. [PMID: 28470680 DOI: 10.1002/ana.24946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To understand how monosynaptic inputs onto adult-born dentate granule cells (DGCs) are altered in experimental mesial temporal lobe epilepsy (mTLE) and whether their integration differs from early-born DGCs that are mature at the time of epileptogenesis. METHODS A dual-virus tracing strategy combining retroviral birthdating with rabies virus-mediated putative retrograde trans-synaptic tracing was used to identify and compare presynaptic inputs onto adult-born and early-born DGCs in the rat pilocarpine model of mTLE. RESULTS Our results demonstrate that hilar ectopic DGCs preferentially synapse onto adult-born DGCs after pilocarpine-induced status epilepticus (SE), whereas normotopic DGCs synapse onto both adult-born and early-born DGCs. We also find that parvalbumin- and somatostatin- interneuron inputs are greatly diminished onto early-born DGCs after SE. However, somatostatin- interneuron inputs onto adult-born DGCs are maintained, likely due to preferential sprouting. Intriguingly, CA3 pyramidal cell backprojections that specifically target adult-born DGCs arise in the epileptic brain, whereas axons of interneurons and pyramidal cells in CA1 appear to sprout across the hippocampal fissure to preferentially synapse onto early-born DGCs. INTERPRETATION These data support the presence of substantial hippocampal circuit remodeling after an epileptogenic insult that generates prominent excitatory monosynaptic inputs, both local recurrent and widespread feedback loops, onto DGCs. Both adult-born and early-born DGCs are targets of new inputs from other DGCs as well as from CA3 and CA1 pyramidal cells after pilocarpine treatment, changes that likely contribute to epileptogenesis in experimental mTLE. Ann Neurol 2017;81:790-803.
Collapse
Affiliation(s)
- Xi Du
- Neuroscience Graduate Program.,Medical Scientist Training Program
| | - Helen Zhang
- Department of Neurology, University of Michigan Medical Center and Ann Arbor VA Healthcare System, Ann Arbor, MI
| | - Jack M Parent
- Neuroscience Graduate Program.,Medical Scientist Training Program.,Department of Neurology, University of Michigan Medical Center and Ann Arbor VA Healthcare System, Ann Arbor, MI
| |
Collapse
|
30
|
Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy. J Neurosci 2017; 36:11013-11023. [PMID: 27798182 DOI: 10.1523/jneurosci.1371-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/21/2016] [Indexed: 12/30/2022] Open
Abstract
Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently.
Collapse
|
31
|
Short-Term Depression of Sprouted Mossy Fiber Synapses from Adult-Born Granule Cells. J Neurosci 2017; 37:5722-5735. [PMID: 28495975 DOI: 10.1523/jneurosci.0761-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures potently modulate hippocampal adult neurogenesis, and adult-born dentate granule cells contribute to the pathologic retrograde sprouting of mossy fiber axons, both hallmarks of temporal lobe epilepsy. The characteristics of these sprouted synapses, however, have been largely unexplored, and the specific contribution of adult-born granule cells to functional mossy fiber sprouting is unknown, primarily due to technical barriers in isolating sprouted mossy fiber synapses for analysis. Here, we used DcxCreERT2 transgenic mice to permanently pulse-label age-defined cohorts of granule cells born either before or after pilocarpine-induced status epilepticus (SE). Using optogenetics, we demonstrate that adult-born granule cells born before SE form functional recurrent monosynaptic excitatory connections with other granule cells. Surprisingly, however, although healthy mossy fiber synapses in CA3 are well characterized "detonator" synapses that potently drive postsynaptic cell firing through their profound frequency-dependent facilitation, sprouted mossy fiber synapses from adult-born cells exhibited profound frequency-dependent depression, despite possessing some of the morphological hallmarks of mossy fiber terminals. Mature granule cells also contributed to functional mossy fiber sprouting, but exhibited less synaptic depression. Interestingly, granule cells born shortly after SE did not form functional excitatory synapses, despite robust sprouting. Our results suggest that, although sprouted mossy fibers form recurrent excitatory circuits with some of the morphological characteristics of typical mossy fiber terminals, the functional characteristics of sprouted synapses would limit the contribution of adult-born granule cells to hippocampal hyperexcitability in the epileptic hippocampus.SIGNIFICANCE STATEMENT In the hippocampal dentate gyrus, seizures drive retrograde sprouting of granule cell mossy fiber axons. We directly activated sprouted mossy fiber synapses from adult-born granule cells to study their synaptic properties. We reveal that sprouted synapses from adult-born granule cells have a diminished ability to sustain recurrent excitation in the epileptic hippocampus, which raises questions about the role of sprouting and adult neurogenesis in sustaining seizure-like activity.
Collapse
|
32
|
Christenson Wick Z, Leintz CH, Xamonthiene C, Huang BH, Krook-Magnuson E. Axonal sprouting in commissurally projecting parvalbumin-expressing interneurons. J Neurosci Res 2017; 95:2336-2344. [PMID: 28151564 DOI: 10.1002/jnr.24011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 01/20/2023]
Abstract
Previous research has shown that in vivo on-demand optogenetic stimulation of inhibitory interneurons expressing parvalbumin (PV) is sufficient to suppress seizures in a mouse model of temporal lobe epilepsy (TLE). Surprisingly, this intervention was capable of suppressing seizures when PV-expressing interneurons were stimulated ipsilateral or contralateral to the presumed seizure focus, raising the possibility of commissural inhibition in TLE. There are mixed reports regarding commissural PV interneuron projections in the healthy hippocampus, and it was previously unknown whether these connections would be maintained or modified following the network reorganization associated with TLE. Using retrograde labeling and viral vector technology in both sexes and the intrahippocampal kainate mouse model of TLE, we therefore examined these issues. Our results reveal that healthy controls possess a population of commissurally projecting hippocampal PV interneurons. Two weeks post kainate injection, we observed a slight, but not statistically significant decrease in retrogradely labeled PV interneurons in the hippocampus contralateral to kainate and tracer injection. By 6 months post kainate, however, there was a significant increase in retrogradely labeled PV interneurons, suggesting commissural inhibitory axonal sprouting. Using viral green fluorescent protein expression selectively in PV neurons, we demonstrated sprouting of commissural PV projections in the dentate gyrus of the kainate-injected hippocampus 6 months post kainate. These findings indicate that PV interneurons supply direct inhibition to the contralateral hippocampus and undergo sprouting in a mouse model of TLE. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Caara H Leintz
- Neuroscience Department, University of Minnesota, Minneapolis
| | | | - Bin H Huang
- Neuroscience Department, University of Minnesota, Minneapolis
| | | |
Collapse
|
33
|
|