1
|
Cohen N, Rabinowitch I. Resolving transitions between distinct phases of memory consolidation at high resolution in Caenorhabditis elegans. iScience 2024; 27:111147. [PMID: 39524366 PMCID: PMC11547966 DOI: 10.1016/j.isci.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Memory consolidation following learning is a dynamic and complex process comprising several transitions between distinct memory phases. Although memory consolidation has been studied extensively, it remains difficult to draw an integral description that can delimit the transition points between specific memory phases at the behavioral, neuronal, and genetic levels. To this end, we have developed a rapid and robust aversive conditioning protocol for the nematode worm Caenorhabditis elegans, tracing memory consolidation within the first hour post conditioning and then up to 18 h post conditioning. This made it possible to uncover time-dependent involvement of primary sensory neurons, transcription and translation processes, and diverse gene populations in memory consolidation. The change in neuronal valence was strong enough to induce second order conditioning, and was amenable to considerable modulation in specific mutant strains. Together, our work lends memory consolidation to detailed temporal and spatial analysis, advancing system-wide understanding of learning and memory.
Collapse
Affiliation(s)
- Netanel Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
2
|
Rodriguez-Contreras D, García-Nafría J, Chan AE, Shinde U, Neve KA. Comparison of the function of two novel human dopamine D2 receptor variants identifies a likely mechanism for their pathogenicity. Biochem Pharmacol 2024; 228:116228. [PMID: 38643909 PMCID: PMC11410538 DOI: 10.1016/j.bcp.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratory of Advanced Microscopy (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Amy E Chan
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kim A Neve
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Lasa-Aranzasti A, Larasati YA, da Silva Cardoso J, Solis GP, Koval A, Cazurro-Gutiérrez A, Ortigoza-Escobar JD, Miranda MC, De la Casa-Fages B, Moreno-Galdó A, Tizzano EF, Gómez-Andrés D, Verdura E, Katanaev VL, Pérez-Dueñas B. Clinical and Molecular Profiling in GNAO1 Permits Phenotype-Genotype Correlation. Mov Disord 2024; 39:1578-1591. [PMID: 38881224 DOI: 10.1002/mds.29881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Defects in GNAO1, the gene encoding the major neuronal G-protein Gαo, are related to neurodevelopmental disorders, epilepsy, and movement disorders. Nevertheless, there is a poor understanding of how molecular mechanisms explain the different phenotypes. OBJECTIVES We aimed to analyze the clinical phenotype and the molecular characterization of GNAO1-related disorders. METHODS Patients were recruited in collaboration with the Spanish GNAO1 Association. For patient phenotyping, direct clinical evaluation, analysis of homemade-videos, and an online questionnaire completed by families were analyzed. We studied Gαo cellular expression, the interactions of the partner proteins, and binding to guanosine triphosphate (GTP) and G-protein-coupled receptors (GPCRs). RESULTS Eighteen patients with GNAO1 genetic defects had a complex neurodevelopmental disorder, epilepsy, central hypotonia, and movement disorders. Eleven patients showed neurological deterioration, recurrent hyperkinetic crisis with partial recovery, and secondary complications leading to death in three cases. Deep brain stimulation improved hyperkinetic crisis, but had inconsistent benefits in dystonia. The molecular defects caused by pathogenic Gαo were aberrant GTP binding and hydrolysis activities, an inability to interact with cellular binding partners, and reduced coupling to GPCRs. Decreased localization of Gαo in the plasma membrane was correlated with the phenotype of "developmental and epileptic encephalopathy 17." We observed a genotype-phenotype correlation, pathogenic variants in position 203 were related to developmental and epileptic encephalopathy, whereas those in position 209 were related to neurodevelopmental disorder with involuntary movements. Milder phenotypes were associated with other molecular defects such as del.16q12.2q21 and I344del. CONCLUSION We highlight the complexity of the motor phenotype, which is characterized by fluctuations throughout the day, and hyperkinetic crisis with a distinct post-hyperkinetic crisis state. We confirm a molecular-based genotype-phenotype correlation for specific variants. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Paris, France
| | - Yonika A Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juliana da Silva Cardoso
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Serviço de Pediatria do Centro Materno infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Gonzalo P Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ana Cazurro-Gutiérrez
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- U-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Maria Concepción Miranda
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Pediatrics Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Beatriz De la Casa-Fages
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Movement Disorders Unit, Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Neurology, Vall Hebron University Hospital Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Taira R, Akamine S, Okuzono S, Fujii F, Hatai E, Yonemoto K, Takemoto R, Kato H, Masuda K, Kato TA, Kira R, Tsujimura K, Yamamura K, Ozaki N, Ohga S, Sakai Y. Gnao1 is a molecular switch that regulates the Rho signaling pathway in differentiating neurons. Sci Rep 2024; 14:17097. [PMID: 39048611 PMCID: PMC11269603 DOI: 10.1038/s41598-024-68062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
GNAO1 encodes G protein subunit alpha O1 (Gαo). Pathogenic variations in GNAO1 cause developmental delay, intractable seizures, and progressive involuntary movements from early infancy. Because the functional role of GNAO1 in the developing brain remains unclear, therapeutic strategies are still unestablished for patients presenting with GNAO1-associated encephalopathy. We herein report that siRNA-mediated depletion of Gnao1 perturbs the expression of transcripts associated with Rho GTPase signaling in Neuro2a cells. Consistently, siRNA treatment hampered neurite outgrowth and extension. Growth cone formation was markedly disrupted in monolayer neurons differentiated from iPSCs from a patient with a pathogenic variant of Gαo (p.G203R). This variant disabled neuro-spherical assembly, acquisition of the organized structure, and polarized signals of phospho-MLC2 in cortical organoids from the patient's iPSCs. We confirmed that the Rho kinase inhibitor Y27632 restored these morphological phenotypes. Thus, Gαo determines the self-organizing process of the developing brain by regulating the Rho-associated pathway. These data suggest that Rho GTPase pathway might be an alternative target of therapy for patients with GNAO1-associated encephalopathy.
Collapse
Affiliation(s)
- Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Eriko Hatai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Ryuichi Takemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Shionogi Pharma Co., Ltd., Settsu, Osaka, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Roy AJ, Leipprandt JR, Patterson JR, Stoll AC, Kemp CJ, Oula ZTD, Mola T, Batista AR, Sortwell CE, Sena-Esteves M, Neubig RR. AAV9-Mediated Intrastriatal Delivery of GNAO1 Reduces Hyperlocomotion in Gnao1 Heterozygous R209H Mutant Mice. J Pharmacol Exp Ther 2024; 390:250-259. [PMID: 38866563 DOI: 10.1124/jpet.124.002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.
Collapse
Affiliation(s)
- Alex J Roy
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Joseph R Patterson
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Anna C Stoll
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Christopher J Kemp
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Zaipo-Tcheisian D Oula
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Tyler Mola
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Ana R Batista
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Caryl E Sortwell
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Miguel Sena-Esteves
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Richard R Neubig
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
6
|
Falsaperla R, Sortino V, Marino SD, Collotta AD, Gammeri C, Sipala FM, Volti GL, Ruggieri M, Ronsisvalle S. Molecular Dynamic Simulations to Determine Individualized Therapy: Tetrabenazine for the GNAO1 Encephalopathy E246K Variant. Mol Diagn Ther 2024; 28:329-337. [PMID: 38581611 DOI: 10.1007/s40291-024-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION GNAO1 encephalopathy is characterized by severe hypotonia, psychomotor retardation, epilepsy, and movement disorders. Genetic variations in GNAO1 have been linked to neurological symptoms including movement disorders like dystonia. The correlation between the E246K mutation in the Gα subunit and aberrant signal transduction of G proteins has been established but no data are reported regarding the efficacy of medical treatment with tetrabenazine. METHODS Molecular modeling studies were performed to elucidate the molecular mechanisms underlying this mutation. We developed drug efficacy models using molecular dynamic simulations that replicated the behavior of wild-type and mutated proteins in the presence or absence of ligands. RESULTS AND DISCUSSION We demonstrated that the absence of the mutation leads to normal signal transduction upon receptor activation by the endogenous ligand, but not in the presence of tetrabenazine. In contrast, the presence of the mutation resulted in abnormal signal transduction in the presence of the endogenous ligand, which was corrected by the drug tetrabenazine. Tetrabenazine was identified as a promising therapeutic option for pediatric patients suffering from encephalopathy due to an E246K mutation in the GNAO1 gene validated through molecular dynamics. This is a potential first example of the use of this technique in a rare neurological pediatric disease.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy.
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy.
- Pediatric Clinic, University of Ferrara, Ferrara, Italy.
| | - Vincenzo Sortino
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Simona Domenica Marino
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Ausilia Desiree Collotta
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmela Gammeri
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125, Catania, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics, Unit of Rare Diseases, AOU "Policlinico", PO "G. Rodolico", University of Catania, Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
7
|
Morgan AT, Amor DJ, St John MD, Scheffer IE, Hildebrand MS. Genetic architecture of childhood speech disorder: a review. Mol Psychiatry 2024; 29:1281-1292. [PMID: 38366112 PMCID: PMC11189821 DOI: 10.1038/s41380-024-02409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Severe speech disorders lead to poor literacy, reduced academic attainment and negative psychosocial outcomes. As early as the 1950s, the familial nature of speech disorders was recognized, implying a genetic basis; but the molecular genetic basis remained unknown. In 2001, investigation of a large three generational family with severe speech disorder, known as childhood apraxia of speech (CAS), revealed the first causative gene; FOXP2. A long hiatus then followed for CAS candidate genes, but in the past three years, genetic analysis of cohorts ascertained for CAS have revealed over 30 causative genes. A total of 36 pathogenic variants have been identified from 122 cases across 3 cohorts in this nascent field. All genes identified have been in coding regions to date, with no apparent benefit at this stage for WGS over WES in identifying monogenic conditions associated with CAS. Hence current findings suggest a remarkable one in three children have a genetic variant that explains their CAS, with significant genetic heterogeneity emerging. Around half of the candidate genes identified are currently supported by medium (6 genes) to strong (9 genes) evidence supporting the association between the gene and CAS. Despite genetic heterogeneity; many implicated proteins functionally converge on pathways involved in chromatin modification or transcriptional regulation, opening the door to precision diagnosis and therapies. Most of the new candidate genes for CAS are associated with previously described neurodevelopmental conditions that include intellectual disability, autism and epilepsy; broadening the phenotypic spectrum to a distinctly milder presentation defined by primary speech disorder in the setting of normal intellect. Insights into the genetic bases of CAS, a severe, rare speech disorder, are yet to translate to understanding the heritability of more common, typically milder forms of speech or language impairment such as stuttering or phonological disorder. These disorders likely follow complex inheritance with polygenic contributions in many cases, rather than the monogenic patterns that underly one-third of patients with CAS. Clinical genetic testing for should now be implemented for individuals with CAS, given its high diagnostic rate, which parallels many other neurodevelopmental disorders where this testing is already standard of care. The shared mechanisms implicated by gene discovery for CAS highlight potential new targets for future precision therapies.
Collapse
Affiliation(s)
- Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia.
- Speech Pathology, Royal Children's Hospital, Melbourne, VIC, Australia.
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Miya D St John
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Michael S Hildebrand
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Decraene B, Smeets S, Remans D, Ortibus E, Vandenberghe W, Nuttin B, Theys T, De Vloo P. Deep Brain Stimulation for GNAO1-Associated Dystonia: A Systematic Review and Meta-Analysis. Neuromodulation 2024; 27:440-446. [PMID: 37999699 DOI: 10.1016/j.neurom.2023.10.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Guanine nucleotide-binding protein alpha-activating activity polypeptide O (GNAO1) syndrome, a rare congenital monogenetic disorder, is characterized by a neurodevelopmental syndrome and the presence of dystonia. Dystonia can be very pronounced and even lead to a life-threatening status dystonicus. In a small number of pharmaco-refractory cases, deep brain stimulation (DBS) has been attempted to reduce dystonia. In this study, we summarize the current literature on outcome, safety, and outcome predictors of DBS for GNAO1-associated dystonia. MATERIALS AND METHODS We conducted a systematic review and meta-analysis on individual patient data. We included 18 studies describing 28 unique patients. RESULTS The mean age of onset of symptoms was 2.4 years (SD 3.8); 16 of 28 patients were male, and dystonia was nearly always generalized (20/22 patients). Symptoms were present before DBS for a median duration of 19.5 months, although highly variable, occurring between 3 and 168 months. The exact phenotype, genotype, and radiologic abnormalities varied and seemed to be of little importance in terms of DBS outcome. All studies described an improvement in dystonia. Our meta-analysis focused on pallidal DBS and found an absolute and relative improvement in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) of 32.5 points (37.9%; motor part; p = 0.001) and 5.8 points (21.5%; disability part; p = 0.043) at last follow-up compared with preoperative state; 80% of patients were considered responders (BFMDRS-M reduction by ≥25%). Although worsening over time does occur, an improvement was still observed in patients after >10 years. All reported cases of status dystonicus resolved after DBS surgery. Skin erosion and infection were observed in 18% of patients. CONCLUSION Pallidal DBS can be efficacious and safe in GNAO1-associated dystonia.
Collapse
Affiliation(s)
- Brecht Decraene
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, University of Leuven, Leuven, Belgium; Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium.
| | - Sara Smeets
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Daan Remans
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium; Child Youth Institute, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Laboratory for Parkinson Research, Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, University of Leuven, Leuven, Belgium; Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, University of Leuven, Leuven, Belgium; Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, University of Leuven, Leuven, Belgium; Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Xu J, Peng Q, Cai J, Shangguan J, Su W, Chen G, Sun H, Zhu C, Gu Y. The Schwann cell-specific G-protein Gαo (Gnao1) is a cell-intrinsic controller contributing to the regulation of myelination in peripheral nerve system. Acta Neuropathol Commun 2024; 12:24. [PMID: 38331815 PMCID: PMC10854112 DOI: 10.1186/s40478-024-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Qianqian Peng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jieyi Cai
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| |
Collapse
|
10
|
Li S, Zhang P, Chen W, Ye L, Brannan KW, Le NT, Abe JI, Cooke JP, Wang G. A relay velocity model infers cell-dependent RNA velocity. Nat Biotechnol 2024; 42:99-108. [PMID: 37012448 PMCID: PMC10545816 DOI: 10.1038/s41587-023-01728-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
RNA velocity provides an approach for inferring cellular state transitions from single-cell RNA sequencing (scRNA-seq) data. Conventional RNA velocity models infer universal kinetics from all cells in an scRNA-seq experiment, resulting in unpredictable performance in experiments with multi-stage and/or multi-lineage transition of cell states where the assumption of the same kinetic rates for all cells no longer holds. Here we present cellDancer, a scalable deep neural network that locally infers velocity for each cell from its neighbors and then relays a series of local velocities to provide single-cell resolution inference of velocity kinetics. In the simulation benchmark, cellDancer shows robust performance in multiple kinetic regimes, high dropout ratio datasets and sparse datasets. We show that cellDancer overcomes the limitations of existing RNA velocity models in modeling erythroid maturation and hippocampus development. Moreover, cellDancer provides cell-specific predictions of transcription, splicing and degradation rates, which we identify as potential indicators of cell fate in the mouse pancreas.
Collapse
Affiliation(s)
- Shengyu Li
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pengzhi Zhang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Weiqing Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, Ithaca, NY, USA
| | - Lingqun Ye
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA
| | - Kristopher W Brannan
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA.
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
11
|
Zea Vera A, DiSabella M, Tochen L, Meltzer M, Gropman A. Awakening-Related Bouts of Severe Opisthotonos in GNAO1. Mov Disord Clin Pract 2023; 10:1698-1699. [PMID: 37982118 PMCID: PMC10654818 DOI: 10.1002/mdc3.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 11/21/2023] Open
Affiliation(s)
- Alonso Zea Vera
- Department of NeurologyChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- Department of NeurologyGeorge Washington University School of Medicine & Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Marc DiSabella
- Department of NeurologyChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- Department of NeurologyGeorge Washington University School of Medicine & Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Laura Tochen
- Department of NeurologyChildren's National HospitalWashingtonDistrict of ColumbiaUSA
- Department of NeurologyGeorge Washington University School of Medicine & Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Meira Meltzer
- Department of Neurogenetics and NeurodevelopmentalChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Andrea Gropman
- Department of Neurogenetics and NeurodevelopmentalChildren's National HospitalWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
12
|
Domínguez-Carral J, Ludlam WG, Segarra MJ, Marti MF, Balsells S, Muchart J, Petrović DČ, Espinoza I, Ortigoza-Escobar JD, Martemyanov KA. Severity of GNAO1-Related Disorder Correlates with Changes in G-Protein Function. Ann Neurol 2023; 94:987-1004. [PMID: 37548038 PMCID: PMC10681096 DOI: 10.1002/ana.26758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE GNAO1-related disorders (OMIM #615473 and #617493), caused by variants in the GNAO1 gene, are characterized by developmental delay or intellectual disability, hypotonia, movement disorders, and epilepsy. Neither a genotype-phenotype correlation nor a clear severity score have been established for this disorder. The objective of this prospective and retrospective observational study was to develop a severity score for GNAO1-related disorders, and to delineate the correlation between the underlying molecular mechanisms and clinical severity. METHODS A total of 16 individuals with GNAO1-related disorders harboring 12 distinct missense variants, including four novel variants (p.K46R, p.T48I, p.R209P, and p.L235P), were examined with repeated clinical assessments, video-electroencephalogram monitoring, and brain magnetic resonance imaging. The molecular pathology of each variant was delineated using a molecular deconvoluting platform. RESULTS The patients displayed a wide variability in the severity of their symptoms. This heterogeneity was well represented in the GNAO1-related disorders severity score, with a broad range of results. Patients with the same variant had comparable severity scores, indicating that differences in disease profiles are not due to interpatient variability, but rather, to unique disease mechanisms. Moreover, we found a significant correlation between clinical severity scores and molecular mechanisms. INTERPRETATION The clinical score proposed here provides further insight into the correlation between pathophysiology and phenotypic severity in GNAO1-related disorders. We found that each variant has a unique profile of clinical phenotypes and pathological molecular mechanisms. These findings will contribute to better understanding GNAO1-related disorders. Additionally, the severity score will facilitate standardization of patients categorization and assessment of response to therapies in development. ANN NEUROL 2023;94:987-1004.
Collapse
Affiliation(s)
- Jana Domínguez-Carral
- Epilepsy Unit, Department of Child Neurology, Institut de
Recerca Sant Joan de Déu, Barcelona, Spain
| | - William Grant Ludlam
- Department of Neuroscience, The Herbert Wertheim UF
Scripps Institute for Biomedical Innovation & Technology, University of Florida,
Jupiter, FL 33458, USA
| | | | | | - Sol Balsells
- Department of Statistics Institut de Recerca Sant Joan de
Déu Barcelona Spain
| | - Jordi Muchart
- Department of Pediatric Radiology, Hospital Sant Joan de
Déu, Barcelona, Spain
| | | | - Iván Espinoza
- Pediatric Neurology Department, Hospital Nacional Cayetano
Heredia, Lima, Perú
| | | | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology,
Institut de Recerca Sant Joan de Déu
- U-703 Centre for Biomedical Research on Rare Diseases
(CIBER-ER), Instituto de Salud Carlos III, 08002 Barcelona, Spain
- European Reference Network for Rare Neurological
Diseases (ERN-RND), Barcelona, Spain
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF
Scripps Institute for Biomedical Innovation & Technology, University of Florida,
Jupiter, FL 33458, USA
| |
Collapse
|
13
|
Thiel M, Bamborschke D, Janzarik WG, Assmann B, Zittel S, Patzer S, Auhuber A, Opp J, Matzker E, Bevot A, Seeger J, van Baalen A, Stüve B, Brockmann K, Cirak S, Koy A. Genotype-phenotype correlation and treatment effects in young patients with GNAO1-associated disorders. J Neurol Neurosurg Psychiatry 2023; 94:806-815. [PMID: 37225406 DOI: 10.1136/jnnp-2022-330261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients carrying pathogenic variants in GNAO1 often present with early-onset central hypotonia and global developmental delay, with or without epilepsy. As the disorder progresses, a complex hypertonic and hyperkinetic movement disorder is a common phenotype. A genotype-phenotype correlation has not yet been described and there are no evidence-based therapeutic recommendations. METHODS To improve understanding of the clinical course and pathophysiology of this ultra-rare disorder, we built up a registry for GNAO1 patients in Germany. In this retrospective, multicentre cohort study, we collected detailed clinical data, treatment effects and genetic data for 25 affected patients. RESULTS The main clinical features were symptom onset within the first months of life, with central hypotonia or seizures. Within the first year of life, nearly all patients developed a movement disorder comprising dystonia (84%) and choreoathetosis (52%). Twelve (48%) patients suffered life-threatening hyperkinetic crises. Fifteen (60%) patients had epilepsy with poor treatment response. Two patients showed an atypical phenotype and seven novel pathogenic variants in GNAO1 were identified. Nine (38%) patients were treated with bilateral deep brain stimulation of the globus pallidus internus. Deep brain stimulation reduced hyperkinetic symptoms and prevented further hyperkinetic crises. The in silico prediction programmes did not predict the phenotype by the genotype. CONCLUSION The broad clinical spectrum and genetic findings expand the phenotypical spectrum of GNAO1-associated disorder and therefore disprove the assumption that there are only two main phenotypes. No specific overall genotype-phenotype correlation was identified. We highlight deep brain stimulation as a useful treatment option in this disorder.
Collapse
Affiliation(s)
- Moritz Thiel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bamborschke
- Pediatric Neurology, University of Bonn, Faculty of Medicine, Bonn, Germany
| | - Wibke G Janzarik
- Pediatric Neurology and Muscle Disorders, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Birgit Assmann
- Department of General Pediatrics, Pediatric Neurology, Metabolic Diseases, Gastroenterology and Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffi Patzer
- Department of Pediatrics, Krankenhaus St. Elisabeth und St. Barbara, Halle (Saale), Germany
| | - Andrea Auhuber
- Sozialpädiatrisches Zentrum, Celle General Hospital, Celle, Germany
| | - Joachim Opp
- Sozialpädiatrisches Zentrum, Evangelisches Krankenhaus Oberhausen, Oberhausen, Germany
| | - Eva Matzker
- Pediatric Neurology, Carl-Thiem Hospital Cottbus, Cottbus, Germany
| | - Andrea Bevot
- Pediatric Neurology and Developmental Medicine, Eberhard Karls University Tübingen, Faculty of Medicine, Tübingen, Germany
| | - Juergen Seeger
- Sozialpädiatrisches Zentrum Frankfurt Mitte, Frankfurt, Germany
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel University (CAU), Kiel, Germany
| | - Burkhard Stüve
- Pediatric Neurology, DRK-Kinderklinik Siegen gGmbH, Siegen, Germany
| | - Knut Brockmann
- Division of Pediatric Neurology, Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Sebahattin Cirak
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anne Koy
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Panda PK, Elwadhi A, Dasgupta S, Gupta D, Tomar A, Sharawat IK. GNAO1-related Neurodevelopmental Disorder Presenting as Acute Encephalitis Syndrome: A Phenotypic Expansion. Ann Indian Acad Neurol 2023; 26:829-831. [PMID: 38022464 PMCID: PMC10666843 DOI: 10.4103/aian.aian_597_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Prateek Kumar Panda
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Aman Elwadhi
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Soura Dasgupta
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Diksha Gupta
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Apurva Tomar
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Indar Kumar Sharawat
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
15
|
Li Y, Chen H, Li L, Cao X, Ding X, Chen L, Cao D. Phenotypes in children with GNAO1 encephalopathy in China. Front Pediatr 2023; 11:1086970. [PMID: 37705601 PMCID: PMC10495587 DOI: 10.3389/fped.2023.1086970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Background The GNAO1 gene encodes the α-subunit (Gαo) of the heterotrimeric guanine nucleotide-binding protein (G protein). The aim of this study was to explore the clinical characteristics of patients with GNAO1 pathogenic variations. Methods Ten patients with pathogenic variations in GNAO1 were enrolled from the Shenzhen Children's Hospital. Clinical data from several cases previously reported from China were also included and analyzed. Results Twenty-seven patients with variations in GNAO1 were analyzed (10 patients from Shenzhen Children's Hospital, 17 patients from previously published studies) including 12 boys and 15 girls. The median age of onset was 3 months with moderate to severe global developmental delay. Nineteen different GNAO1 heterozygous variants were identified. Epilepsy was observed in 18 patients (67%, 18/27), movement disorder (MD) was observed in 22 patients (81%, 22/27), and both were seen in 13 patients (48%, 13/27). Seizures typically presented as focal seizures in all patients with epilepsy. MD typically presented as dystonia and chorea. Loss-of-function (LOF) or partial loss-of-function (PLOF) mutations were more frequent in patients with developmental and epileptic encephalopathy (p = 0.029). Interictal electroencephalograms showed multifocal or diffuse epileptiform discharges. The most common magnetic resonance imaging finding was widened extracerebral space. In contrast to MD, in which improvements were not common, seizures were easily controlled by anti-seizure medications. Severe dystonia in three patients was effectively treated by deep brain stimulation. Seven (26%, 7/27) patients died of respiratory complications, status dystonicus, choreoathetosis, or sudden unexpected death in epilepsy. Conclusion We analyzed clinical data of 27 cases of GNAO1-related encephalopathy in China. MD seemed to be the central feature and was most difficult to control. LOF or PLOF variants were significantly associated with developmental and epileptic encephalopathy. The active intervention of severe dystonia may prevent death due to status dystonicus. However, future studies with larger samples are needed to confirm these results.
Collapse
Affiliation(s)
- Yanmei Li
- Shenzhen Children’s Hospital, Shantou University, Shenzhen, China
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hong Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xueyan Cao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xin Ding
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Dezhi Cao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
16
|
Miao P, Zhu X, Jin W, Yu L, Li Y, Wang Y, Su Q, Xu S, Wang S, Feng J. Efficacy of perampanel in pediatric epilepsy with known and presumed genetic etiology. Ann Clin Transl Neurol 2023; 10:1374-1382. [PMID: 37329172 PMCID: PMC10424658 DOI: 10.1002/acn3.51828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE The efficacy of perampanel (PER) in pediatric epilepsy with specific etiologies has not been well established. Here, we investigated outcome and predictors of PER treatment in a pediatric cohort with known and presumed genetic etiology. METHODS We included pediatric patients with potential genetic epilepsy who received PER treatment and underwent whole-exome sequencing (WES) from January 2020 to September 2021. All patients were followed up for >12 months. RESULTS A total of 124 patients were included. Overall response rates were 51.6% and 49.6% at 6 months and 12 months, respectively. Pathogenic or likely pathogenic variants in 27 multiple genes were detected among 58 patients (46.8%) by WES. On performing multivariate logistic regression analysis, only developmental delay (OR = 0.406, P = 0.042) was a negative predictor of treatment response. However, the seizure onset age, positive WES results, and number of ASMs before PER administration were not significantly. Thirteen carriers with variants in the SCN1A gene showed a better response compared to eight patients with other sodium channels (P = 0.007), and to the other 45 patients with positive WES results (OR = 7.124, 95% CI = 1.306-38.860, P = 0.023). Adverse events were only reported in 23 patients, the most common being emotional problems. INTERPRETATION PER is safe and efficacious in pediatric patients with known and presumed genetic etiology. The response rate is comparable to that reported in other pediatric populations, and lower among those with developmental delay. A gene-specific response to PER is found along with better efficacy links to pathogenic variants in the SCN1A gene.
Collapse
Affiliation(s)
- Pu Miao
- Department of PediatricsSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| | - Xueying Zhu
- Department of PediatricsJinhua Lanxi People's HospitalJinhuaZhejiang321000China
| | - Wenqin Jin
- Department of PediatricsSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| | - Lingyan Yu
- Department of PharmacySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yanfang Li
- Department of PediatricsSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| | - Ye Wang
- Department of PediatricsSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| | - Qunyan Su
- Department of PediatricsTaizhou Woman and Children's HospitalTaizhou318000China
| | - Sha Xu
- Department of Neurology, Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| | - Shuang Wang
- Department of Neurology, Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| | - Jianhua Feng
- Department of PediatricsSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou310009China
| |
Collapse
|
17
|
Bonini KE, Thomas-Wilson A, Marathe PN, Sebastin M, Odgis JA, Biase MD, Kelly NR, Ramos MA, Insel BJ, Scarimbolo L, Rehman AU, Guha S, Okur V, Abhyankar A, Phadke S, Nava C, Gallagher KM, Elkhoury L, Edelmann L, Zinberg RE, Abul-Husn NS, Diaz GA, Greally JM, Suckiel SA, Horowitz CR, Kenny EE, Wasserstein M, Gelb BD, Jobanputra V. Identification of copy number variants with genome sequencing: Clinical experiences from the NYCKidSeq program. Clin Genet 2023; 104:210-225. [PMID: 37334874 PMCID: PMC10505482 DOI: 10.1111/cge.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Collapse
Affiliation(s)
- Katherine E. Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Priya N. Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A. Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Nicole R. Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Michelle A. Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beverly J. Insel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Scarimbolo
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | | | - Shruti Phadke
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Caroline Nava
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Katie M. Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Randi E. Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John M. Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Sabrina A. Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
18
|
Novelli M, Galosi S, Zorzi G, Martinelli S, Capuano A, Nardecchia F, Granata T, Pollini L, Di Rocco M, Marras CE, Nardocci N, Leuzzi V. GNAO1-related movement disorder: An update on phenomenology, clinical course, and response to treatments. Parkinsonism Relat Disord 2023:105405. [PMID: 37142469 DOI: 10.1016/j.parkreldis.2023.105405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
AIM To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.
Collapse
Affiliation(s)
- Maria Novelli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Italy.
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Martina Di Rocco
- Department of Human Neuroscience, Sapienza University of Rome, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nardo Nardocci
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| |
Collapse
|
19
|
Polikarpova AV, Egorova TV, Lunev EA, Tsitrina AA, Vassilieva SG, Savchenko IM, Silaeva YY, Deykin AV, Bardina MV. CRISPR/Cas9-generated mouse model with humanizing single-base substitution in the Gnao1 for safety studies of RNA therapeutics. Front Genome Ed 2023; 5:1034720. [PMID: 37077890 PMCID: PMC10106585 DOI: 10.3389/fgeed.2023.1034720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the “humanized” fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.
Collapse
Affiliation(s)
- Anna V. Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Tatiana V. Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Evgenii A. Lunev
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Tsitrina
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Irina M. Savchenko
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya Y. Silaeva
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Deykin
- Marlin Biotech, Sochi, Russia
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Maryana V. Bardina,
| |
Collapse
|
20
|
Vasconcellos LF, Soares VP, de Ricchezza LL. Dystonic Cerebral Palsy Phenotype Due to GNAO1 Variant Responsive to Levodopa. Tremor Other Hyperkinet Mov (N Y) 2023; 13:11. [PMID: 37034444 PMCID: PMC10077974 DOI: 10.5334/tohm.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
Background Cerebral palsy (CP) should not be considered a diagnosis, but rather a syndrome related to several etiologies, including, but not limited to, neurological sequelae of a perinatal brain injury. Case report 24-years-old man with dystonia and delayed motor and cognitive development had been previously diagnosed with CP. Molecular genetic testing identified a heterozygosity variant in GNAO 1 gene. A therapeutic trial with levodopa was started, with improvement of dystonia. Discussion GNAO1 gene variant disorders share similarities with other causes of CP syndrome, and thus investigation of this variant should be included in instances of CP syndrome without a clear history of previous perinatal brain injury. GNAO1 dystonic phenotype (DYT-GNAO1) should be considered as dopa-responsive dystonia in some cases.
Collapse
|
21
|
Nissenkorn A, Kluger G, Schubert-Bast S, Bayat A, Bobylova M, Bonanni P, Ceulemans B, Coppola A, Di Bonaventura C, Feucht M, Fuchs A, Gröppel G, Heimer G, Herdt B, Kulikova S, Mukhin K, Nicassio S, Orsini A, Panagiotou M, Pringsheim M, Puest B, Pylaeva O, Ramantani G, Tsekoura M, Ricciardelli P, Lerman Sagie T, Stark B, Striano P, van Baalen A, De Wachter M, Cerulli Irelli E, Cuccurullo C, von Stülpnagel C, Russo A. Perampanel as precision therapy in rare genetic epilepsies. Epilepsia 2023; 64:866-874. [PMID: 36734057 DOI: 10.1111/epi.17530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Perampanel, an antiseizure drug with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Epilepsies with loss of γ-aminobutyric acid inhibition (e.g., SCN1A), overactive excitatory neurons (e.g., SCN2A, SCN8A), and variants in glutamate receptors (e.g., GRIN2A) hold special interest. We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. METHODS This multicenter project was based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel were collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. RESULTS A total of 137 patients with 79 different etiologies, aged 2 months to 61 years (mean = 15.48 ± 9.9 years), were enrolled. The mean dosage was 6.45 ± 2.47 mg, and treatment period was 2.0 ± 1.78 years (1.5 months-8 years). Sixty-two patients (44.9%) were treated for >2 years. Ninety-eight patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61% ± 34.36%. Sixty patients (43.5%) sustained >75% reduction in seizure frequency, including 38 (27.5%) with >90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, and NEU1. Eleven of 17 (64.7%) patients with Dravet syndrome due to an SCN1A pathogenic variant were responders to perampanel treatment; 35.3% of them had >90% seizure reduction. Other etiologies remarkable for >90% reduction in seizures were GNAO1 and PIGA. Fourteen patients had a continuous spike and wave during sleep electroencephalographic pattern, and in six subjects perampanel reduced epileptiform activity. SIGNIFICANCE Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1, and POLG, suggesting a targeted effect related to glutamate transmission.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gerhard Kluger
- Epilepsy Center for Children and Adolescents, Schön Clinic Vogtareuth, Vogtareuth, Germany
- Research Institute for Rehabilitation, Transition, and Palliation, PMU Salzburg, Salzburg, Austria
| | | | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Marya Bobylova
- Svt. Lucka's Institute of Child Neurology and Epilepsy, Moscow, Russian Federation
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, Eugenio Medea, Scientific Institute for Research and Health Care, Treviso, Italy
| | - Berten Ceulemans
- Pediatric Neurology, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | | | - Martha Feucht
- Center for Rare and Complex Epilepsies, full member of EpiCARE, Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Anne Fuchs
- SPZ Suhl SRH Central Clinic Suhl, Pediatric Clinic, Suhl, Germany
| | - Gudrun Gröppel
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Gali Heimer
- Pediatric Neurology Unit, Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sviatlana Kulikova
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - Konstantin Mukhin
- Svt. Lucka's Institute of Child Neurology and Epilepsy, Moscow, Russian Federation
| | - Stefania Nicassio
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric Department, Pisa University Hospital, University Hospital of Pisa, Pisa, Italy
| | | | - Milka Pringsheim
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Clinic Vogtareuth, Vogtareuth, Germany
| | - Burkhard Puest
- Department of Neuropediatrics, Wilhelmstift Catholic Children's Hospital, Hamburg, Germany
| | - Olga Pylaeva
- Svt. Lucka's Institute of Child Neurology and Epilepsy, Moscow, Russian Federation
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maria Tsekoura
- Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland
| | - Paolo Ricciardelli
- Neurology Service of the Pediatric Unit, Ravenna Hospital, Ravenna, Italy
| | - Tally Lerman Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brigit Stark
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pasquale Striano
- Giannina Gaslini Institute, Scientific Institute for Research and Health Care, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel University (CAU), Kiel, Germany
| | - Matthias De Wachter
- Pediatric Neurology, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | | | - Claudia Cuccurullo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | - Celina von Stülpnagel
- Research Institute for Rehabilitation, Transition, and Palliation, PMU Salzburg, Salzburg, Austria
- Pediatric Office Dr. Brückmann, Brannenburg, Germany
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Angelo Russo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| |
Collapse
|
22
|
Rodriguez-Contreras D, Gong S, Lebowitz JJ, Fedorov LM, Asad N, Dore TM, Phillips TJ, Ford CP, Williams JT, Neve KA. Gait Abnormalities and Aberrant D2 Receptor Expression and Signaling in Mice Carrying the Human Pathogenic Mutation DRD2I212F. Mol Pharmacol 2023; 103:188-198. [PMID: 36456191 PMCID: PMC11033946 DOI: 10.1124/molpharm.122.000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. That allelic variant D2-I212F is a constitutively active and G protein-biased receptor. We now describe mice engineered using CRISPR-Cas9-mediated gene editing technology to carry the D2-I212F variant. Drd2I212F mice exhibited gait abnormalities resembling those in other mouse models of chorea and/or dystonia and had striatal D2 receptor expression that was decreased approximately 30% per Drd2I212F allele. Electrically evoked inhibitory postsynaptic conductances in midbrain dopamine neurons and striatum from Drd2I212F mice, caused by G protein activation of potassium channels, exhibited slow kinetics (e.g., approximately four- to sixfold slower decay) compared with Drd2 +/+ mice. Current decay initiated by photolytic release of the D2 antagonist sulpiride from CyHQ-sulpiride was also ∼fourfold slower in midbrain slices from Drd2I212F mice than Drd2 +/+ mice. Furthermore, in contrast to Drd2 +/+ mice, in which dopamine is several-fold more potent at neurons in the nucleus accumbens than in the dorsal striatum, reflecting activation of Gα o versus Gα i, dopamine had similar potencies in those two brain regions of Drd2I212F mice. Repeated cocaine treatment, which decreases dopamine potency in the nucleus accumbens of Drd2 +/+ mice, had no effect on dopamine potency in Drd2 I212F mice. The results demonstrate the pathogenicity of the D2-I212F mutation and the utility of this mouse model for investigating the role of pathogenic DRD2 variants in early-onset hyperkinetic movement disorders. SIGNIFICANCE STATEMENT: The first dopamine receptor mutation to cause a movement disorder, D2-I212F, was recently identified. The mutation makes receptor activation of G protein-mediated signaling more efficient. To confirm the pathogenesis of D2-I212F, this study reports that mice carrying this mutation have gait abnormalities consistent with the clinical phenotype. The mutation also profoundly alters D2 receptor expression and function in vivo. This mouse model will be useful for further characterization of the mutant receptor and for evaluation of potential therapeutic drugs.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Sheng Gong
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Joseph J Lebowitz
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Lev M Fedorov
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Naeem Asad
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Timothy M Dore
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Tamara J Phillips
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Christopher P Ford
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - John T Williams
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| | - Kim A Neve
- Research Service, VA Portland Health Care System, Portland, Oregon (D.R.-C., T.J.P., K.A.N.); Department of Behavioral Neuroscience (D.R.-C., T.J.P., K.A.N.), Transgenic Mouse Models Shared Resource (L.M.F.), and Vollum Institute (J.J.L., J.T.W.), Oregon Health & Science University, Portland, Oregon; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (S.G., C.P.F.); Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio (S.G., C.P.F.); and New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates (N.A., T.M.D.)
| |
Collapse
|
23
|
Gambardella ML, Pede E, Orazi L, Leone S, Quintiliani M, Amorelli GM, Petrianni M, Galanti M, Amore F, Musto E, Perulli M, Contaldo I, Veredice C, Mercuri EM, Battaglia DI, Ricci D. Visual Function in Children with GNAO1-Related Encephalopathy. Genes (Basel) 2023; 14:genes14030544. [PMID: 36980817 PMCID: PMC10047968 DOI: 10.3390/genes14030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background: GNAO1-related encephalopathies include a broad spectrum of developmental disorders caused by de novo heterozygous mutations in the GNAO1 gene, encoding the G (o) subunit α of G-proteins. These conditions are characterized by epilepsy, movement disorders and developmental impairment, in combination or as isolated features. Objective: This study aimed at describing the profile of neurovisual competences in children with GNAO1 deficiency to better characterize the phenotype of the disease spectrum. Methods: Four male and three female patients with confirmed genetic diagnosis underwent neurological examination, visual function assessment, and neurovisual and ophthalmological evaluation. Present clinical history of epilepsy and movement disorders, and neuroimaging findings were also evaluated. Results: The assessment revealed two trends in visual development. Some aspects of visual function, such as discrimination and perception of distance, depth and volume, appeared to be impaired at all ages, with no sign of improvement. Other aspects, reliant on temporal lobe competences (ventral stream) and more related to object–face exploration, recognition and environmental control, appeared to be preserved and improved with age. Significance: Visual function is often impaired, with patterns of visual impairment affecting the ventral stream less.
Collapse
Affiliation(s)
- Maria Luigia Gambardella
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Elisa Pede
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Orazi
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Leone
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Michela Quintiliani
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Maria Amorelli
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Petrianni
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marta Galanti
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Amore
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa Musto
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Perulli
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Contaldo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara Veredice
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Eugenio Maria Mercuri
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Daniela Ricci
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
| |
Collapse
|
24
|
Di Rocco M, Galosi S, Follo FC, Lanza E, Folli V, Martire A, Leuzzi V, Martinelli S. Phenotypic Assessment of Pathogenic Variants in GNAO1 and Response to Caffeine in C. elegans Models of the Disease. Genes (Basel) 2023; 14:319. [PMID: 36833246 PMCID: PMC9957173 DOI: 10.3390/genes14020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
De novo mutations affecting the G protein α o subunit (Gαo)-encoding gene (GNAO1) cause childhood-onset developmental delay, hyperkinetic movement disorders, and epilepsy. Recently, we established Caenorhabditis elegans as an informative experimental model for deciphering pathogenic mechanisms associated with GNAO1 defects and identifying new therapies. In this study, we generated two additional gene-edited strains that harbor pathogenic variants which affect residues Glu246 and Arg209-two mutational hotspots in Gαo. In line with previous findings, biallelic changes displayed a variable hypomorphic effect on Gαo-mediated signaling that led to the excessive release of neurotransmitters by different classes of neurons, which, in turn, caused hyperactive egg laying and locomotion. Of note, heterozygous variants showed a cell-specific dominant-negative behavior, which was strictly dependent on the affected residue. As with previously generated mutants (S47G and A221D), caffeine was effective in attenuating the hyperkinetic behavior of R209H and E246K animals, indicating that its efficacy is mutation-independent. Conversely, istradefylline, a selective adenosine A2A receptor antagonist, was effective in R209H animals but not in E246K worms, suggesting that caffeine acts through both adenosine receptor-dependent and receptor-independent mechanisms. Overall, our findings provide new insights into disease mechanisms and further support the potential efficacy of caffeine in controlling dyskinesia associated with pathogenic GNAO1 mutations.
Collapse
Affiliation(s)
- Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- Department of Human Neuroscience, ‘Sapienza’ University of Rome, 00185 Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, ‘Sapienza’ University of Rome, 00185 Rome, Italy
| | - Francesca C. Follo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- D-tails s.r.l., 00165 Rome, Italy
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, ‘Sapienza’ University of Rome, 00185 Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
25
|
Garofalo M, Beudel M, Dijk J, Bonouvrié L, Buizer A, Geytenbeek J, Prins R, Schuurman P, van de Pol L. Elective and Emergency Deep Brain Stimulation in Refractory Pediatric Monogenetic Movement Disorders Presenting with Dystonia: Current Practice Illustrated by Two Cases. Neuropediatrics 2022; 54:44-52. [PMID: 36223877 PMCID: PMC9842449 DOI: 10.1055/a-1959-9088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dystonia is characterized by sustained or intermittent muscle contractions, leading to abnormal posturing and twisting movements. In pediatric patients, dystonia often negatively influences quality of life. Pharmacological treatment for dystonia is often inadequate and causes adverse effects. Deep brain stimulation (DBS) appears to be a valid therapeutic option for pharmacoresistant dystonia in children. METHODS To illustrate the current clinical practice, we hereby describe two pediatric cases of monogenetic movement disorders presenting with dystonia and treated with DBS. We provide a literature review of similar previously described cases and on different clinical aspects of DBS in pediatric dystonia. RESULTS The first patient, a 6-year-old girl with severe dystonia, chorea, and myoclonus due to an ADCY5 gene mutation, received DBS in an elective setting. The second patient, an 8-year-old boy with GNAO1-related dystonia and chorea, underwent emergency DBS due to a pharmacoresistant status dystonicus. A significant amelioration of motor symptoms (65% on the Burke-Fahn-Marsden Dystonia Rating Scale) was observed postoperatively in the first patient and her personal therapeutic goals were achieved. DBS was previously reported in five patients with ADCY5-related movement disorders, of which three showed objective improvement. Emergency DBS in our second patient resulted in the successful termination of his GNAO1-related status dystonicus, this being the eighth case reported in the literature. CONCLUSION DBS can be effective in monogenetic pediatric dystonia and should be considered early in the disease course. To better evaluate the effects of DBS on patients' functioning, patient-centered therapeutic goals should be discussed in a multidisciplinary approach.
Collapse
Affiliation(s)
- M. Garofalo
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M. Beudel
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J.M. Dijk
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L.A. Bonouvrié
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands,Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - A.I. Buizer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands,Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - J. Geytenbeek
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands
| | - R.H.N. Prins
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - P.R. Schuurman
- Department of Neurosurgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - L.A. van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands,Department of Child Neurology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,Address for correspondence L.A. van de Pol, MD, PhD Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije UniversiteitBoelelaan 1117, 1081 HV Amsterdamthe Netherlands
| |
Collapse
|
26
|
Wirth T, Garone G, Kurian MA, Piton A, Roze E, Lin JP, Tranchant C, Cif L, Doummar D, Anheim M. Reply to: "GNAO1 Haploinsufficiency Associated with a Mild Delayed-Onset Dystonia Phenotype". Mov Disord 2022; 37:2466-2467. [PMID: 36533587 DOI: 10.1002/mds.29256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Thomas Wirth
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Giacomo Garone
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Amélie Piton
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Laboratoire de diagnostic génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Emmanuel Roze
- Sorbonne Université/ Institut National de la Santé Et de la Recherche Médicale U1127/Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225/Institut du Cerveau, Paris, France.,Service de neurologie, Hôpital la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Jean Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas National Health Service Foundation Trust; Women and Children's Institute, London, UK.,Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Christine Tranchant
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Diane Doummar
- Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, centre de référence neurogénétique, Hôpital Trousseau AP-HP.SU, Paris, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
27
|
Xu S, Yu W, Zhang X, Wang W, Wang X. The regulatory role of Gnao1 protein in diabetic encephalopathy in KK-Ay mice and streptozotocin-induced diabetic rats. Brain Res 2022; 1792:148012. [PMID: 35839930 DOI: 10.1016/j.brainres.2022.148012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
AIMS To investigate the regulation and functional role of Gnao1 in the brain of diabetic encephalopathy (DE) in various animal models. RESULTS Data from the biochemical and behavioral studies showed that DE models were successful induced in streptozotocin treatment animals and KK-Ay mice. Gnao1 was down regulated in the brain tissues of these two diabetes animal models with significant cognition deficiency. It suggested that the changes in DE are also related to dementia such as Alzheimer's disease (AD). Our study also showed that the expression of adrenergic α2 receptor (Adr-α2R), the upstream protein of Gnao1, was decreased in DE animal models. Furthermore, many downstream proteins of Gnao1 also altered, among which cAMP and PKA proteins were increased, CREB and BDNF proteins were decreased both in animal models and in the cell levels. In addition, Gnao1 silencing leads to the increase of reactive oxygen species (ROS) and the decreased proliferation in cultured primary astrocytes, which means that the deficiency of Gnao1 might not be benefit for DE. CONCLUSION Our findings demonstrated the importance of Gnao1 in DE and suggested Gnao1 as a novel marker and a promising therapeutic target for DE and dementia in animal models.
Collapse
Affiliation(s)
- Shuhong Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenwen Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals (Basel) 2022; 12:ani12182410. [PMID: 36139269 PMCID: PMC9495000 DOI: 10.3390/ani12182410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
An auditory ability is essential for communication in vertebrates, and considerable attention has been paid to auditory sensitivity in mammals, birds, and frogs. Turtles were thought to be deaf for a long time; however, recent studies have confirmed the presence of an auditory ability in Trachemys scripta elegans as well as sex-related differences in hearing sensitivity. Earlier studies mainly focused on the morphological and physiological functions of the hearing organ in turtles; thus, the gene expression patterns remain unclear. In this study, 36 transcriptomes from six tissues (inner ear, tympanic membrane, brain, eye, lung, and muscle) were sequenced to explore the gene expression patterns of the hearing system in T. scripta elegans. A weighted gene co-expression network analysis revealed that hub genes related to the inner ear and tympanic membrane are involved in development and signal transduction. Moreover, we identified six differently expressed genes (GABRA1, GABRG2, GABBR2, GNAO1, SLC38A1, and SLC12A5) related to the GABAergic synapse pathway as candidate genes to explain the differences in sexually dimorphic hearing sensitivity. Collectively, this study provides a critical foundation for genetic research on auditory functions in turtles.
Collapse
|
29
|
Lasa-Aranzasti A, Cazurro-Gutiérrez A, Bescós A, González V, Ispierto L, Tardáguila M, Valenzuela I, Plaja A, Moreno-Galdó A, Macaya-Ruiz A, Pérez-Dueñas B. 16q12.2q21 deletion: A newly recognized cause of dystonia related to GNAO1 haploinsufficiency. Parkinsonism Relat Disord 2022; 103:112-114. [PMID: 36096018 DOI: 10.1016/j.parkreldis.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutiérrez
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustín Bescós
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Victoria González
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Department of Neurology, Department of Neurology, Vall Hebron University Hospital Barcelona, Spain
| | - Lourdes Ispierto
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Neurodegenerative Diseases Unit, Neurology Service and Neurosciences Department, University Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Manel Tardáguila
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Department of Neurological Surgery, University Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Alberto Plaja
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Alfons Macaya-Ruiz
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Belen Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain; Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
30
|
Ling W, Huang D, Yang F, Yang Z, Liu M, Zhu Q, Huang J, Zhou R, Chen X. Treating GNAO1 mutation-related severe movement disorders with oxcarbazepine: a case report. Transl Pediatr 2022; 11:1577-1587. [PMID: 36247896 PMCID: PMC9561508 DOI: 10.21037/tp-22-297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND GNAO1 variants have been found to be associated with epileptic encephalopathies, developmental delays (DDs), and movement disorders (MDs). Therapies for patients with GNAO1 variants vary. However, treatments for GNAO1-related diseases are still in their infancy. Previous reports suggest that few pharmacological treatments are effective for patients with GNAO1 variant-related MDs. Deep brain stimulation (DBS) treatment appears to be effective, however surgical procedures and equipment failures pose risks to the patients. Effectiveness for oxcarbazepine (OXC) in GNAO1 variant-related MDs is first reported in our study, and it expand the effective drugs for MD treatment. CASE DESCRIPTION We report the case of a 5-year-old male patient with a MD, who suffered from hypotonia and refractory choreoathetosis. The patient was found to have a DD and an intellectual disability. A de-novo variant of the GNAO1 gene (NM_138736: exom6: c.709G>A [p. Glu237Lys]) was identified by whole exome sequencing (WES) when he was 8 months old. The patient visited our hospital at the age of 4 years and 3 months because of fever and recurrent convulsions. Electroencephalogram (EEG) results show abnormal spikes, and magnetic resonance imaging (MRI) showed the enlargement of the lateral ventricles. The administration of tiapride hydrochloride, phenobarbital, midazolam, and hormones had no effect. OXC treatment was then initiated. No MD behaviors, such as rigidity and twisting of the limbs and trunk, or chorea, were observed after 10 days OXC treatment. Eventually, incremental doses of OXC were effective, and our patient achieved good control of his MD. CONCLUSIONS We are the first to demonstrate the role of OXC in alleviating MDs associated with GNAO1 mutations. This report provides a novel possibility for the clinical treatment of this rare disease. To manage MDs associated with GNAO1 mutations, we recommend that OXC treatment be attempted before invasive surgical therapy.
Collapse
Affiliation(s)
- Weihao Ling
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Danping Huang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | | | | | - Min Liu
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Qiujiao Zhu
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Huang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Rui Zhou
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Xuqin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Fung ELW, Mo CY, Fung STH, Chan AYY, Lau KY, Chan EKY, Chan DYC, Zhu XL, Chan DTM, Poon WS. Deep brain stimulation in a young child with GNAO1 mutation – Feasible and helpful. Surg Neurol Int 2022; 13:285. [PMID: 35855141 PMCID: PMC9282786 DOI: 10.25259/sni_166_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
GNAO1 is an emerging disorder characterized with hypotonia, developmental delay, epilepsy, and movement disorder, which can be potentially life threatening during acute exacerbation. In the USA, deep brain stimulation (DBS) has been licensed for treating children with chronic, treatment-resistant primary dystonia, who are 7 years old or older.
Case Description:
A 4-year-old girl diagnosed to have GNAO1-related dyskinesia and severe global developmental delay. She had severe dyskinesia precipitated by intercurrent infection, requiring prolonged intensive care for heavy sedation and related complications. Her dyskinesia improved dramatically after DBS implantation. Technical difficulties and precautions of DBS in preschool children were discussed.
Conclusion:
DBS should be considered early in the treatment of drug-resistant movement disorders in young children with GNAO1, especially after dyskinetic crisis, as they tend to recur. Presurgical counseling to parents and close monitoring of complications is also important in the process.
Collapse
Affiliation(s)
- Eva Lai-wah Fung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Chung-yin Mo
- Department of Paediatrics, Kwong Wah Hospital, Hong Kong
| | | | - Anne Yin-yan Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Ka-yee Lau
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Emily Kit-ying Chan
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - David Yuen-chung Chan
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Xian-lun Zhu
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Danny Tat-ming Chan
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Wai-sang Poon
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
32
|
McTague A, Brunklaus A, Barcia G, Varadkar S, Zuberi SM, Chatron N, Parrini E, Mei D, Nabbout R, Lesca G. Defining causal variants in rare epilepsies: an essential team effort between biomedical scientists, geneticists and epileptologists. Eur J Med Genet 2022; 65:104531. [PMID: 35618197 DOI: 10.1016/j.ejmg.2022.104531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis. However, these developments have also increased the complexity of data interpretation, due to the large number of variants identified in a given patient and due to the phenotypic variability associated with many of the epilepsy-related genes. In this paper, we present examples of variant classification in "real life" clinic situations. We emphasize the importance of accurate phenotyping of the epilepsies including recognising variable/milder phenotypes and expansion of previously described phenotypes. There are some important issues specific to rare epilepsies - mosaicism and reduced penetrance - which affect genetic counselling. These challenges may be overcome through multidisciplinary meetings including epileptologists, pediatric neurologists, and clinical and molecular geneticists, in which every specialist learns from the others in a process which leads to for rapid and accurate diagnosis. This is an important milestone to achieve as targeted therapiesbased on the functional effects of pathogenic variants become available.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK; Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK.
| | - Andreas Brunklaus
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Sophia Varadkar
- Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| |
Collapse
|
33
|
Wirth T, Garone G, Kurian MA, Piton A, Millan F, Telegrafi A, Drouot N, Rudolf G, Chelly J, Marks W, Burglen L, Demailly D, Coubes P, Castro‐Jimenez M, Joriot S, Ghoumid J, Belin J, Faucheux J, Blumkin L, Hull M, Parnes M, Ravelli C, Poulen G, Calmels N, Nemeth AH, Smith M, Barnicoat A, Ewenczyk C, Méneret A, Roze E, Keren B, Mignot C, Beroud C, Acosta F, Nowak C, Wilson WG, Steel D, Capuano A, Vidailhet M, Lin J, Tranchant C, Cif L, Doummar D, Anheim M. Highlighting the Dystonic Phenotype Related to GNAO1. Mov Disord 2022; 37:1547-1554. [PMID: 35722775 PMCID: PMC9545634 DOI: 10.1002/mds.29074] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Giacomo Garone
- University Hospital Pediatric Department, IRCCS Bambino Gesù Children's HospitalUniversity of Rome Tor VergataRomeItaly,Movement Disorders Clinic, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Amélie Piton
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | | | | | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Gabrielle Rudolf
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Jamel Chelly
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | - Warren Marks
- Cook Children's Medical CentreFort WorthTexasUSA
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique et Embryologie MédicaleAPHP, Hôpital TrousseauParisFrance
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Phillipe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Mayte Castro‐Jimenez
- Service de Neurologie, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Sylvie Joriot
- Department of Paediatric NeurologyUniversity Hospital of LilleLilleFrance
| | - Jamal Ghoumid
- Univ. Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique Guy FontaineLilleFrance
| | | | | | - Lubov Blumkin
- Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Mariam Hull
- Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental NeuroscienceTexas Children's HospitalHoustonTexasUSA
| | - Mered Parnes
- Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental NeuroscienceTexas Children's HospitalHoustonTexasUSA
| | - Claudia Ravelli
- Sorbonne Université, Service de Neuropédiatrie‐Pathologie du développement, centre de référence neurogénétiqueHôpital Trousseau AP‐HP.SU, FHU I2D2ParisFrance
| | - Gaëtan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Nadège Calmels
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | - Andrea H. Nemeth
- Oxford University Hospitals National Health Service Foundation Trust and University of OxfordOxfordUnited Kingdom
| | - Martin Smith
- Oxford University Hospitals National Health Service Foundation Trust and University of OxfordOxfordUnited Kingdom
| | - Angela Barnicoat
- Department of Clinical GeneticsGreat Ormond Street HospitalLondonUnited Kingdom
| | - Claire Ewenczyk
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Aurélie Méneret
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Emmanuel Roze
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Boris Keren
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Cyril Mignot
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & GeneticsMarseilleFrance
| | | | - Catherine Nowak
- The Feingold Center for Children, Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusettsUSA
| | - William G. Wilson
- Department of PediatricsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Dora Steel
- Molecular Neurosciences, Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Marie Vidailhet
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Jean‐Pierre Lin
- Children's Neurosciences Department, Evelina London Children's HospitalGuy's and St Thomas NHS Foundation TrustLondonUnited Kingdom
| | - Christine Tranchant
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Diane Doummar
- Sorbonne Université, Service de Neuropédiatrie‐Pathologie du développement, centre de référence neurogénétiqueHôpital Trousseau AP‐HP.SU, FHU I2D2ParisFrance
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| |
Collapse
|
34
|
Yu W, Yin H, Sun Y, Shi S, Li J, Wang X. The attenuation effect of potassium 2-(1-hydroxypentyl)-benzoate in a mouse model of diabetes-associated cognitive decline: The protein expression in the brain. CNS Neurosci Ther 2022; 28:1108-1123. [PMID: 35445545 PMCID: PMC9160457 DOI: 10.1111/cns.13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Aims dl‐PHPB (potassium 2‐(1‐hydroxypentyl)‐benzoate) has been shown to have neuroprotective effects against acute cerebral ischemia, vascular dementia, and Alzheimer's disease. The aim of this study was to investigate the effects of dl‐PHPB on memory deficits and preliminarily explore the underlying molecular mechanism. Methods Blood glucose and behavioral performance were evaluated in the KK‐Ay diabetic mouse model before and after dl‐PHPB administration. Two‐dimensional difference gel electrophoresis (2D‐DIGE)‐based proteomics was used to identify differentially expressed proteins in brain tissue. Western blotting was used to study the molecular mechanism of the related signaling pathways. Results Three‐month‐old KK‐Ay mice were given 150 mg/kg dl‐PHPB by oral gavage for 2 months, which produced no effect on the level of serum glucose. In the Morris water maze test, KK‐Ay mice treated with dl‐PHPB showed significant improvements in spatial learning and memory deficits compared with vehicle‐treated KK‐Ay mice. Additionally, we performed 2D‐DIGE to compare brain proteomes of 5‐month KK‐Ay mice treated with and without dl‐PHPB. We found 14 altered proteins in the cortex and 11 in the hippocampus; two of the 25 altered proteins and another four proteins that were identified in a previous study on KK‐Ay mice were then validated by western blot to further confirm whether dl‐PHPB can reverse the expression levels of these proteins. The phosphoinositide 3‐kinase/protein kinase B/glycogen synthase kinase‐3β (PI3K/Akt/GSK‐3β) signaling pathway was also changed in KK‐Ay mice and dl‐PHPB treatment could reverse it. Conclusions These results indicate that dl‐PHPB may play a potential role in diabetes‐associated cognitive impairment through PI3K/Akt/GSK‐3β signaling pathway and the differentially expressed proteins may become putative therapeutic targets.
Collapse
Affiliation(s)
- Wenwen Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Al Masseri Z, AlSayed M. Gonadal mosaicism in GNAO1 causing neurodevelopmental disorder with involuntary movements; two additional variants. Mol Genet Metab Rep 2022; 31:100864. [PMID: 35782616 PMCID: PMC9248221 DOI: 10.1016/j.ymgmr.2022.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background GNAO1 encodes an alpha subunit of the heterotrimeric guanine nucleotide-binding proteins (G proteins). Mutations in GNAO1 result in two clinical phenotypes: Early infantile epileptic encephalopathy 17 (EEIE17-OMIM #615473) and Neurodevelopmental disorder with involuntary movements (NEDIM-OMIM #617493). Both are inherited as autosomal dominant disorders and originate mainly as de novo. Only a few are reported as gonadal mosaicism. Materials and methods We recruited and retrospectively reviewed five patients from two families seen at King Faisal Specialist Hospital and Research Centre in Riyadh (KFSHRC). Results All patients presented with severe neurodevelopmental disorder, followed by progressive dystonia and hyperkinetic movements. In addition, none of the patients had seizures which was consistent with NEDIM phenotype. The specific diagnosis was not clinically entertained and was only found on whole exome sequencing (WES), which identified two variants (c.724-8G > A & c.709G > A). Both variants were previously reported as pathogenic de novo in patients with NEDIM, and one was reported as parental gonadal mosaicism. Conclusion We report these variants as additional variants in GNAO1 gene that may be inherited as parental gonadal mosaicism. Both variants resulted in NEDIM with no observed clinical differences in the severity than the reported cases. This noticeable reported association between GNAO1 gene associated disorders and gonadal mosaicism should be considered in reproductive genetic counselling of affected families. Furthermore, in view of these reports, more studies with prospective data collection to explore the association between GNAO1 and gonadal mosaicism and the underlying mechanisms will be necessary.
Collapse
|
36
|
Lunev E, Karan A, Egorova T, Bardina M. Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines 2022; 10:biomedicines10051140. [PMID: 35625877 PMCID: PMC9139062 DOI: 10.3390/biomedicines10051140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have become an attractive tool for efficient gene transfer into animal tissues. Extensively studied as the vehicles for therapeutic constructs in gene therapy, AAVs are also applied for creating animal models of human genetic disorders. Neurological disorders are challenging to model in laboratory animals by transgenesis or genome editing, at least partially due to the embryonic lethality and the timing of the disease onset. Therefore, gene transfer with AAV vectors provides a more flexible option for simulating genetic neurological disorders. Indeed, the design of the AAV expression construct allows the reproduction of various disease-causing mutations, and also drives neuron-specific expression. The natural and newly created AAV serotypes combined with various delivery routes enable differentially targeting neuronal cell types and brain areas in vivo. Moreover, the same viral vector can be used to reproduce the main features of the disorder in mice, rats, and large laboratory animals such as non-human primates. The current review demonstrates the general principles for the development and use of AAVs in modeling neurological diseases. The latest achievements in AAV-mediated modeling of the common (e.g., Alzheimer’s disease, Parkinson’s disease, ataxias, etc.) and ultra-rare disorders affecting the central nervous system are described. The use of AAVs to create multiple animal models of neurological disorders opens opportunities for studying their mechanisms, understanding the main pathological features, and testing therapeutic approaches.
Collapse
Affiliation(s)
- Evgenii Lunev
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| | - Anna Karan
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Tatiana Egorova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Maryana Bardina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| |
Collapse
|
37
|
Liu Y, Zhang Q, Wang J, Liu J, Yang W, Yan X, Ouyang Y, Yang H. Both subthalamic and pallidal deep brain stimulation are effective for GNAO1-associated dystonia: three case reports and a literature review. Ther Adv Neurol Disord 2022; 15:17562864221093507. [PMID: 35509770 PMCID: PMC9058460 DOI: 10.1177/17562864221093507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the G-protein subunit alpha o1 (GNAO1) gene have recently been shown to be involved in the pathogenesis of early infantile epileptic encephalopathy and movement disorders. The clinical manifestations of GNAO1-associated movement disorders are highly heterogeneous. However, the genotype-phenotype correlations in this disease remain unclear, and the treatments for GNAO1-associated movement disorders are still limited. Objective The objective of this study was to explore diagnostic and therapeutic strategies for GNAO1-associated movement disorders. Methods This study describes the cases of three Chinese patients who had shown severe and progressive dystonia in the absence of epilepsy since early childhood. We performed genetic analyses in these patients. Patients 1 and 2 underwent globus pallidus internus (GPi) deep brain stimulation (DBS) implantation, and Patient 3 underwent subthalamic nucleus (STN) DBS implantation. In addition, on the basis of a literature review, we summarized and discussed the clinical characteristics and outcomes after DBS surgery for all reported patients with GNAO1-associated movement disorders. Results Whole-exome sequencing (WES) analysis revealed de novo variants in the GNAO1 gene for all three patients, including a splice-site variant (c.724-8G > A) in Patients 1 and 3 and a novel heterozygous missense variant (c.124G > A; p. Gly42Arg) in Patient 2. Both GPi and STN DBS were effective in improving the dystonia symptoms of all three patients. Conclusion DBS is effective in ameliorating motor symptoms in patients with GNAO1-associated movement disorders, and both STN DBS and GPi DBS should be considered promptly for patients with sustained refractory GNAO1-associated dystonia.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wuyang Yang
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuejing Yan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yi Ouyang
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Haibo Yang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
38
|
Lunev EA, Shmidt AA, Vassilieva SG, Savchenko IM, Loginov VA, Marina VI, Egorova TV, Bardina MV. Effective Viral Delivery of Genetic Constructs to Neuronal Culture for Modeling and Gene Therapy of GNAO1 Encephalopathy. Mol Biol 2022. [DOI: 10.1134/s0026893322040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Méneret A, Mohammad SS, Cif L, Doummar D, DeGusmao C, Anheim M, Barth M, Damier P, Demonceau N, Friedman J, Gallea C, Gras D, Gurgel-Giannetti J, Innes EA, Necpál J, Riant F, Sagnes S, Sarret C, Seliverstov Y, Paramanandam V, Shetty K, Tranchant C, Doulazmi M, Vidailhet M, Pringsheim T, Roze E. Efficacy of Caffeine in ADCY5-Related Dyskinesia: A Retrospective Study. Mov Disord 2022; 37:1294-1298. [PMID: 35384065 DOI: 10.1002/mds.29006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND ADCY5-related dyskinesia is characterized by early-onset movement disorders. There is currently no validated treatment, but anecdotal clinical reports and biological hypotheses suggest efficacy of caffeine. OBJECTIVE The aim is to obtain further insight into the efficacy and safety of caffeine in patients with ADCY5-related dyskinesia. METHODS A retrospective study was conducted worldwide in 30 patients with a proven ADCY5 mutation who had tried or were taking caffeine for dyskinesia. Disease characteristics and treatment responses were assessed through a questionnaire. RESULTS Caffeine was overall well tolerated, even in children, and 87% of patients reported a clear improvement. Caffeine reduced the frequency and duration of paroxysmal movement disorders but also improved baseline movement disorders and some other motor and nonmotor features, with consistent quality-of-life improvement. Three patients reported worsening. CONCLUSION Our findings suggest that caffeine should be considered as a first-line therapeutic option in ADCY5-related dyskinesia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aurélie Méneret
- Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Assistance Publique-Hôpitaux de Paris, DMU Neurosciences, Sorbonne University, Paris, France
| | - Shekeeb S Mohammad
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Laura Cif
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Diane Doummar
- Service de Neuropédiatrie-Pathologie du développement, centre de référence mouvements anormaux enfant, Hôpital Trousseau AP-HP.SU, FHU I2D2, Sorbonne Université, Paris, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - Philippe Damier
- CHU de Nantes, INSERM, CIC 1314, Hôpital Laennec, Nantes, France
| | | | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA.,Division of Neurology, Rady Children's Hospital, San Diego, California, USA.,Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Cécile Gallea
- Sorbonne University, INSERM, CNRS, Paris Brain Institute, Paris, France
| | - Domitille Gras
- U1141 Neurodiderot, équipe 5 inDev, Inserm, CEA, UP, UNIACTNeurospin, Joliot, DRF, CEA, Saclay, France
| | | | - Emily A Innes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia.,University of Notre Dame Australia, School of Medicine, Sydney, NSW, Australia
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
| | - Florence Riant
- Service de Génétique Moléculaire, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandrine Sagnes
- Délégation à la Recherche Clinique et à l'Innovation-DRCI (Clinical Research and Innovation Department) and URC (Clinical Research Unit) GH Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Catherine Sarret
- Service de pédiatrie, hôpital Estaing, Centre hospitalier universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Yury Seliverstov
- Research Center of Neurology, Moscow, Russia.,Kazaryan Clinic of Epileptology and Neurology, Moscow, Russia
| | | | - Kuldeep Shetty
- Department of Neurology, Mazumdar Shaw Medical Center, Bangalore, India
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Mohamed Doulazmi
- Adaptation Biologique et Vieillissement, Institut de Biologie Paris Seine, Sorbonne University, CNRS, Paris, France
| | - Marie Vidailhet
- Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Assistance Publique-Hôpitaux de Paris, DMU Neurosciences, Sorbonne University, Paris, France
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Canada
| | - Emmanuel Roze
- Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Assistance Publique-Hôpitaux de Paris, DMU Neurosciences, Sorbonne University, Paris, France
| |
Collapse
|
40
|
An intronic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation. Neurogenetics 2022; 23:129-135. [PMID: 35147852 DOI: 10.1007/s10048-022-00686-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
GNAO1 variants are associated with a wide range of neurodevelopmental disorders including epileptic encephalopathies and movement disorders. It has been reported that some GNAO1 variants are associated with movement disorders, and the 207-246 amino acid region was proposed as a mutational hotspot. Here, we report an intronic variant (NM_020988.3:c.724-8G>A) in GNAO1 in a Japanese girl who showed mild developmental delay and movement disorders including dystonia and myoclonus. Her movement disorders were improved by deep brain stimulation treatment as previously reported. This variant has been recurrently reported in four patients and was transmitted from her mother who possessed the variant as low-prevalent mosaicism. Using RNA extracted from lymphoblastoid cells derived from the patient, we demonstrated that the variant caused abnormal splicing of in-frame 6-bp intronic retention, leading to 2 amino acid insertion (p.Thr241_Asn242insProGln). Immunoblotting and immunostaining using WT and mutant GNAO1 vectors showed no significant differences in protein expression levels, but the cellular localization pattern of this mutant was partially shifted to the cytoplasm whereas WT was exclusively localized in the cellular membrane. Our report first clarified abnormal splicing and resulting mutant protein caused by the c.724-8G>A variant.
Collapse
|
41
|
Feng H, Yuan Y, Williams MR, Roy AJ, Leipprandt JR, Neubig RR. MICE WITH GNAO1-ASSOCIATED MOVEMENT DISORDER EXHIBIT REDUCED INHIBITORY SYNAPTIC INPUT TO CEREBELLAR PURKINJE CELLS. J Neurophysiol 2022; 127:607-622. [PMID: 35080448 DOI: 10.1152/jn.00720.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GNAO1 encodes Gαo, a heterotrimeric G protein alpha subunit in the Gi/o family. In this report, we used a Gnao1 mouse model "G203R" previously described as a "gain-of-function" Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared to WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin), enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. While GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is the first electrophysiological investigation of the role of Gi/o proteinin cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Michael R Williams
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, United States
| | - Alex J Roy
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
42
|
Wang D, Dao M, Muntean BS, Giles AC, Martemyanov KA, Grill B. Genetic modeling of GNAO1 disorder delineates mechanisms of Gαo dysfunction. Hum Mol Genet 2021; 31:510-522. [PMID: 34508586 PMCID: PMC8863422 DOI: 10.1093/hmg/ddab235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
GNAO1 encephalopathy is a neurodevelopmental disorder with a spectrum of symptoms that include dystonic movements, seizures and developmental delay. While numerous GNAO1 mutations are associated with this disorder, the functional consequences of pathological variants are not completely understood. Here, we deployed the invertebrate C. elegans as a whole-animal behavioral model to study the functional effects of GNAO1 disorder-associated mutations. We tested several pathological GNAO1 mutations for effects on locomotor behaviors using a combination of CRISPR/Cas9 gene editing and transgenic overexpression in vivo. We report that all three mutations tested (G42R, G203R and R209C) result in strong loss of function defects when evaluated as homozygous CRISPR alleles. In addition, mutations produced dominant negative effects assessed using both heterozygous CRISPR alleles and transgenic overexpression. Experiments in mice confirmed dominant negative effects of GNAO1 G42R, which impaired numerous motor behaviors. Thus, GNAO1 pathological mutations result in conserved functional outcomes across animal models. Our study further establishes the molecular genetic basis of GNAO1 encephalopathy, and develops a CRISPR-based pipeline for functionally evaluating mutations associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dandan Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
43
|
Yang X, Niu X, Yang Y, Cheng M, Zhang J, Chen J, Yang Z, Zhang Y. Phenotypes of GNAO1 Variants in a Chinese Cohort. Front Neurol 2021; 12:662162. [PMID: 34122306 PMCID: PMC8193119 DOI: 10.3389/fneur.2021.662162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to analyze the genotypes and phenotypes of GNAO1 variants in a Chinese cohort. Seven male and four female patients with GNAO1 variants were enrolled, including siblings of brothers. Ten different GNAO1 variants (nine missense and one splicing site) were identified, among which six were novel. All the variants were confirmed to be de novo in peripheral blood DNA. Eight (73%, 8/11) patients had epilepsy; the seizure onset age ranged from 6 h after birth to 4 months (median age, 2.5 months). Focal seizures were observed in all eight patients, epileptic spasms occurred in six (75%, 6/8), tonic spasm in four (50%, 4/8), tonic seizures in two, atypical absence in one, and generalized tonic–clonic seizures in one. Seven patients had multiple seizure types. Eight (73%, 8/11) patients had movement disorders, seven of them having only dystonia, and one having dystonia with choreoathetosis. Varying degrees of developmental delay (DD) were present in all 11 patients. The phenotypes were diagnosed as early infantile epileptic encephalopathy (EIEE) in two (18%) patients, which were further diagnosed as West syndrome. Movement disorders (MD) with developmental delay were diagnosed in two (18%) brothers. EIEE and MD were overlapped in six (55%) patients, among which two were diagnosed with West syndrome, one with Ohtahara syndrome, and the other three with non-specific EIEE. One (9%) patient was diagnosed as DD alone. The onset age of GNAO1-related disorders was early infancy. The phenotypic spectrum of GNAO1 included EIEE, MD with DD, and DD alone.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaoyang Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
44
|
Randáková A, Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol Res 2021; 169:105641. [PMID: 33951507 DOI: 10.1016/j.phrs.2021.105641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Disruption of cholinergic signalling via muscarinic receptors is associated with various pathologies, like Alzheimer's disease or schizophrenia. Selective muscarinic agonists possess therapeutic potential in the treatment of diabetes, pain or Sjögren's syndrome. The orthosteric binding site of all subtypes of the muscarinic receptor is structurally identical, making the development of affinity-based selective agonists virtually impossible. Some agonists, however, are functionally selective; they activate only a subset of receptors or signalling pathways. Others may stabilise specific conformations of the receptor leading to non-uniform modulation of individual signalling pathways (biased agonists). Functionally selective and biased agonists represent a promising approach for selective activation of individual subtypes of muscarinic receptors. In this work we review chemical structures, receptor binding and agonist-specific conformations of currently known functionally selective and biased muscarinic agonists in the context of their intricate intracellular signalling. Further, we take a perspective on the possible use of biased agonists for tissue and organ-specific activation of muscarinic receptors.
Collapse
Affiliation(s)
- Alena Randáková
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
45
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
46
|
Kim SY, Shim Y, Ko YJ, Park S, Jang SS, Lim BC, Kim KJ, Chae JH. Spectrum of movement disorders in GNAO1 encephalopathy: in-depth phenotyping and case-by-case analysis. Orphanet J Rare Dis 2020; 15:343. [PMID: 33298085 PMCID: PMC7724837 DOI: 10.1186/s13023-020-01594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations. RESULTS Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Median follow-up duration was 41 months (range 7-78 months) and age at last examination was 7.4 years (range 3.3-16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at median age of 3 months (range 0-75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patient's mother who had mosaic variant. Distinct and characteristics movement phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. CONCLUSIONS We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| | - YoungKyu Shim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Young Joon Ko
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Soojin Park
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Medicine, Seoul National University College of Medicine Graduate School, Seoul, Korea
| | - Se Song Jang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Byung Chan Lim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Joong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea. .,Rare Disease Center, Seoul National University Hospital, Seoul, Korea. .,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
48
|
Akamine S, Okuzono S, Yamamoto H, Setoyama D, Sagata N, Ohgidani M, Kato TA, Ishitani T, Kato H, Masuda K, Matsushita Y, Ono H, Ishizaki Y, Sanefuji M, Saitsu H, Matsumoto N, Kang D, Kanba S, Nakabeppu Y, Sakai Y, Ohga S. GNAO1 organizes the cytoskeletal remodeling and firing of developing neurons. FASEB J 2020; 34:16601-16621. [PMID: 33107105 DOI: 10.1096/fj.202001113r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023]
Abstract
Developmental and epileptic encephalopathy (DEE) represents a group of neurodevelopmental disorders characterized by infantile-onset intractable seizures and unfavorable prognosis of psychomotor development. To date, hundreds of genes have been linked to the onset of DEE. GNAO1 is a DEE-associated gene encoding the alpha-O1 subunit of guanine nucleotide-binding protein (GαO ). Despite the increasing number of reported children with GNAO1 encephalopathy, the molecular mechanisms underlying their neurodevelopmental phenotypes remain elusive. We herein present that co-immunoprecipitation and mass spectrometry analyses identified another DEE-associated protein, SPTAN1, as an interacting partner of GαO . Silencing of endogenous Gnao1 attenuated the neurite outgrowth and calcium-dependent signaling. Inactivation of GNAO1 in human-induced pluripotent stem cells gave rise to anomalous brain organoids that only weakly expressed SPTAN1 and Ankyrin-G. Furthermore, GNAO1-deficient organoids failed to conduct synchronized firing to adjacent neurons. These data indicate that GαO and other DEE-associated proteins organize the cytoskeletal remodeling and functional polarity of neurons in the developing brain.
Collapse
Affiliation(s)
- Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tohru Ishitani
- Division of Integrated Signaling Systems, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Department of Homeostatic Regulation, Division of Cellular and Molecular Biology. Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroki Kato
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Baizabal-Carvallo JF, Cardoso F. Chorea in children: etiology, diagnostic approach and management. J Neural Transm (Vienna) 2020; 127:1323-1342. [DOI: 10.1007/s00702-020-02238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023]
|
50
|
Larsh T, Friedman N, Fernandez H. Child Neurology: Genetically determined dystonias with childhood onset. Neurology 2020; 94:892-895. [DOI: 10.1212/wnl.0000000000009040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|