1
|
Jamali Z, Razipour M, Zargar M, Ghasemnejad-Berenji H, Akrami SM. Ovarian cancer extracellular vesicle biomarkers. Clin Chim Acta 2025; 565:120011. [PMID: 39437983 DOI: 10.1016/j.cca.2024.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Ovarian cancer (OC) remains a significant women's health concern due to its high mortality rate and the challenges posed by late detection. Exploring novel biomarkers could lead to earlier, more specific diagnoses and improved survival rates for OC patients. This review focuses on biomarkers associated with extracellular vesicles (EVs) found in various proximal fluids, including urine, ascites, utero-tubal lavage fluid of OC patients. We highlight these proximal fluids as rich sources of potential biomarkers. The review explains the roles of EV biomarkers in ovarian cancer progression and discusses EV-related proteins and miRNAs as potential diagnostic or prognostic indicators and therapeutic targets. Finally, we highlighted the limitations of examining proximal fluids as sources of biomarkers and encourage researchers to proactively pursue innovative solutions to overcome these challenges.
Collapse
Affiliation(s)
- Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Zargar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Selvaraj S, Weerasinghe L. The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury. Cent Nerv Syst Agents Med Chem 2025; 25:20-38. [PMID: 38676493 DOI: 10.2174/0118715249291999240418112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
3
|
Meiklejohn K, Junges L, Terry JR, Whight A, Shankar R, Woldman W. Network-based biomarkers in background electroencephalography in childhood epilepsies-A scoping review and narrative synthesis. Seizure 2025; 124:89-106. [PMID: 39764990 DOI: 10.1016/j.seizure.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Brain network analysis is an emerging field of research that could lead to the development, testing and validation of novel biomarkers for epilepsy. This could shorten the diagnostic uncertainty period, improve treatment, decrease seizure risk and lead to better management. This scoping review summarises the current state of electroencephalogram (EEG)-based network abnormalities for childhood epilepsies. The review assesses the overall robustness, potential generalisability, strengths, and limitations of the methodological frameworks of the identified research studies. REPORTING METHODS PRISMA guidelines for Scoping Reviews and the PICO framework was used to guide this review. Studies that evaluated candidate network-based features from EEG in children were retrieved from four international indexing databases (Cochrane Central / Embase / MEDLINE/ PsycINFO). Each selected study design, intervention characteristics, methodological design, potential limitations, and key findings were analysed. RESULTS Of 2,959 studies retrieved, nine were included. Studies used a group-level based comparison (e.g. based on a statistical test) or a classification-based method (e.g. based on a statistical model, such as a decision tree). A common limitation was the small sample-sizes (limiting further subgroup or confounder analysis) and the overall heterogeneity in epilepsy syndromes and age groups. CONCLUSION The heterogeneity of included studies (e.g. study design, statistical framework, outcome metrics) highlights the need for future studies to adhere to standardised frameworks (e.g. STARD) in order to develop standardised and robust methodologies. This would enable rigorous comparisons between studies, which is critical in assessing the potential of network-based approaches in developing novel biomarkers for childhood epilepsies.
Collapse
Affiliation(s)
- Kay Meiklejohn
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Neuronostics, Bristol, United Kingdom.
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - John R Terry
- Neuronostics, Bristol, United Kingdom; Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alison Whight
- Cornwall Health Library, Truro, United Kingdom; Cornwall Partnership NHS Foundation Trust, Bodmin, United Kingdom
| | - Rohit Shankar
- Cornwall Partnership NHS Foundation Trust, Bodmin, United Kingdom; University of Plymouth, Plymouth, United Kingdom
| | - Wessel Woldman
- Neuronostics, Bristol, United Kingdom; Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Feng S, Huang S, Lin Z. The causal relationship of DTI phenotypes and epilepsy: A two sample mendelian randomization study. Epilepsia Open 2024; 9:2378-2383. [PMID: 39474760 PMCID: PMC11633714 DOI: 10.1002/epi4.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Clinical studies indicated a link between DTI imaging characteristics and epilepsy, but the causality of this connection had not been established. Therefore, we employed the Mendelian randomization analysis method to determine the causal relationship between DTI imaging characteristics and epilepsy. METHOD We used Mendelian randomization analysis to identify the causal relationship between brain structure and the risk of epilepsy. GWAS data of DTI phenotypes, focal epilepsy, and genetic generalized epilepsy (GGE) were utilized in the analysis. RESULTS Our study found that DTI imaging phenotypes had a causal risk relationship with epilepsy. These phenotypes had a statistical impact on the risk of epilepsy seizures. There were differences in DTI phenotype causality between GGE and focal epilepsy, which were associated with the clinical phenotype differences of the two types of epilepsy. SIGNIFICANCE Our study demonstrated that the diagnosis of subtypes could be assisted by comparing the differences in DTI phenotypes of specific brain regions. This meant that by studying the changes in brain regions before the onset of epilepsy, we might be able to intervene in epilepsy at an earlier stage. PLAIN LANGUAGE SUMMARY Our study used Mendelian randomization to explore the causal relationship between brain structure, as seen in DTI imaging, and epilepsy. We found that specific DTI phenotypes are linked to an increased risk of epilepsy seizures, with notable differences between genetic generalized epilepsy and focal epilepsy. This suggested that analyzing DTI phenotypes could help in diagnosing and potentially intervening in epilepsy earlier by finding brain changes before seizures begin.
Collapse
Affiliation(s)
- Shang Feng
- College of Computer Science and Technology, Harbin Engineering UniversityHarbinChina
| | - Shaobin Huang
- College of Computer Science and Technology, Harbin Engineering UniversityHarbinChina
| | - Zhiguo Lin
- Department of NeurosurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
5
|
Ngadimon IW, Shaikh MF, Mohan D, Cheong WL, Khoo CS. Mapping epilepsy biomarkers: a bibliometric and content analysis. Drug Discov Today 2024; 29:104247. [PMID: 39571887 DOI: 10.1016/j.drudis.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Epilepsy, a complex global neurological disorder, has spurred extensive research efforts focused on enhancing diagnostic and therapeutic strategies, with a growing emphasis on the identification of biomarkers. This bibliometric study examines 1,774 publications from 2000 to 2023, revealing a notable increase in research activity, particularly in the past decade. The US, China, and the UK lead contributions, with Asian countries exhibiting growing potential. Keyword co-occurrence analysis reveals a shift towards investigations of neuroinflammatory and genetic biomarkers, as well as emerging areas such as artificial intelligence and epigenetics. Content analysis links specific epilepsy aetiologies to biomarkers, offering promising possibilities for personalised diagnostics and treatments. These findings yield valuable insights into current trends, guiding future research and informing the development of targeted approaches for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Irma Wati Ngadimon
- Neuroscience Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Mohd Farooq Shaikh
- Neuroscience Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; School of Dentistry and Medical Sciences, Charles Sturt University, Australia.
| | - Devi Mohan
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; School of Public Health, The University of Queensland, Brisbane, Australia
| | | | - Ching Soong Khoo
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Neurology Unit, Department of Medicine, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia; Centre for Global Epilepsy, Wolfson College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Sokolowski K, Liu J, Delatte MS, Authier S, McMaster O, Bolon B. The Role of Neuropathology Evaluation in the Nonclinical Assessment of Seizure Liability. Toxicol Pathol 2024; 52:566-573. [PMID: 39633285 DOI: 10.1177/01926233241300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Test article (TA)-induced seizures represent a major safety concern in drug development. Seizures (altered brain wave [electrophysiological] patterns) present clinically as abnormal consciousness with or without tonic/clonic convulsions (where "tonic" = stiffening and "clonic" = involuntary rhythmical movements). Neuropathological findings following seizures may be detected using many methods. Neuro-imaging may show a structural abnormality underlying seizures, such as focal cortical dysplasia or hippocampal sclerosis in patients with chronic epilepsy. Neural cell type-specific biomarkers in blood or cerebrospinal fluid may highlight neuronal damage and/or glial reactions but are not specific indicators of seizures while serum electrolyte and glucose imbalances may induce seizures. Gross observations and brain weights generally are unaffected by TAs with seizurogenic potential, but microscopic evaluation may reveal seizure-related neuron death in some brain regions (especially neocortex, hippocampus, and/or cerebellum). Current globally accepted best practices for neural sampling in nonclinical general toxicity studies provide a suitable screen for brain regions that are known sites of electrical disruption and/or display seizure-induced neural damage. Conventional nonclinical studies can afford an indication that a TA has a potential seizure liability (via in-life signs and/or microscopic evidence of neuron necrosis), but confirmation requires measuring brain electrical (electroencephalographic) activity in a nonclinical study.
Collapse
Affiliation(s)
| | - Judy Liu
- Brown University, Providence, Rhode Island, USA
| | | | | | - Owen McMaster
- U.S. Food & Drug Administration, Silver Spring, Maryland, USA
| | | |
Collapse
|
7
|
Heiskanen M, Banuelos I, Manninen E, Andrade P, Hämäläinen E, Puhakka N, Pitkänen A. Plasma neurofilament heavy chain is a prognostic biomarker for the development of severe epilepsy after experimental traumatic brain injury. Epilepsia 2024; 65:3703-3716. [PMID: 39401067 DOI: 10.1111/epi.18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE This study was undertaken to test whether the postinjury plasma concentration of phosphorylated neurofilament heavy chain (pNF-H), a marker of axonal injury, is a prognostic biomarker for the development of posttraumatic epilepsy. METHODS Tail vein plasma was sampled 48 h after traumatic brain injury (TBI) from 143 rats (10 naïve, 21 controls, 112 with lateral fluid percussion injury) to quantify pNF-H by enzyme-linked immunosorbent assay. During the 6th postinjury month, rats underwent 30 days of continuous video-electroencephalographic monitoring to detect unprovoked seizures and evaluate epilepsy severity. Somatomotor (composite neuroscore) and spatial memory (Morris water maze) testing and quantitative T2 magnetic resonance imaging were performed to assess comorbidities and lesion severity. RESULTS Of the 112 TBI rats, 25% (28/112) developed epilepsy (TBI+) and 75% (84/112) did not (TBI-). Plasma pNF-H concentrations were higher in TBI+ rats than in TBI- rats (p < .05). Receiver operating characteristic curve analysis indicated that plasma pNF-H concentration distinguished TBI+ rats from TBI- rats (area under the curve [AUC] = .647, p < .05). Differentiation was stronger when comparing TBI+ rats exhibiting severe epilepsy (≥3 seizures/month) with all other TBI rats (AUC = .732, p < .01). Plasma pNF-H concentration on day 2 (D2) distinguished TBI+ rats with seizure clusters from other TBI rats (AUC = .732, p < .05). Higher plasma pNF-H concentration on D2 after TBI correlated with lower neuroscores on D2 (p < .001), D6 (p < .001), and D14 (p < .01). Higher pNF-H concentration on D2 correlated with greater T2 signal abnormality volume on D2 (p < .001) and D7 (p < .01) and larger cortical lesion area on D182 (p < .01). Plasma pNF-H concentration on D2 did not correlate with Morris water maze performance on D37-D39. SIGNIFICANCE Plasma pNF-H is a promising clinically translatable prognostic biomarker for the development of posttraumatic epilepsy with frequent seizures or seizure clusters.
Collapse
Affiliation(s)
- Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ivette Banuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eppu Manninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
van Vliet EA, Scheper M, Mills JD, Puhakka N, Szydlowska K, Ferracin M, Lovisari F, Soukupova M, Zucchini S, Srivastava PK, Johnson MR, Lukasiuk K, Gorter JA, Aronica E, Pitkänen A, Simonato M. Circulating microRNAs and isomiRs as biomarkers for the initial insult and epileptogenesis in four experimental epilepsy models: The EPITARGET study. Epilepsia 2024; 65:3406-3420. [PMID: 39352406 DOI: 10.1111/epi.18134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE Structural epilepsies can manifest months or years after the occurrence of an initial epileptogenic insult, making them amenable for secondary prevention. However, development of preventive treatments has been challenged by a lack of biomarkers for identifying the subset of individuals with the highest risk of epilepsy after the epileptogenic insult. METHODS Four different rat models of epileptogenesis were investigated to identify differentially expressed circulating microRNA (miRNA) and isomiR profiles as biomarkers for epileptogenesis. Plasma samples were collected on day 2 and day 9 during the latency period from animals that did or did not develop epilepsy during long-term video-electroencephalographic monitoring. miRNAs and isomiRs were identified and measured in an unsupervised manner, using a genome-wide small RNA sequencing platform. Receiver operating characteristic analysis was performed to determine the performance of putative biomarkers. RESULTS Two days after an epileptogenic insult, alterations in the levels of several plasma miRNAs and isomiRs predicted epileptogenesis in a model-specific manner. One miRNA, miR-3085, showed good sensitivity (but low specificity) as a prognostic biomarker for epileptogenesis in all four models (area under the curve = .729, sensitivity = 83%, specificity = 64%, p < .05). SIGNIFICANCE Identified plasma miRNAs and isomiRs are mostly etiology-specific rather than common prognostic biomarkers of epileptogenesis. These data imply that in preclinical and clinical studies, it may be necessary to identify specific biomarkers for different epilepsy etiologies. Importantly, circulating miRNAs like miR-3085 with high negative predictive value for epileptogenesis in different etiologies could be useful candidates for initial screening purposes of epileptogenesis risk.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Mirte Scheper
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kinga Szydlowska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | | | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Li C, Cai Y, Chen Y, Tong J, Li Y, Liu D, Wang Y, Li Z, Wang Y, Li Q. ABCG2 shields against epilepsy, relieves oxidative stress and apoptosis via inhibiting the ISGylation of STAT1 and mTOR. Redox Biol 2024; 75:103262. [PMID: 38981367 PMCID: PMC11280404 DOI: 10.1016/j.redox.2024.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
The transporter protein ABC subfamily G member 2 (ABCG2) is implicated in epilepsy; however, its specific role remains unclear. In this study, we assessed changes in ABCG2 expression and its role in epilepsy both in vitro and in vivo. We observed an instantaneous increase in ABCG2 expression in epileptic animals and cells. Further, ABCG2 overexpression significantly suppressed the oxidative stress and apoptosis induced by glutamate, kainic acid (KA), and lipopolysaccharide (LPS) in neuronal and microglia cells. Furthermore, inhibiting ABCG2 activity offset this protective effect. ABCG2-deficient mice (ABCG2-/-) showed shorter survival times and decreased survival rates when administered with pentylenetetrazole (PTZ). We also noticed the accumulation of signal transducer and activator of transcription 1 (STAT1) and decreased phosphorylation of mammalian target of rapamycin kinase (mTOR) along with increased ISGylation in ABCG2-/- mice. ABCG2 overexpression directly interacted with STAT1 and mTOR, leading to a decrease in their ISGylation. Our findings indicate the rapid increase in ABCG2 expression acts as a shield in epileptogenesis, indicating ABCG2 may serve as a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yi Cai
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yongmin Chen
- Department of Functional Diagnosis, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingyi Tong
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Youbin Li
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Dong Liu
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yun Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Department of Clinical Pharmacy, Kunshan Maternity and Children's Health Care Hospital, Children's Hospital of Fudan University Kunshan Branch, Kunshan, Jiangsu, China.
| | - Yan Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.
| |
Collapse
|
10
|
Wang Y, Wang Y, Li C, Liu D, Cai Y, Li Q. Anti‑epileptic mechanism of isopimaric acid from Platycladi cacumen based on network pharmacology, molecular docking and biological validation. Exp Ther Med 2024; 28:348. [PMID: 39006452 PMCID: PMC11240864 DOI: 10.3892/etm.2024.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 07/16/2024] Open
Abstract
Platycladi cacumen (PC) is derived from the dry twigs and leaves of Platycladi orientalis (L.) Franco and exerts anti-epileptic effects. However, its mechanism of action remains unknown. The present study explored the potential anti-epileptic components and mechanisms of PC. The primary active components and targets of PC were analyzed using network pharmacology and a lipopolysaccharide (LPS)-induced murine microglial cell line (BV2) was used to confirm anti-epileptic effects by detecting reactive oxygen species (ROS), apoptosis, inflammatory markers, cell migration and signaling pathways. A total of 13 core active components showed druggable properties, of which deoxypicrop odophyllotoxin, hinokinin and isopimaric acid (IPA) were predicted to cross the blood-brain barrier. In total, 255 potential targets of these three compounds were predicted using SwissTargetPrediction and Similarity Ensemble Approach websites and 150 were associated with epilepsy. In vitro experiments confirmed that IPA significantly inhibited LPS-induced microglial oxidative stress and inflammation by decreasing the migration area, cellular ROS content, lactate dehydrogenase release and early phase of apoptosis. IPA also increased the mRNA expression of anti-oxidative enzymes (superoxide dismutase-1 and -2) and suppressed inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Furthermore, IPA phosphorylated AKT and mTOR proteins. Taken together, the present findings suggested that IPA is a potential anti-epileptic compound derived from PC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yun Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chang Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Dong Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yi Cai
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs and Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
11
|
Roehri N, Vulliemoz S, Lagarde S. The challenge of assessing invasive biomarkers for epilepsy surgery. Brain 2024; 147:e52-e54. [PMID: 38753681 PMCID: PMC11292892 DOI: 10.1093/brain/awae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Nicolas Roehri
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015 Lausanne, Switzerland
| | - Stanislas Lagarde
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 13005 Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005 Marseille, France
| |
Collapse
|
12
|
Hou X, Xiao S, Xu X, Qin M, Cheng X, Xu X. Glycoprotein Non-metastatic Melanoma Protein B (GPNMB) Protects Against Neuroinflammation and Neuronal Loss in Pilocarpine-induced Epilepsy via the Regulation of Microglial Polarization. Neuroscience 2024; 551:166-176. [PMID: 38782114 DOI: 10.1016/j.neuroscience.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Epilepsy is a progressive neurodegenerative disease highlighted by recurrent seizures, neuroinflammation, and the loss of neurons. Microglial dysfunction is commonly found in epileptic foci and contributes to neuroinflammation in the initiation and progression of epilepsy. Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein, has been involved in the microglial activation and neuroinflammation response. The present study investigated the functional significance of GPNMB in epilepsy. A proven model of epilepsy was established by intraperitoneal injection of pilocarpine to male Sprague Dawley rats. Lentivirus vectors carrying GPNMB or GPNMB short hairpin RNA (shGPNMB) were injected into the hippocampus to induce overexpression or knockdown of GPNMB. GPNMB expression was significantly upregulated and overexpression of GPNMB in the hippocampus reduced seizure activity and neuronal loss after status epilepticus (SE). We here focused on the effects of GPNMB deficiency on neuronal injury and microglia polarization 28 days after SE. GPNMB knockdown accelerated neuronal damage in the hippocampus, evidenced by increased neuron loss and neuronal cell apoptosis. Following GPNMB knockdown, M1 polarization (iNOS) and secretion of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α were increased, and M2 polarization (Arg1) and secretion of anti-inflammatory cytokines IL-4, IL-10, and TGF-β were decreased. BV2 cells were used to further confirm the regulatory role of GPNMB in modulating phenotypic transformations and inflammatory cytokine expressions in microglia. In conclusion, these results indicated that GPNMB suppressed epilepsy through repression of hippocampal neuroinflammation, suggesting that GPNMB might be considered the potential neurotherapeutic target for epilepsy management and play a protective role against epilepsy by modulating the polarization of microglia.
Collapse
Affiliation(s)
- Xuejing Hou
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shanshan Xiao
- Ward of Neonatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaohong Xu
- Department of Gastroenterology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Mingze Qin
- Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuebing Cheng
- Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiangping Xu
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
13
|
Campos-Fernández D, Montes A, Thonon V, Sueiras M, Rodrigo-Gisbert M, Pasini F, Quintana M, López-Maza S, Fonseca E, Coscojuela P, Santafe M, Sánchez A, Arikan F, Gandara DF, Sala-Padró J, Falip M, López-Ojeda P, Gabarrós A, Toledo M, Santamarina E, Abraira L. Early focal electroencephalogram and neuroimaging findings predict epilepsy development after aneurysmal subarachnoid hemorrhage. Epilepsy Behav 2024; 156:109841. [PMID: 38768551 DOI: 10.1016/j.yebeh.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Seizures are a common complication of subarachnoid hemorrhage (SAH) in both acute and late stages: 10-20 % acute symptomatic seizures, 12-25 % epilepsy rate at five years. Our aim was to identify early electroencephalogram (EEG) and computed tomography (CT) findings that could predict long-term epilepsy after SAH. MATERIAL AND METHODS This is a multicenter, retrospective, longitudinal study of adult patients with aneurysmal SAH admitted to two tertiary care hospitals between January 2011 to December 2022. Routine 30-minute EEG recording was performed in all subjects during admission period. Exclusion criteria were the presence of prior structural brain lesions and/or known epilepsy. We documented the presence of SAH-related cortical involvement in brain CT and focal electrographic abnormalities (epileptiform and non-epileptiform). Post-SAH epilepsy was defined as the occurrence of remote unprovoked seizures ≥ 7 days from the bleeding. RESULTS We included 278 patients with a median follow-up of 2.4 years. The mean age was 57 (+/-12) years, 188 (68 %) were female and 49 (17.6 %) developed epilepsy with a median latency of 174 days (IQR 49-479). Cortical brain lesions were present in 189 (68 %) and focal EEG abnormalities were detected in 158 patients (39 epileptiform discharges, 119 non-epileptiform abnormalities). The median delay to the first EEG recording was 6 days (IQR 2-12). Multiple Cox regression analysis showed higher risk of long-term epilepsy in those patients with CT cortical involvement (HR 2.6 [1.3-5.2], p 0.009), EEG focal non-epileptiform abnormalities (HR 3.7 [1.6-8.2], p 0.002) and epileptiform discharges (HR 6.7 [2.8-15.8], p < 0.001). Concomitant use of anesthetics and/or antiseizure medication during EEG recording had no influence over its predictive capacity. ROC-curve analysis of the model showed good predictive capability at 5 years (AUC 0.80, 95 %CI 0.74-0.87). CONCLUSIONS Focal electrographic abnormalities (both epileptiform and non-epileptiform abnormalities) and cortical involvement in neuroimaging predict the development of long-term epilepsy. In-patient EEG and CT findings could allow an early risk stratification and facilitate a personalized follow-up and management of SAH patients.
Collapse
Affiliation(s)
- D Campos-Fernández
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Montes
- Epilepsy Unit, Neurology department,Bellvitge University Hospital. Barcelona, Spain
| | - V Thonon
- Neurophysiology Department, Vall d'Hebron University Hospital. Barcelona, Spain
| | - M Sueiras
- Neurophysiology Department, Vall d'Hebron University Hospital. Barcelona, Spain; Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - M Rodrigo-Gisbert
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - F Pasini
- Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - M Quintana
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - S López-Maza
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - E Fonseca
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - P Coscojuela
- Neuroradiology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - M Santafe
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - A Sánchez
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - F Arikan
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Neurosurgery Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - D F Gandara
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Neurosurgery Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - J Sala-Padró
- Epilepsy Unit, Neurology department,Bellvitge University Hospital. Barcelona, Spain
| | - M Falip
- Epilepsy Unit, Neurology department,Bellvitge University Hospital. Barcelona, Spain
| | - P López-Ojeda
- Neurosurgery Department, Bellvitge University Hospital, Barcelona, Spain
| | - A Gabarrós
- Neurosurgery Department, Bellvitge University Hospital, Barcelona, Spain
| | - M Toledo
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - E Santamarina
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - L Abraira
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
| |
Collapse
|
14
|
Tanaka T, Ihara M, Fukuma K, Mishra NK, Koepp MJ, Guekht A, Ikeda A. Pathophysiology, Diagnosis, Prognosis, and Prevention of Poststroke Epilepsy: Clinical and Research Implications. Neurology 2024; 102:e209450. [PMID: 38759128 PMCID: PMC11175639 DOI: 10.1212/wnl.0000000000209450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 05/19/2024] Open
Abstract
Poststroke epilepsy (PSE) is associated with higher mortality and poor functional and cognitive outcomes in patients with stroke. With the remarkable development of acute stroke treatment, there is a growing number of survivors with PSE. Although approximately 10% of patients with stroke develop PSE, given the significant burden of stroke worldwide, PSE is a significant problem in stroke survivors. Therefore, the attention of health policymakers and significant funding are required to promote PSE prevention research. The current PSE definition includes unprovoked seizures occurring more than 7 days after stroke onset, given the high recurrence risks of seizures. However, the pathologic cascade of stroke is not uniform, indicating the need for a tissue-based approach rather than a time-based one to distinguish early seizures from late seizures. EEG is a commonly used tool in the diagnostic work-up of PSE. EEG findings during the acute phase of stroke can potentially stratify the risk of subsequent seizures and predict the development of poststroke epileptogenesis. Recent reports suggest that cortical superficial siderosis, which may be involved in epileptogenesis, is a promising marker for PSE. By incorporating such markers, future risk-scoring models could guide treatment strategies, particularly for the primary prophylaxis of PSE. To date, drugs that prevent poststroke epileptogenesis are lacking. The primary challenge involves the substantial cost burden due to the difficulty of reliably enrolling patients who develop PSE. There is, therefore, a critical need to determine reliable biomarkers for PSE. The goal is to be able to use them for trial enrichment and as a surrogate outcome measure for epileptogenesis. Moreover, seizure prophylaxis is essential to prevent functional and cognitive decline in stroke survivors. Further elucidation of factors that contribute to poststroke epileptogenesis is eagerly awaited. Meanwhile, the regimen of antiseizure medications should be based on individual cardiovascular risk, psychosomatic comorbidities, and concomitant medications. This review summarizes the current understanding of poststroke epileptogenesis, its risks, prognostic models, prophylaxis, and strategies for secondary prevention of seizures and suggests strategies to advance research on PSE.
Collapse
Affiliation(s)
- Tomotaka Tanaka
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Masafumi Ihara
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Kazuki Fukuma
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Nishant K Mishra
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Matthias J Koepp
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Alla Guekht
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- From the Department of Neurology (T.T., M.I., K.F.), National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology (N.K.M.), Yale University School of Medicine, New Haven, CT; Department of Clinical & Experimental Epilepsy (M.J.K.), UCL Queen Square Institute of Neurology, London, United Kingdom; Moscow Research and Clinical Center for Neuropsychiatry (A.G.), Pirogov Russian National Research Medical University, Russia; and Department of Epilepsy, Movement Disorders and Physiology (A.I.), Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
15
|
Goldenberg JZ, Batson RD, Pugh MJ, Zwickey H, Beardsley J, Zeegers MP, Freeman M. The Cumulative Incidence of Post-Traumatic Epilepsy After Mild Traumatic Brain Injury: A Systematic Review and Individual Participant Data Meta-Analysis Protocol. Neurotrauma Rep 2024; 5:522-528. [PMID: 39036430 PMCID: PMC11257128 DOI: 10.1089/neur.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
A precise understanding of the latency to post-traumatic epilepsy (PTE) following a traumatic brain injury (TBI) is necessary for optimal patient care. This precision is currently lacking despite a surprising number of available data sources that could address this pressing need. Following guidance from the Cochrane Collaboration and Joanna Briggs Institute, we conduct a systematic review to address the research questions: What is the cumulative incidence of PTE following mild TBI (mTBI; concussion), and what is the distribution of the latency to onset? We designed a comprehensive search of medical databases and gray literature sources. Citations will be screened on both abstract and full-text levels, independently and in duplicate. Studies will be evaluated for risk of bias independently and in duplicate using published instruments specific to incidence/prevalence studies. Data will be abstracted independently and in duplicate using piloted extraction forms. Disagreements will be resolved by consensus or third-party adjudication. Evidence synthesis will involve pairwise and individual participant data meta-analysis with heterogeneity explored via a set of predetermined subgroups. The robustness of the findings will be subjected to sensitivity analyses based on the risk of bias, outlier studies, and mTBI definitional criteria. The overall certainty in the estimates will be reported using GRADE (Grading of Recommendations, Assessment, Development, and Evaluations). This protocol presents an innovative and impactful approach to build on the growing body of knowledge surrounding post-mTBI PTE. Through a precise understanding of the latency period, this study can contribute to early detection, tailored interventions, and improved outcomes, leading to a substantial impact on patient care and quality of life.
Collapse
Affiliation(s)
- Joshua Z. Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
- Department of Epidemiology, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Richard Davis Batson
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| | - Mary Jo Pugh
- VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| | | | - Maurice P. Zeegers
- Department of Epidemiology, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Michael Freeman
- Department of Epidemiology, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
- Forensic Research + Analysis, Portland, Oregon, USA
| |
Collapse
|
16
|
Terman SW, Kirkpatrick L, Kerr WT, Akiyama LF, Baajour W, Atilgan D, Dorotan MKC, Choi HW, French JA. Challenges and directions in epilepsy diagnostics and therapeutics: Proceedings of the 17th Epilepsy Therapies and Diagnostics Development conference. Epilepsia 2024; 65:846-860. [PMID: 38135921 PMCID: PMC11018495 DOI: 10.1111/epi.17875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
Substantial efforts are underway toward optimizing the diagnosis, monitoring, and treatment of seizures and epilepsy. We describe preclinical programs in place for screening investigational therapeutic candidates in animal models, with particular attention to identifying and eliminating drugs that might paradoxically aggravate seizure burden. After preclinical development, we discuss challenges and solutions in the design and regulatory logistics of clinical trial execution, and efforts to develop disease biomarkers and interventions that may be not only seizure-suppressing, but also disease-modifying. As disease-modifying treatments are designed, there is clear recognition that, although seizures represent one critical therapeutic target, targeting nonseizure outcomes like cognitive development or functional outcomes requires changes to traditional designs. This reflects our increasing understanding that epilepsy is a disease with profound impact on quality of life for the patient and caregivers due to both seizures themselves and other nonseizure factors. This review examines selected key challenges and future directions in epilepsy diagnostics and therapeutics, from drug discovery to translational application.
Collapse
Affiliation(s)
- Samuel W Terman
- University of Michigan Department of Neurology, Ann Arbor, MI 48109, USA
| | - Laura Kirkpatrick
- University of Pittsburgh Department of Neurology, Pittsburgh, PA 15213, USA
- University of Pittsburgh Department of Pediatrics, Pittsburgh, PA 15213, USA
| | - Wesley T Kerr
- University of Michigan Department of Neurology, Ann Arbor, MI 48109, USA
- University of Pittsburgh Department of Neurology, Pittsburgh, PA 15213, USA
- University of Pittsburgh Department of Biomedical Informatics, Pittsburgh, PA 15213, USA
| | - Lisa F Akiyama
- University of Washington Department of Neurology, Seattle, WA 98105, USA
| | - Wadih Baajour
- University of Texas Health Science Center at Houston, Department of Neurology, Houston, TX 77030, USA
| | - Deniz Atilgan
- University of Texas Health Science Center at Houston, Department of Neurology, Houston, TX 77030, USA
| | | | - Hyoung Won Choi
- Emory University Department of Pediatrics, Division of Neurology, Atlanta, GA 30322
| | - Jacqueline A French
- NYU Grossman School of Medicine and NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
17
|
Meier L, Bruginski E, Marafiga JR, Caus LB, Pasquetti MV, Calcagnotto ME, Campos FR. Hippocampal metabolic profile during epileptogenesis in the pilocarpine model of epilepsy. Biomed Chromatogr 2024; 38:e5820. [PMID: 38154955 DOI: 10.1002/bmc.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.
Collapse
Affiliation(s)
- Letícia Meier
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Estevan Bruginski
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francinete Ramos Campos
- Biosciences and Mass Spectrometry Laboratory, Department of Pharmacy, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Pharmaceutical Science, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
18
|
Ma M, Cheng Y, Hou X, Li Z, Wang M, Ma B, Cheng Q, Ding Z, Feng H. Serum biomarkers in patients with drug-resistant epilepsy: a proteomics-based analysis. Front Neurol 2024; 15:1383023. [PMID: 38585359 PMCID: PMC10995353 DOI: 10.3389/fneur.2024.1383023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To investigate the serum biomarkers in patients with drug-resistant epilepsy (DRE). Methods A total of 9 DRE patients and 9 controls were enrolled. Serum from DRE patients was prospectively collected and analyzed for potential serum biomarkers using TMT18-labeled proteomics. After fine quality control, bioinformatics analysis was conducted to find differentially expressed proteins. Pathway enrichment analysis identified some biological features shared by differential proteins. Protein-protein interaction (PPI) network analysis was further performed to discover the core proteins. Results A total of 117 serum differential proteins were found in our study, of which 44 were revised upwards and 73 downwards. The up-regulated proteins mainly include UGGT2, PDIA4, SEMG1, KIAA1191, CCT7 etc. and the down-regulated proteins mainly include ROR1, NIF3L1, ITIH4, CFP, COL11A2 etc. Pathway enrichment analysis identified that the upregulated proteins were mainly enriched in processes such as immune response, extracellular exosome, serine-type endopeptidase activity and complement and coagulation cascades, and the down-regulated proteins were enriched in signal transduction, extracellular exosome, zinc/calcium ion binding and metabolic pathways. PPI network analysis revealed that the core proteins nodes include PRDX6, CAT, PRDX2, SOD1, PARK7, GSR, TXN, ANXA1, HINT1, and S100A8 etc. Conclusion The discovery of these differential proteins enriched our understanding of serum biomarkers in patients with DRE and potentially provides guidance for future targeted therapy.
Collapse
Affiliation(s)
- Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ying Cheng
- Suzhou Jinchang Street Bailian Community Health Service Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xiaoxia Hou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhisen Li
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Meixia Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Bodun Ma
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhiliang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Wei MX, Yang Z, Wang PP, Zhao XK, Song X, Xu RH, Hu JF, Zhong K, Lei LL, Han WL, Yang MM, Zhou FY, Han XN, Fan ZM, Li J, Wang R, Li B, Wang LD. Novel metabolic biomarker for early detection and diagnosis to the patients with gastric cardia adenocarcinoma. Cancer Med 2024; 13:e7015. [PMID: 38491808 PMCID: PMC10943274 DOI: 10.1002/cam4.7015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Gastric cardia adenocarcinoma (GCA) is classified as Siewert type II adenocarcinoma at the esophagogastric junction in Western countries. The majority of GCA patients do not exhibit early warning symptoms, leading to over 90% of diagnoses at an advanced stage, resulting in a grim prognosis, with less than a 20% 5-year survival rate. METHOD Metabolic features of 276 GCA and 588 healthy controls were characterized through a widely-targeted metabolomics by UPLC-MS/MS analysis. This study encompasses a joint pathway analysis utilizing identified metabolites, survival analysis in both early and advanced stages, as well as high and negative and low expression of HER2 immunohistochemistry staining. Machine learning techniques and Cox regression models were employed to construct a diagnostic panel. RESULTS A total of 25 differential metabolites were consistently identified in both discovery and validation sets based on criteria of p < 0.05, (VIP) ≥ 1, and FC ≥ 2 or FC ≤ 0.5. Early-stage GCA patients exhibited a more favorable prognosis compared to those in advanced stages. HER2 overexpression was associated with a more positive outcome compared to the negative and low expression groups. Metabolite panel demonstrated a robust diagnostic performance with AUC of 0.869 in discovery set and 0.900 in validation set. CONCLUSIONS A total of 25 common and stable differential metabolites may hold promise as liquid non-invasive indicators for GCA diagnosis. HER2 may function as a tumor suppressor gene in GCA, as its overexpression is associated with improved survival. The downregulation of bile acid metabolism in GCA may offer valuable theoretical insights and innovative approaches for precision-targeted treatments in GCA patients.
Collapse
Affiliation(s)
- Meng Xia Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Zheng Yang
- School of Life ScienceZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Pan Pan Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Xue Ke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Rui Hua Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Jing Feng Hu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Kan Zhong
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Ling Ling Lei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Wen Li Han
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Miao Miao Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Fu You Zhou
- Department of Thoracic SurgeryAnyang Tumor HospitalAnyangHenan ProvincePR China
| | - Xue Na Han
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Zong Min Fan
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Jia Li
- Department of LanguageZhengzhou White Gown Translation Co., Ltd.ZhengzhouPR China
| | - Ran Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Bei Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| | - Li Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan ProvincePR China
| |
Collapse
|
20
|
Zelmann R, Paulk AC, Tian F, Balanza Villegas GA, Dezha Peralta J, Crocker B, Cosgrove GR, Richardson RM, Williams ZM, Dougherty DD, Purdon PL, Cash SS. Differential cortical network engagement during states of un/consciousness in humans. Neuron 2023; 111:3479-3495.e6. [PMID: 37659409 PMCID: PMC10843836 DOI: 10.1016/j.neuron.2023.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
What happens in the human brain when we are unconscious? Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted. Using intracranial recordings and direct electrical stimulation, we mapped global, network, and regional involvement during wake vs. arousable unconsciousness (sleep) vs. non-arousable unconsciousness (propofol-induced general anesthesia). Information integration and complex processing we`re reduced, while variability increased in any type of unconscious state. These changes were more pronounced during anesthesia than sleep and involved different cortical engagement. During sleep, changes were mostly uniformly distributed across the brain, whereas during anesthesia, the prefrontal cortex was the most disrupted, suggesting that the lack of arousability during anesthesia results not from just altered overall physiology but from a disconnection between the prefrontal and other brain areas. These findings provide direct evidence for different neural dynamics during loss of consciousness compared with loss of arousability.
Collapse
Affiliation(s)
- Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Fangyun Tian
- Department of Anesthesia, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick L Purdon
- Department of Anesthesia, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Fawcett J, Davis S, Manford M. Further advances in epilepsy. J Neurol 2023; 270:5655-5670. [PMID: 37458794 DOI: 10.1007/s00415-023-11860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/15/2023]
Abstract
In 2017, one of us reviewed advances in epilepsy (Manford in J Neurol 264:1811-1824, 2017). The current paper brings that review up to date and gives a slight change in emphasis. Once again, the story is of evolution rather than revolution. In recognition that most of our current medications act on neurotransmitters or ion channels, and not on the underlying changes in connectivity and pathways, they have been renamed as antiseizure (ASM) medications rather than antiepileptic drugs. Cenobamate is the one newly licensed medication for broader use in focal epilepsy but there have been a number of developments for specific disorders. We review new players and look forward to new developments in the light of evolving underlying science. We look at teratogenicity; old villains and new concerns in which clinicians play a vital role in explaining and balancing the risks. Medical treatment of status epilepticus, long without evidence, has benefitted from high-quality trials to inform practice; like buses, several arriving at once. Surgical treatment continues to be refined with improvements in the pre-surgical evaluation of patients, especially with new imaging techniques. Alternatives including stereotactic radiotherapy have received further focus and targets for palliative stimulation techniques have grown in number. Individuals' autonomy and quality of life continue to be the subject of research with refinement of what clinicians can do to help persons with epilepsy (PWE) achieve control. This includes seizure management but extends to broader considerations of human empowerment, needs and desires, which may be aided by emerging technologies such as seizure detection devices. The role of specialist nurses in improving that quality has been reinforced by specific endorsement from the International League against Epilepsy (ILAE).
Collapse
Affiliation(s)
- Joanna Fawcett
- Department of Neurology, Royal United Hospital, Bath, UK
| | - Sarah Davis
- Department of Neurology, Royal United Hospital, Bath, UK
| | - Mark Manford
- Department of Neurology, Royal United Hospital, Bath, UK.
| |
Collapse
|
22
|
Shi Z, Liao Z, Tabata H. Enhancing Performance of Convolutional Neural Network-Based Epileptic Electroencephalogram Diagnosis by Asymmetric Stochastic Resonance. IEEE J Biomed Health Inform 2023; 27:4228-4239. [PMID: 37267135 DOI: 10.1109/jbhi.2023.3282251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epilepsy is a chronic disorder that leads to transient neurological dysfunction and is clinically diagnosed primarily by electroencephalography. Several intelligent systems have been proposed to automatically detect seizures, among which deep convolutional neural networks (CNNs) have shown better performance than traditional machine-learning algorithms. Owing to artifacts and noise, the raw electroencephalogram (EEG) must be preprocessed to improve the signal-to-noise ratio prior to being fed into the CNN classifier. However, because of the spectrum overlapping of uncontrollable noise with EEG, traditional filters cause information loss in EEG; thus, the potential of classifiers cannot be fully exploited. In this study, we propose a stochastic resonance-effect-based EEG preprocessing module composed of three asymmetrical overdamped bistable systems in parallel. By setting different asymmetries for the three parallel units, the inherent noise can be transferred to the different spectral components of the EEG through the asymmetric stochastic resonance effect. In this process, the proposed preprocessing module not only avoids the loss of information of EEG but also provides a CNN with high-quality EEG of diversified frequency information to enhance its performance. By combining the proposed preprocessing module with a residual neural network, we developed an intelligent diagnostic system for predicting seizure onset. The developed system achieved an average sensitivity of 98.96% on the CHB-MIT dataset and 95.45% on the Siena dataset, with a false prediction rate of 0.048/h and 0.033/h, respectively. In addition, a comparative analysis demonstrated the superiority of the developed diagnostic system with the proposed preprocessing module over other existing methods.
Collapse
|
23
|
Custers ML, Vande Vyver M, Kaltenböck L, Barbé K, Bjerke M, Van Eeckhaut A, Smolders I. Neurofilament light chain: A possible fluid biomarker in the intrahippocampal kainic acid mouse model for chronic epilepsy? Epilepsia 2023; 64:2200-2211. [PMID: 37264788 DOI: 10.1111/epi.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE In the management of epilepsy, there is an ongoing quest to discover new biomarkers to improve the diagnostic process, the monitoring of disease progression, and the evaluation of treatment responsiveness. In this regard, biochemical traceability in biofluids is notably absent in contrast to other diseases. In the present preclinical study, we investigated the potential of neurofilament light chain (NfL) as a possible diagnostic and response fluid biomarker for epilepsy. METHODS We gained insights into NfL levels during the various phases of the intrahippocampal kainic acid mouse model of temporal lobe epilepsy-namely, the status epilepticus (SE) and the chronic phase with spontaneous seizures. To this end, NfL levels were determined directly in the cerebral interstitial fluid (ISF) with cerebral open flow microperfusion as sampling technique, as well as in cerebrospinal fluid (CSF) and plasma. Lastly, we assessed whether NfL levels diminished upon curtailing SE with diazepam and ketamine. RESULTS NfL levels are higher during SE in both cerebral ISF and plasma in kainic acid-treated mice compared to sham-injected mice. Additionally, ISF and plasma NfL levels are lower in mice treated with diazepam and ketamine to stop SE compared with the vehicle-treated mice. In the chronic phase with spontaneous seizures, higher NfL levels could only be detected in ISF and CSF samples, and not in plasma. No correlations could be found between NfL levels and seizure burden, nor with immunohistological markers for neurodegeneration/inflammation. SIGNIFICANCE Our findings demonstrate the translational potential of NfL as a blood-based fluid biomarker for SE. This is less evident for chronic epilepsy, as in this case higher NfL levels could only be detected in ISF and CSF, and not in plasma, acknowledging the invasive nature of CSF sampling in chronic epilepsy follow-up.
Collapse
Affiliation(s)
- Marie-Laure Custers
- Laboratory of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maxime Vande Vyver
- Laboratory of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lea Kaltenböck
- Laboratory of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kurt Barbé
- Research Group Biostatistics and Medical Informatics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Bjerke
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ann Van Eeckhaut
- Laboratory of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Laboratory of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Taiwo RO, Sandouka S, Saadi A, Kovac S, Shekh-Ahmad T. Sestrin 3 promotes oxidative stress primarily in neurons following epileptic seizures in rats. Neuropharmacology 2023:109670. [PMID: 37482179 DOI: 10.1016/j.neuropharm.2023.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Epilepsy affects approximately 1% of the global population, with 30% of patients experiencing uncontrolled seizures despite treatment. Reactive oxygen species (ROS) and oxidative stress have been implicated in the pathogenesis of epilepsy. Sestrins are stress-inducible proteins that regulate the ROS response. In particular, Sestrin 3 (SESN3) has been implicated in ROS accumulation and the regulation of proconvulsant genes. To investigate the role of SESN3 in epilepsy, we studied its involvement in rat models of acute seizures and temporal lobe epilepsy. Our results showed that downregulation of SESN3 reduced the oxidative stress induced by seizure activity in neuronal cultures. After acute seizure activity, SESN3 protein levels temporarily increased as early as 3 h after the seizure, whereas kainic acid-induced status epilepticus led to a significant and persistent increase in SESN3 protein levels in the cortex and hippocampus for up to 2 weeks post-status epilepticus. In the chronic epilepsy phase, when spontaneous seizures emerge, SESN3 protein expression is significantly increased in both regions 6 and 12 weeks after status epilepticus. Interestingly, immunohistochemical staining showed a predominant increase in the oxidative stress marker 8-OHdG in neurons in both regions after an acute seizure, whereas following status epilepticus, the marker was detected in both neurons and astrocytes. Our findings suggest that SESN3 may contribute to the development and establishment of epilepsy, and could be a potential therapeutic target for more effective treatments.
Collapse
Affiliation(s)
- Rhoda Olowe Taiwo
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
25
|
Khan Malik AA, Ahmad W, Younas F, Badshah H, Alharazy S, Rehman SU, Naseer MI, Yousef Muthaffar O, Achakzai R, Ullah I. Pretreatment with troxerutin protects/improves neurological deficits in a mouse model of traumatic brain injury. Heliyon 2023; 9:e18033. [PMID: 37483772 PMCID: PMC10362234 DOI: 10.1016/j.heliyon.2023.e18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Traumatic brain injury (TBI) is the major and leading cause of mortality and an alarming public health challenge. TBI leads to permanent cognitive, motor, sensory and psychotic disabilities. Patients suffering from the various and long-term repercussions of TBI currently have limited therapy choices. The current research work was designed to evaluate the beneficial and neuroprotective role of Troxerutin (Trox) (a natural flavonoid) in a closed brain injury mouse model. The male BALB/c 8-weeks old mice (n꞊150) were randomly distributed in three experimental groups. Control group of mice (n꞊50), TBI group (n꞊50) and Trox pre-treated mice group (Trox + TBI, n꞊50). The mice in Trox + TBI were pre-treated with Trox (150 mg/kg, 7 days) before TBI. The weight-drop mechanism was used to induce mild-moderate injury in mice in both the groups. Our results showed that the mice pre-treated with troxerutin significantly improved neurological severity score, blood glucose level, food intake and brain edema as compared to the mice in the TBI group. Furthermore, compared to the TBI group, the mice treated with troxerutin improved cognitive behavior as evaluated by Open field test, Shallow Water Maze and Y-Maze, decreased brain-infarct volume and blood-brain barrier (BBB) permeability, significantly decreased Reactive Oxygen Species (ROS), improved neuronal morphology and survival in the brain regions such as cortex and hippocampus. In summary, our data provided evidence that pre-treatment with troxerutin improved neurological functions, decreased the BBB permeability, improved behavior, reduced ROS and increased neuronal survival in the weight-drop close head traumatic injury mouse model.
Collapse
Affiliation(s)
- Ashfaq Ahmed Khan Malik
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| | - Waqas Ahmad
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| | - Farhan Younas
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| | - Haroon Badshah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | | | - Ikram Ullah
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| |
Collapse
|
26
|
Slinger G, Stevelink R, van Diessen E, Braun KPJ, Otte WM. The importance of discriminative power rather than significance when evaluating potential clinical biomarkers in epilepsy research. Epileptic Disord 2023; 25:285-296. [PMID: 37536951 DOI: 10.1002/epd2.20010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 08/05/2023]
Abstract
OBJECTIVE The quest for epilepsy biomarkers is on the rise. Variables with statistically significant group-level differences are often misinterpreted as biomarkers with sufficient discriminative power. This study aimed to demonstrate the relationship between significant group-level differences and a variable's power to discriminate between individuals. METHODS We simulated normal-distributed datasets from hypothetical populations with varying sample sizes (25-800), effect sizes (Cohen's d: .25-2.50), and variability (standard deviation: 10-35) to assess the impact of these parameters on significance and discriminative power. The simulation data were illustrated by assessing the discriminative power of a potential real-case biomarker-the EEG beta band power-to diagnose generalized epilepsy, using data from 66 children with generalized epilepsy and 385 controls. Additionally, we evaluated recently reported epilepsy biomarkers by comparing their effect sizes to our simulation-derived effect size criterion. RESULTS Group size affects significance but not discriminative power. Discriminative power is much more related to variability and effect size. Our real data example supported these simulation results by demonstrating that group-level significance does not translate, one to one, into discriminative power. Although we found a significant difference in the beta band power between children with and without epilepsy, the discriminative power was poor due to a small effect size. A Cohen's d of at least 1.25 is required to reach good discriminative power in univariable prediction modeling. Slightly over 60% of the biomarkers in our literature search met this criterion. SIGNIFICANCE Rather than statistical significance of group-level differences, effect size should be used as an indicator of a variable's biomarker potential. The minimal required effects size for individual biomarkers-a Cohen's d of 1.25-is large. This calls for multivariable approaches, in which combining multiple variables with smaller effect sizes could increase the overall effect size and discriminative power.
Collapse
Affiliation(s)
- Geertruida Slinger
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remi Stevelink
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric van Diessen
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kees P J Braun
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Willem M Otte
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
28
|
Reynolds A, Vranic-Peters M, Lai A, Grayden DB, Cook MJ, Peterson A. Prognostic interictal electroencephalographic biomarkers and models to assess antiseizure medication efficacy for clinical practice: A scoping review. Epilepsia 2023; 64:1125-1174. [PMID: 36790369 DOI: 10.1111/epi.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Antiseizure medication (ASM) is the primary treatment for epilepsy. In clinical practice, methods to assess ASM efficacy (predict seizure freedom or seizure reduction), during any phase of the drug treatment lifecycle, are limited. This scoping review identifies and appraises prognostic electroencephalographic (EEG) biomarkers and prognostic models that use EEG features, which are associated with seizure outcomes following ASM initiation, dose adjustment, or withdrawal. We also aim to summarize the population and context in which these biomarkers and models were identified and described, to understand how they could be used in clinical practice. Between January 2021 and October 2022, four databases, references, and citations were systematically searched for ASM studies investigating changes to interictal EEG or prognostic models using EEG features and seizure outcomes. Study bias was appraised using modified Quality in Prognosis Studies criteria. Results were synthesized into a qualitative review. Of 875 studies identified, 93 were included. Biomarkers identified were classed as qualitative (visually identified by wave morphology) or quantitative. Qualitative biomarkers include identifying hypsarrhythmia, centrotemporal spikes, interictal epileptiform discharges (IED), classifying the EEG as normal/abnormal/epileptiform, and photoparoxysmal response. Quantitative biomarkers were statistics applied to IED, high-frequency activity, frequency band power, current source density estimates, pairwise statistical interdependence between EEG channels, and measures of complexity. Prognostic models using EEG features were Cox proportional hazards models and machine learning models. There is promise that some quantitative EEG biomarkers could be used to assess ASM efficacy, but further research is required. There is insufficient evidence to conclude any specific biomarker can be used for a particular population or context to prognosticate ASM efficacy. We identified a potential battery of prognostic EEG biomarkers, which could be combined with prognostic models to assess ASM efficacy. However, many confounders need to be addressed for translation into clinical practice.
Collapse
Affiliation(s)
- Ashley Reynolds
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michaela Vranic-Peters
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Lai
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Andre Peterson
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Gudenschwager-Basso EK, Shandra O, Volanth T, Patel DC, Kelly C, Browning JL, Wei X, Harris EA, Mahmutovic D, Kaloss AM, Correa FG, Decker J, Maharathi B, Robel S, Sontheimer H, VandeVord PJ, Olsen ML, Theus MH. Atypical Neurogenesis, Astrogliosis, and Excessive Hilar Interneuron Loss Are Associated with the Development of Post-Traumatic Epilepsy. Cells 2023; 12:1248. [PMID: 37174647 PMCID: PMC10177146 DOI: 10.3390/cells12091248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
| | - Oleksii Shandra
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Troy Volanth
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dipan C. Patel
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Colin Kelly
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Elizabeth A. Harris
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Dzenis Mahmutovic
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | | | - Jeremy Decker
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Engineered Health, Viginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
30
|
Zhu J, Park S, Kim CH, Jeong KH, Kim WJ. Eugenol alleviates neuronal damage via inhibiting inflammatory process against pilocarpine-induced status epilepticus. Exp Biol Med (Maywood) 2023; 248:722-731. [PMID: 36802956 PMCID: PMC10408549 DOI: 10.1177/15353702231151976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/25/2022] [Indexed: 02/22/2023] Open
Abstract
Neuroinflammation is one of the most common pathological outcomes in various neurological diseases. A growing body of evidence suggests that neuroinflammation plays a pivotal role in the pathogenesis of epileptic seizures. Eugenol is the major phytoconstituent of essential oils extracted from several plants and possesses protective and anticonvulsant properties. However, it remains unclear whether eugenol exerts an anti-inflammatory effect to protect against severe neuronal damage induced by epileptic seizures. In this study, we investigated the anti-inflammatory action of eugenol in an experimental epilepsy model of pilocarpine-induced status epilepticus (SE). To examine the protective effect of eugenol via anti-inflammatory mechanisms, eugenol (200 mg/kg) was administrated daily for three days after pilocarpine-induced SE onset. The anti-inflammatory action of eugenol was evaluated by examining the expression of reactive gliosis, pro-inflammatory cytokines, nuclear factor-κB (NF-κB), and the nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 (NLRP3) inflammasome. Our results showed that eugenol reduced SE-induced apoptotic neuronal cell death, mitigated the activation of astrocytes and microglia, and attenuated the expression of interleukin-1β and tumor necrosis factor α in the hippocampus after SE onset. Furthermore, eugenol inhibited NF-κB activation and the formation of the NLRP3 inflammasome in the hippocampus after SE. These results suggest that eugenol is a potential phytoconstituent that suppresses the neuroinflammatory processes induced by epileptic seizures. Therefore, these findings provide evidence that eugenol has therapeutic potential for epileptic seizures.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
31
|
Ratcliffe C, Adan G, Marson A, Solomon T, Saini J, Sinha S, Keller SS. Neurocysticercosis-related Seizures: Imaging Biomarkers. Seizure 2023; 108:13-23. [PMID: 37060627 DOI: 10.1016/j.seizure.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Neurocysticercosis (NCC)-a parasitic CNS infection endemic to developing nations-has been called the leading global cause of acquired epilepsy yet remains understudied. It is currently unknown why a large proportion of patients develop recurrent seizures, often following the presentation of acute seizures. Furthermore, the presentation of NCC is heterogenous and the features that predispose to the development of an epileptogenic state remain uncertain. Perilesional factors (such as oedema and gliosis) have been implicated in NCC-related ictogenesis, but the effects of cystic factors, including lesion load and location, seem not to play a role in the development of habitual epilepsy. In addition, the cytotoxic consequences of the cyst's degenerative stages are varied and the majority of research, relying on retrospective data, lacks the necessary specificity to distinguish between acute symptomatic and unprovoked seizures. Previous research has established that epileptogenesis can be the consequence of abnormal network connectivity, and some imaging studies have suggested that a causative link may exist between NCC and aberrant network organisation. In wider epilepsy research, network approaches have been widely adopted; studies benefiting predominantly from the rich, multimodal data provided by advanced MRI methods are at the forefront of the field. Quantitative MRI approaches have the potential to elucidate the lesser-understood epileptogenic mechanisms of NCC. This review will summarise the current understanding of the relationship between NCC and epilepsy, with a focus on MRI methodologies. In addition, network neuroscience approaches with putative value will be highlighted, drawing from current imaging trends in epilepsy research.
Collapse
Affiliation(s)
- Corey Ratcliffe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Veterinary and Ecological Sciences, National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, University of Liverpool, Liverpool, UK; Tropical and Infectious Diseases Unit, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
32
|
Negi D, Granak S, Shorter S, O'Leary VB, Rektor I, Ovsepian SV. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics 2023; 20:767-778. [PMID: 36884195 PMCID: PMC10275849 DOI: 10.1007/s13311-023-01355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
Collapse
Affiliation(s)
- Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Simon Granak
- National Institute of Mental Health, Topolova 748, Klecany, 25067, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Ivan Rektor
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
33
|
Wang P, Yan F, Dong J, Wang S, Shi Y, Zhu M, Zuo Y, Ma H, Xue R, Zhai D, Song X. A multiple-step screening protocol to identify norepinephrine and dopamine reuptake inhibitors for depression. Phys Chem Chem Phys 2023; 25:8341-8354. [PMID: 36880666 DOI: 10.1039/d2cp05676c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Depression severely impairs the health of people all over the world. Cognitive dysfunction due to depression has resulted in a severe economic burden to family and society induced by the reduction of social functioning of patients. Norepinephrine-dopamine reuptake inhibitors (NDRIs) targeted with the human norepinephrine transporter (hNET) and distributed with the human dopamine transporter (hDAT) simultaneously treat depression and improve cognitive function, and they effectively prevent sexual dysfunction and other side effects. Because many patients continue to poorly respond to NDRIs, it is urgent to discover novel NDRI antidepressants that do not interfere with cognitive function. The aim of this work was to selectively identify novel NDRI candidates acting against hNET and hDAT from large compound libraries by a comprehensive strategy integrating support vector machine (SVM) models, ADMET, molecular docking, in vitro binding assays, molecular dynamics simulation, and binding energy calculation. First, 6522 compounds that do not inhibit the human serotonin transporter (hSERT) were obtained by SVM models of hNET, hDAT, and non-target hSERT with similarity analyses from compound libraries. ADMET and molecular docking were then used to identify compounds that could potently bind to the hNET and hDAT with satisfactory ADMET, and 4 compounds were successfully identified. According to their docking scores and ADMET information, 3719810 was advanced for profiling by in vitro assays as a novel NDRI lead compound due to its strongest druggability and balancing activities. Encouragingly, 3719810 performed comparative activities on two targets, with Ki values of 7.32 μM for hNET and 5.23 μM for hDAT. To obtain candidates with additional activities and balance the activities of 2 targets, 5 analogs were optimized, and 2 novel scaffold compounds were successively designed. By assessment of molecular docking, molecular dynamics simulations, and binding energy calculations, 5 compounds were validated as NDRI candidates with high activities, and 4 of them performed acceptable balancing activities acting on hNET and hDAT. This work supplied promising novel NDRIs for treatment of depression with cognitive dysfunction or other related neurodegenerative disorders, and also provided a strategy for highly efficient and cost-effective identification of inhibitors for dual targets with homologous non-targets.
Collapse
Affiliation(s)
- Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fengmei Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Shengqiang Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Yu Shi
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Mengdan Zhu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Yuting Zuo
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Hui Ma
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Ruirui Xue
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Dingjie Zhai
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaoyu Song
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
34
|
von Rüden EL, Janssen-Peters H, Reiber M, van Dijk RM, Xiao K, Seiffert I, Koska I, Hubl C, Thum T, Potschka H. An exploratory approach to identify microRNAs as circulatory biomarker candidates for epilepsy-associated psychiatric comorbidities in an electrical post-status epilepticus model. Sci Rep 2023; 13:4552. [PMID: 36941269 PMCID: PMC10027890 DOI: 10.1038/s41598-023-31017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Patients with epilepsy have a high risk of developing psychiatric comorbidities, and there is a particular need for early detection of these comorbidities. Here, in an exploratory, hypothesis-generating approach, we aimed to identify microRNAs as potential circulatory biomarkers for epilepsy-associated psychiatric comorbidities across different rat models of epilepsy. The identification of distress-associated biomarkers can also contribute to animal welfare assessment. MicroRNA expression profiles were analyzed in blood samples from the electrical post-status epilepticus (SE) model. Preselected microRNAs were correlated with behavioral and biochemical parameters in the electrical post-SE model, followed by quantitative real-time PCR validation in three additional well-described rat models of epilepsy. Six microRNAs (miR-376a, miR-429, miR-494, miR-697, miR-763, miR-1903) were identified showing a positive correlation with weight gain in the early post-insult phase as well as a negative correlation with social interaction, saccharin preference, and plasma BDNF. Real-time PCR validation confirmed miR-203, miR-429, and miR-712 as differentially expressed with miR-429 being upregulated across epilepsy models. While readouts from the electrical post-SE model suggest different microRNA candidates for psychiatric comorbidities, cross-model analysis argues against generalizability across models. Thus, further research is necessary to compare the predictive validity of rodent epilepsy models for detection and management of psychiatric comorbidities.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Heike Janssen-Peters
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ke Xiao
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Christina Hubl
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Thomas Thum
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany.
| |
Collapse
|
35
|
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal. Diagnostics (Basel) 2023; 13:diagnostics13061048. [PMID: 36980356 PMCID: PMC10047193 DOI: 10.3390/diagnostics13061048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.
Collapse
|
36
|
Nomair AM, Mekky JF, El-Hamshary SA, Nomeir HM. Circulating miR-146a-5p and miR-132-3p as potential diagnostic biomarkers in epilepsy. Epilepsy Res 2023; 191:107089. [PMID: 36801489 DOI: 10.1016/j.eplepsyres.2023.107089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/11/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE MiRNAs are important gene-regulating agents in epilepsy development, according to new research. The purpose of this study is to investigate the relationship between serum expression of miR-146a-5p and miR-132-3p and epilepsy in Egyptian patients as potential diagnostic and therapeutic biomarkers. METHODS MiR-146a-5p and miR-132-3p were measured in the serum of 40 adult epilepsy patients and 40 controls using real-time polymerase chain reaction. The comparative cycle threshold (CT) approach (2-ΔΔCT) was used to compute relative expression levels, which were normalized to cel-miR-39 expression and compared to healthy controls. The diagnostic performance of miR-146a-5p and miR-132-3p was assessed using receiver operating characteristic curve analysis. RESULTS The relative expression levels of miR-146a-5p and miR-132-3p in serum were considerably greater in epilepsy patients than in the control group. There was a significant difference in the miRNA-146a-5p relative expression in the focal group when the non-responders were compared with the responders' groups, and a significant difference when comparing the non-responders' focal and the non-responders' generalized groups, however, univariate logistic regression analysis revealed that increased seizure frequency is the only risk factor among all factors affecting the drug response There was a significant difference in epilepsy duration between miR-132-3p high and low expression. With an area under the curve of 0.714 (95% C. I 0.598-0.830; P = 0.001), the combined miR-146a-5p and miR-132-3p serum levels performed better than each separately as a diagnostic biomarker to distinguish epilepsy patients from controls. SIGNIFICANCE The findings imply that both miR-146a-5p and miR-132-3p may be involved in epileptogenesis regardless of epilepsy subtypes. Although the combined circulating miRNAs may be useful as a diagnostic biomarker, they are not a predictor of drug response. MiR-132-3p might be used to predict epilepsy's prognosis by demonstrating its chronicity.
Collapse
Affiliation(s)
- Azhar Mohamed Nomair
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Egypt.
| | - Jaidaa Farouk Mekky
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Egypt.
| | | | - Hanan Mohamed Nomeir
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
37
|
Shelyagin IS, Akimova PO, Stefanov SZ, Sufianov RA. Predictors of surgical outcomes in patients with drug-resistant temporal lobe epilepsy. SECHENOV MEDICAL JOURNAL 2023. [DOI: 10.47093/2218-7332.2022.13.3.24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aim. To identify predictors of surgical outcomes in patients with drug-resistant temporal lobe epilepsy in a multivariate model.Materials and methods. Aretrospective study included 69 patients with drug-resistant temporal lobe epilepsy who underwent microsurgical anterior temporal lobectomy. The study included 31 (45%) men and 38 (55%) women. The median age was 28 (21; 36). Surgical treatment outcomes were assessed at 6, 12, 36, and 60 months after surgical intervention according to the Engel Epilepsy Surgery Outcome Scale. Logistic regression equations were calculated, a ROC curve was constructed, and odds ratio (OR) with 95% confidence interval (CI), sensitivity, specificity, area under the ROC curve (AUC) were calculated.Results. In all assessed time periods, 88.3–93.0% of patients had outcomes consistent with Engel classes I and II. The distribution of patients by outcome classes did not change statistically significantly over the entire follow-up period. There were the following predictors of high efficacy of surgical treatment at 6 months after surgery: relatively shorter duration of active disease course (OR 0.719, 95%, CI: 0.437–0.966, p < 0.05), absence of status epilepticus (OR 0.048, 95% CI: 0.002–0.472, p < 0.05), absence of subdominant foci of irritative activity (OR 0.123, 95% CI: 0.012–0.845, p < 0.01), presence of mesial temporal sclerosis (OR 1008, 95% CI: 21.59–1310851, p < 0.01), a relatively longer resection margin on the temporal lobe (OR 637.32, 95% CI: 5.43–1960062, p < 0.05), lateralization of epileptogenic zone in subdominant hemisphere (OR 0.103, 95% CI 0.004–0.937, p = 0.0532). AUC was 0.957 (0.917–0.997), p < 0.0001; sensitivity 87.5%, and specificity 82.8%.Conclusion. Independent predictors of the efficacy of microsurgical anterior temporal lobectomy in patients with drug-resistant temporal lobe epilepsy are the following: shorter duration of active disease course, absence of status epilepticus in the history, absence of subdominant foci, presence of mesial temporal sclerosis, a relatively longer resection margin on the temporal lobe, and lateralization of the epileptogenic zone in the temporal lobe of the subdominant hemisphere.
Collapse
Affiliation(s)
- I. S. Shelyagin
- Tyumen State Medical University; Federal Centre of Neurosurgery
| | | | | | - R. A. Sufianov
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
38
|
Xu K, Xie P, Deng J, Tang C, Wang X, Guan Y, Zhou J, Li T, Liang X, Jing B, Gao JH, Luan G. Long-term ANT-DBS effects in pilocarpine-induced epileptic rats: A combined 9.4T MRI and histological study. J Neurosci Res 2023; 101:916-929. [PMID: 36696411 DOI: 10.1002/jnr.25169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) appears to be effective against seizures in animals and humans however, its therapeutic mechanisms remain elusive. This study aimed to combine 9.4T multimodal magnetic resonance imaging (MRI) with histology to investigate the longitudinal effects of long-term ANT-DBS in pilocarpine-induced epileptic rats. Status epilepsy (SE) was induced by LiCl-pilocarpine injection in 11 adult male Sprague-Dawley rats. Four weeks after SE, chronic epileptic rats underwent either ANT-DBS (n = 6) or sham-DBS (n = 5) surgery. Electroencephalography (EEG) and spontaneous recurrent seizures (SRS) were recorded for 1 week. The T2-weighted image and images from resting-state functional MRI (rs-fMRI) were acquired at three states: before SE, at 4 weeks post-SE, and at 5 weeks post-DBS. Volumes of the hippocampal subregions and hippocampal-related functional connectivity (FC) were compared longitudinally. Finally, antibodies against neuronal nuclei (NeuN) and glial fibrillary acidic proteins were used to evaluate neuronal loss and astrogliosis in the hippocampus. Long-term ANT-DBS significantly reduced seizure generalization in pilocarpine-induced epileptic rats. By analyzing the gray matter volume using T2-weighted images, long-term ANT-DBS displayed morphometric restoration of the hippocampal subregions. Neuronal protection of the hippocampal subregions and inhibition of astrogliosis in the hippocampal subregions were observed in the ANT-DBS group. ANT-DBS caused reversible regulation of FC in the insula-hippocampus and subthalamic nucleus-hippocampus. Long-term ANT-DBS provides comprehensive protection of hippocampal histology, hippocampal morphometrics, and hippocampal-related functional networks.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Pandeng Xie
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Epilepsy, Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaohang Liang
- Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for MRI Research, Peking University, Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for MRI Research, Peking University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023; 13:metabo13010083. [PMID: 36677008 PMCID: PMC9866293 DOI: 10.3390/metabo13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in adults. Experimental and clinical data indicate that neuroinflammation and neurodegeneration accompanying epileptogenesis make a significant contribution to the chronicity of epilepsy and the development of drug resistance in TLE cases. Changes in plasma and serum concentrations of proteins associated with neuroinflammation and neurodegeneration can be predictive biomarkers of the course of the disease. This study used an enzyme-linked immunosorbent assay of the following plasma proteins: brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNFa), and high-mobility group protein B1 (HMGB1) in patients with mesial TLE to search for biomarkers of the disease. The objective of the study was to examine biomarkers of the neuroinflammation and neurodegeneration of plasma: BDNF, TNFa, and HMGB1. The aim of the study was to identify changes in the concentration of circulating pro-inflammatory and neurotrophic factors that are prognostically significant for the development of drug resistance and the course of TLE. A decrease in the concentration of BDNF, TNFa, and HMGB1 was registered in the group of patients with TLE compared with the control group. A significant decrease in the concentration of HMGB1 in patients with drug-resistant TLE was observed. Aberrations in plasma concentrations of BDNF, TNFa, and HMGB1 in patients with TLE compared with the controls have been confirmed by earlier studies. A decrease in the expression of the three biomarkers may be the result of neurodegenerative processes caused by the long course of the disease. The results of the study may indicate the acceptability of using HMGB1 and TNFa as prognostic biological markers to indicate the severity of the disease course and the risk of developing drug resistance.
Collapse
|
40
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
McIntosh AM, Wynd AW, Berkovic SF. Extended follow-up after anterior temporal lobectomy demonstrates seizure recurrence 20+ years postsurgery. Epilepsia 2023; 64:92-102. [PMID: 36268808 PMCID: PMC10098858 DOI: 10.1111/epi.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Anterior temporal lobectomy (ATL) for medication-resistant localized epilepsy results in ablation or reduction of seizures for most patients. However, some individuals who attain an initial extended period of postsurgical seizure freedom will experience a later seizure recurrence. In this study, we examined the prevalence and some risk factors for late recurrence in an ATL cohort with extensive regular follow-up. METHODS Included were 449 patients who underwent ATL at Austin Health, Australia, from 1978 to 2008. Postsurgical follow-up was undertaken 2-3 yearly. Seizure recurrence was tested using Kaplan-Meier analysis, log-rank test, and Cox regression. Late recurrence was qualified as a first disabling seizure >2 years postsurgery. We examined risks within the ATL cohort according to broad pathology groups and tested whether late recurrence differed for the ATL cohort compared to patients who had resections outside the temporal lobe (n = 98). RESULTS Median post-ATL follow-up was 22 years (range = .1-38.6), 6% were lost to follow-up, and 12% had died. Probabilities for remaining completely seizure-free after surgery were 51% (95% confidence interval [CI] = 53-63) at 2 postoperative years, 36% (95% CI = 32-41) at 10 years, 32% (95% CI = 27-36) at 20 years, and 30% (95% CI = 25-34) at 25 years. Recurrences were reported up to 23 years postoperatively. Late seizures occurred in all major ATL pathology groups, with increased risk in the "normal" and "distant lesion" groups (p ≤ .03). Comparison between the ATL cohort and patients who underwent extratemporal resection demonstrated similar patterns of late recurrence (p = .74). SIGNIFICANCE Some first recurrences were very late, reported decades after ATL. Late recurrences were not unique to any broad ATL pathology group and did not differ according to whether resections were ATL or extratemporal. Reports of these events by patients with residual pathology suggest that potentially epileptogenic abnormalities outside the area of resection may be implicated as one of several possible underlying mechanisms.
Collapse
Affiliation(s)
- Anne M McIntosh
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Melbourne Brain Centre at Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Alex W Wynd
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Mao S, Wu J, Yan J, Zhang W, Zhu F. Dysregulation of miR-146a: a causative factor in epilepsy pathogenesis, diagnosis, and prognosis. Front Neurol 2023; 14:1094709. [PMID: 37213914 PMCID: PMC10196196 DOI: 10.3389/fneur.2023.1094709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
miR-146a is an NF-κB-dependent miRNA that acts as an anti-inflammatory miRNA via the Toll-like receptor (TLR) pathway. miR-146a targets multiple genes and has been identified to directly or indirectly regulate processes other than inflammation, including intracellular Ca changes, apoptosis, oxidative stress, and neurodegeneration. miR-146a is an important regulator of gene expression in epilepsy development and progression. Furthermore, miR-146a-related single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) contribute to the genetic susceptibility to drug resistance and seizure severity in epilepsy patients. This study summarizes the abnormal expression patterns of miR-146a in different types and stages of epilepsy and its potential molecular regulation mechanism, indicating that miR-146a can be used as a novel biomarker for epilepsy diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jinhan Wu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingkai Yan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Weijun Zhang
- Department of Neurology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Weijun Zhang
| | - Feng Zhu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
- Feng Zhu
| |
Collapse
|
43
|
Zavala-Tecuapetla C, Luna-Munguia H, López-Meraz ML, Cuellar-Herrera M. Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence. Int J Mol Sci 2022; 23:ijms232416181. [PMID: 36555823 PMCID: PMC9783044 DOI: 10.3390/ijms232416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
- Correspondence:
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa 91190, Mexico
| | - Manola Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
44
|
Deep brain stimulation of the anterior nuclei of the thalamus in focal epilepsy. Clin Neurophysiol 2022; 144:1-7. [PMID: 36193600 DOI: 10.1016/j.clinph.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To review the therapeutic effects of deep brain stimulation of the anterior nuclei of the thalamus (ANT-DBS) and the predictors of its effectiveness, safety, and adverse effects. METHODS A comprehensive search of the medical literature (PubMed) was conducted to identify relevant articles investigating ANT-DBS therapy for epilepsy. Out of 332 references, 77 focused on focal epilepsies were reviewed. RESULTS The DBS effect is probably due to decreased synchronization of epileptic activity in the cortex. The potential mechanisms from cellular to brain network levels are presented. The ANT might participate actively in the network elaborating focal seizures. The effects of ANT-DBS differed in various studies; ANT-DBS was linked with a 41% seizure frequency reduction at 1 year, 69% at 5 years, and 75% at 7 years. The most frequently reported adverse effects, depression and memory impairment, were considered non-serious in the long-term follow-up view. ANT-DBS also has been used in a few cases to treat status epilepticus. CONCLUSIONS We reviewed the clinical literature and identified several factors that may predict seizure outcome following DBS therapy. More large-scale trials are required since there is a need to explore stimulation settings, apply patient-tailored therapy, and identify the presurgical predictors of patient response. SIGNIFICANCE A critical review of the published literature on ANT-DBS in focal epilepsy is presented. ANT-DBS mechanisms are not fully understood; possible explanations are provided. Biomarkers of ANT-DBS effectiveness may lead to patient-tailored therapy.
Collapse
|
45
|
Establishment and validation of PTE prediction model in patients with cerebral contusion. Sci Rep 2022; 12:20574. [PMID: 36446999 PMCID: PMC9708650 DOI: 10.1038/s41598-022-24824-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is an important cause of poor prognosis in patients with cerebral contusions. The primary purpose of this study is to evaluate the high-risk factors of PTE by summarizing and analyzing the baseline data, laboratory examination, and imaging features of patients with a cerebral contusion, and then developing a Nomogram prediction model and validating it. This study included 457 patients diagnosed with cerebral contusion who met the inclusion criteria from November 2016 to November 2019 at the Qinghai Provincial People's Hospital. All patients were assessed for seizure activity seven days after injury. Univariate analysis was used to determine the risk factors for PTE. Significant risk factors in univariate analysis were selected for binary logistic regression analysis. P < 0.05 was statistically significant. Based on the binary logistic regression analysis results, the prediction scoring system of PTE is established by Nomogram, and the line chart model is drawn. Finally, external validation was performed on 457 participants to assess its performance. Univariate and binary logistic regression analyses were performed using SPSS software, and the independent predictors significantly associated with PTE were screened as Contusion site, Chronic alcohol use, Contusion volume, Skull fracture, Subdural hematoma (SDH), Glasgow coma scale (GCS) score, and Non late post-traumatic seizure (Non-LPTS). Based on this, a Nomogram model was developed. The prediction accuracy of our scoring system was C-index = 98.29%. The confidence interval of the C-index was 97.28% ~ 99.30%. Internal validation showed that the calibration plot of this model was close to the ideal line. This study developed and verified a highly accurate Nomogram model, which can be used to individualize PTE prediction in patients with a cerebral contusion. It can identify individuals at high risk of PTE and help us pay attention to prevention in advance. The model has a low cost and is easy to be popularized in the clinic. This model still has some limitations and deficiencies, which need to be verified and improved by future large-sample and multicenter prospective studies.
Collapse
|
46
|
Pingue V, Mele C, Biscuola S, Nardone A, Bagnato S, Franciotta D. Impact of seizures and their prophylaxis with antiepileptic drugs on rehabilitation course of patients with traumatic or hemorrhagic brain injury. Front Neurol 2022; 13:1060008. [DOI: 10.3389/fneur.2022.1060008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
ObjectiveTo determine whether, in patients undergoing rehabilitation after traumatic or hemorrhagic brain injury, seizures and the use of antiepileptic drugs (AEDs) negatively impact on functional outcome, and, in turn, whether prophylactic AED therapy can prevent the development of seizures.DesignObservational retrospective study.SettingHighly specialized inpatient neurorehabilitation clinic.ParticipantsPatients with traumatic brain injury (TBI), or hemorrhagic stroke (HS) consecutively admitted to our neurorehabilitation unit between January 1, 2009, and December 31, 2018.Main measures and variablesPatients' demographic data, neurological status (Glasgow Coma Scale), and rehabilitation outcome (Functional Independence Measure scale), both assessed on admission and on discharge, associated neurosurgical procedures (craniectomy, or cranioplasty), AED use, early or late seizures occurrence, and death during hospitalization.ResultsOf 740 patients, 162 (21.9%) had seizures, and prophylactic AEDs were started in 192 (25.9%). Multivariate logistic regression identified severity of brain injury as a risk factor for acute symptomatic seizures (ASS) in HS (OR = 1.800, 95%CI = 1.133–1.859, p = 0.013), and for unprovoked seizures (US) in TBI (OR = 1.679, 95%CI = 1.062–2.655, p = 0.027). Prophylaxis with AEDs reduced ASS frequency, but, if protracted for months, was associated with US occurrence (HS, p < 0.0001; TBI, p = 0.0002; vs. untreated patients). Presence of US (β = −0.12; p < 0.0001) and prophylaxis with AEDs (β = −0.09; p = 0.002), were associated with poor functional outcome, regardless of age, severity of brain insult, and HS vs. TBI subtype.ConclusionsSeverity of brain injury and occurrence of seizures during neurorehabilitation are the main driver of poor outcome in both HS and TBI. The possible detrimental role on the epileptogenic and functional outcome played by seizures prophylaxis with AEDs, nonetheless useful to prevent ASS if administered over the first week after the brain injury, warrants further investigation.
Collapse
|
47
|
Abstract
INTRODUCTION Neonatal seizures are frequent and carry a detrimental prognostic outlook. Diagnosis is based on EEG confirmation. Classification has recently changed. AREAS COVERED We consulted original papers, book chapters, atlases, and reviews to provide a narrative overview on EEG characteristics of neonatal seizures. We searched PubMed, without time restrictions (last visited: 31 May 2022). Additional papers were extracted from the references list of selected papers. We describe the typical neonatal ictal EEG discharges morphology, location, and propagation, together with age-dependent features. Etiology-dependent electroclinical features, when identifiable, are presented for both acute symptomatic neonatal seizures and neonatal-onset epilepsies and developmental/epileptic encephalopathies. The few ictal variables known to predict long-term outcome have been discussed. EXPERT OPINION Multimodal neuromonitoring in critically ill newborns, high-density EEG, and functional neuroimaging might increase our insight into the neurophysiological bases of seizures in newborns. Increasing availability of long-term monitoring with conventional video-EEG and automated detection methods will allow clinicians and researchers to gather an ever expanding bulk of clinical and neurophysiological data to enhance accuracy with deep phenotyping. The latest classification proposal represents an input for critically revising our diagnostic abilities with respect to seizure definition, duration, and semiology, possibly further promoting clinical research.
Collapse
Affiliation(s)
- Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
48
|
Li J, Zhou Y, Song L, Yang S, Wang Q, Zhou Y, Zhang XB, Qing Z, Yang R. Brain-targeted Near-Infrared Nanobeacon for In Situ Monitoring H 2S Fluctuation during Epileptic Seizures. Anal Chem 2022; 94:15085-15092. [PMID: 36266763 DOI: 10.1021/acs.analchem.2c03254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epilepsy is a neurological brain disease, and its recurrent seizures are related to the reductive substance-powered antioxidant defense system (ADS). However, until now, there has been no report on the study of in situ antioxidant fluctuation during epilepsy of varying severity. In this work, hydrogen sulfide (H2S) was selected as the model target, a H2S-responsive near-infrared fluorophore was designed and synthesized, and an amphiphilic molecule was synthesized and modified with angiopep-2 peptide at its hydrophilic terminus. A nanobeacon termed as BFPP was prepared by the formation of micelles with the package of the fluorophore. The nanobeacon was sensitive to H2S, with a low detection limit of 17 nM. The H2S fluctuation in cells can be monitored by fluorescence imaging. In addition, angiopep-2 peptide at the surface of BFPP helps it cross the blood-brain barrier, and near-infrared fluorescence improves in vivo imaging. BFPP revealed that H2S was at a moderate level in the normal brain, but its level was obviously elevated during mild epilepsy because of the activation of the ADS while significantly suppressed during severe epilepsy due to neuronal damage. This approach is generally accessible for other targets by altering the responsive fluorophore, with significance for in situ analysis of brain pathology.
Collapse
Affiliation(s)
- Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ying Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lifei Song
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Qianqian Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
49
|
Min J, Chen Q, Wu W, Zhao J, Luo X. Identification of mRNA expression biomarkers associated with epilepsy and response to valproate with co-expression analysis. Front Neurol 2022; 13:1019121. [DOI: 10.3389/fneur.2022.1019121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeValproate (VPA) resistance was reported to be an important predictor of intractable epilepsy. We conducted this study to identify candidate biomarkers in peripheral blood correlated with VPA resistance.MethodsThe microarray dataset (GSE143272) was downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed to construct co-expression modules and obtain the most prominent module associated with VPA resistance. Differentially expressed genes (DEGs) between VPA-responsive and VPA-resistant patients were obtained using the “Limma” package in R. The intersections between the most prominent module and DEGs were identified as target genes. Metascape was performed to discover the possible involved pathways of the target genes. GeneCards database was used to know the function of each target gene.ResultsAll genes in the GSE143272 were divided into 24 different modules. Among these modules, the darkred module showed a pivotal correlation with VPA resistance. A total of 70 DEGs between VPA-responsive and VPA-resistant patients were identified. After taking the intersection, 25 target genes were obtained. The 25 target genes were significantly enriched in T cell receptor recognition, T cell receptor signaling pathway, regulation of T cell activation, cytokine–cytokine receptor interaction, and in utero embryonic development. Half of the target genes (CD3D, CD3G, CXCR3, CXCR6, GATA3, GZMK, IL7R, LIME1, SIRPG, THEMIS, TRAT1, and ZNF683) were directly involved in the T cell development, migration, and activation signaling pathway.ConclusionWe identified 25 target genes prominently associated with VPA resistance, which could be potential candidate biomarkers for epilepsy resistance in peripheral blood. The peripheral blood T cells may play a crucial role in VPA resistance. Those genes and pathways might become therapeutic targets with clinical usefulness in the future.
Collapse
|
50
|
Džurlić A, Omerhodžić I, Rovčanin B, Alagić F, Ahmetspahić A, Zahirović S, Mehmedika-Suljic E. Association of IDH1 Mutations with Epilepsies in Patients with Diffuse Adult Glioma according to the WHO 2021 Classification. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Tumors of the central nervous system comprise a wide range of over 100 histological distinct subtypes with different descriptive epidemiology, clinical features, treatments, and outcomes. The presence of isocitrate dehydrogenase gene mutation 1 (IDH1) has become one of the most critical biomarkers for molecular classification and prognosis in adult diffuse gliomas. About 65–90% of patients with adult diffuse gliomas have seizures as their initial symptoms.
AIM: The objective of this study was to determine the association between IDH1 mutations in adult diffuse gliomas with an incidence of symptomatic epilepsy.
METHODS: The study was conducted as an observational, cross-sectional, and prospective clinically controlled study at the Clinic of Neurosurgery of the Clinical Center of the University of Sarajevo. The research included a total of 100 patients treated at the Clinic of Neurosurgery, with pathohistological confirmation of glioma Grades II–IV who were stratified by groups according to tumor grade. Data were collected on tumor localization and grade, the presence of IDH mutations, and the presence of epileptic seizures as the first symptom of the glioma.
RESULTS: Out of a total of 100 patients, 39 had IDH 1 mutations, while 61 patients were without them: Of these, diffuse astrocytoma Grade II 30 cases (30%), Grade III 5 (5%), and Grade IV 7 (7%), and the number of patients with glioblastoma was 58 (58%). In the group of patients with IDH 1 mutations, epileptic seizures were present in 87.2% compared to the group of patients without IDH 1 mutations (wild type) in which epileptic seizures were present in 16.4% of cases. Statistical analysis showed that the positive mutated IDH-type carries an almost 70% increase in the likelihood of epileptic seizures (χ2 = 8.378; p = 0.0001). If we separate the group of diffuse astrocytomas in the IDH 1-positive subgroup, 34 patients (85.81%) had epileptic seizures, while in the IDH 1-negative subgroup, there were no patients with epileptic seizures, which carries a statistically significant difference in frequency in favor of IDH 1-positive tumors (p ≤ 0.001).
CONCLUSION: There is a clear connection between the presence of IDH1 mutations and the occurrence of epileptic seizures in the clinical picture of patients with diffuse adult glioma.
Collapse
|