1
|
Sreeya Devarakonda S, Basha S, Pithakumar A, Thoshna, Mukunda DC, Rodrigues J, Ameera K, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular Mechanisms of Neurofilament Alterations and its Application in Assessing Neurodegenerative Disorders. Ageing Res Rev 2024:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid, which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant axonal neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Thoshna
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - K Ameera
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
2
|
Tang Y, Yang C, Wang Y, Zhang Y, Xin J, Zhang H, Xie H. Uncovering neural substrates across Alzheimer's disease stages using contrastive variational autoencoder. Cereb Cortex 2024; 34:bhae393. [PMID: 39363728 DOI: 10.1093/cercor/bhae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease is the most common major neurocognitive disorder. Although currently, no cure exists, understanding the neurobiological substrate underlying Alzheimer's disease progression will facilitate early diagnosis and treatment, slow disease progression, and improve prognosis. In this study, we aimed to understand the morphological changes underlying Alzheimer's disease progression using structural magnetic resonance imaging data from cognitively normal individuals, individuals with mild cognitive impairment, and Alzheimer's disease via a contrastive variational autoencoder model. We used contrastive variational autoencoder to generate synthetic data to boost the downstream classification performance. Due to the ability to parse out the nonclinical factors such as age and gender, contrastive variational autoencoder facilitated a purer comparison between different Alzheimer's disease stages to identify the pathological changes specific to Alzheimer's disease progression. We showed that brain morphological changes across Alzheimer's disease stages were significantly associated with individuals' neurofilament light chain concentration, a potential biomarker for Alzheimer's disease, highlighting the biological plausibility of our results.
Collapse
Affiliation(s)
- Yan Tang
- School of Electronic Information, Central South University, Changsha, 410148, China
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Chao Yang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Yuqi Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Yunhao Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Jiang Xin
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Hao Zhang
- School of Electronic Information, Central South University, Changsha, 410148, China
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, Washington, DC 20906, USA
- Department of Neurology, George Washington University School of Medicine, Washington, DC 20037, USA
| |
Collapse
|
3
|
Mitolo M, Lombardi G, Manca R, Nacmias B, Venneri A. Association between blood-based protein biomarkers and brain MRI in the Alzheimer's disease continuum: a systematic review. J Neurol 2024:10.1007/s00415-024-12674-w. [PMID: 39264441 DOI: 10.1007/s00415-024-12674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Blood-based biomarkers (BBM) are becoming easily detectable tools to reveal pathological changes in Alzheimer's disease (AD). A comprehensive and up-to-date overview of the association between BBM and brain MRI parameters is not available. This systematic review aimed to summarize the literature on the associations between the main BBM and MRI markers across the clinical AD continuum. A systematic literature search was carried out on PubMed and Web of Science and a total of 33 articles were included. Hippocampal volume was positively correlated with Aβ42 and Aβ42/Aβ40 and negatively with Aβ40 plasma levels. P-tau181 and p-tau217 concentrations were negatively correlated with temporal grey matter volume and cortical thickness. NfL levels were negatively correlated with white matter microstructural integrity, whereas GFAP levels were positively correlated with myo-inositol values in the posterior cingulate cortex/precuneus. These findings highlight consistent associations between various BBM and brain MRI markers even in the pre-clinical and prodromal stages of AD. This suggests a possible advantage in combining multiple AD-related markers to improve accuracy of early diagnosis, prognosis, progression monitoring and treatment response.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Riccardo Manca
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Annalena Venneri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
4
|
Laccetta G, De Nardo MC, Cellitti R, Di Chiara M, Tagliabracci M, Parisi P, Gloria F, Rizzo G, Spalice A, Terrin G. Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study. J Imaging 2024; 10:224. [PMID: 39330444 PMCID: PMC11433113 DOI: 10.3390/jimaging10090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Nutrition in early life has an impact on white matter (WM) development in preterm-born babies. Quantitative analysis of pixel brightness intensity (PBI) on cranial ultrasound (CUS) scans has shown a great potential in the evaluation of periventricular WM echogenicity in preterm newborns. We aimed to investigate the employment of this technique to objectively verify the effects of parenteral nutrition (PN) on periventricular WM damage in preterm infants. Prospective observational study including newborns with gestational age at birth ≤32 weeks and/or birth weight ≤1500 g who underwent CUS examination at term-equivalent age. The echogenicity of parieto-occipital periventricular WM relative to that of homolateral choroid plexus (RECP) was calculated on parasagittal scans by means of quantitative analysis of PBI. Its relationship with nutrient intake through enteral and parenteral routes in the first postnatal week was evaluated. The study included 42 neonates for analysis. We demonstrated that energy and protein intake administered through the parenteral route positively correlated with both right and left RECP values (parenteral energy intake vs. right RECP: r = 0.413, p = 0.007; parenteral energy intake vs. left RECP: r = 0.422, p = 0.005; parenteral amino acid intake vs. right RECP: r = 0.438, p = 0.004; parenteral amino acid intake vs. left RECP: r = 0.446, p = 0.003). Multivariate linear regression analysis confirmed these findings. Quantitative assessment of PBI could be considered a simple, risk-free, and repeatable method to investigate the effects of PN on WM development in preterm neonates.
Collapse
Affiliation(s)
- Gianluigi Laccetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Chiara De Nardo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaella Cellitti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Tagliabracci
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Pasquale Parisi
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Flavia Gloria
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Rizzo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Morcillo‐Nieto AO, Zsadanyi SE, Arriola‐Infante JE, Carmona‐Iragui M, Montal V, Pegueroles J, Aranha MR, Vaqué‐Alcázar L, Padilla C, Benejam B, Videla L, Barroeta I, Fernandez S, Altuna M, Giménez S, González‐Ortiz S, Bargalló N, Ribas L, Arranz J, Torres S, Iulita MF, Belbin O, Camacho V, Alcolea D, Lleó A, Fortea J, Bejanin A. Characterization of white matter hyperintensities in Down syndrome. Alzheimers Dement 2024; 20:6527-6541. [PMID: 39087352 PMCID: PMC11497714 DOI: 10.1002/alz.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION In Down syndrome (DS), white matter hyperintensities (WMHs) are highly prevalent, yet their topography and association with sociodemographic data and Alzheimer's disease (AD) biomarkers remain largely unexplored. METHODS In 261 DS adults and 131 euploid controls, fluid-attenuated inversion recovery magnetic resonance imaging scans were segmented and WMHs were extracted in concentric white matter layers and lobar regions. We tested associations with AD clinical stages, sociodemographic data, cerebrospinal fluid (CSF) AD biomarkers, and gray matter (GM) volume. RESULTS In DS, total WMHs arose at age 43 and showed stronger associations with age than in controls. WMH volume increased along the AD continuum, particularly in periventricular regions, and frontal, parietal, and occipital lobes. Associations were found with CSF biomarkers and temporo-parietal GM volumes. DISCUSSION WMHs increase 10 years before AD symptom onset in DS and are closely linked with AD biomarkers and neurodegeneration. This suggests a direct connection to AD pathophysiology, independent of vascular risks. HIGHLIGHTS White matter hyperintensities (WMHs) increased 10 years before Alzheimer's disease symptom onset in Down syndrome (DS). WMHs were strongly associated in DS with the neurofilament light chain biomarker. WMHs were more associated in DS with gray matter volume in parieto-temporal areas.
Collapse
|
6
|
Coulton JB, He Y, Barthélemy NR, Jiang H, Holtzman DM, Bateman RJ. Multi-peptide characterization of plasma neurofilament light chain in preclinical and mild Alzheimer's disease. Brain Commun 2024; 6:fcae247. [PMID: 39165480 PMCID: PMC11334934 DOI: 10.1093/braincomms/fcae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Although neurofilament light chain is a well-known marker of neuronal damage, its characterization at the proteoform level is underdeveloped. Here, we describe a new method to profile and quantify neurofilament light chain in plasma at the peptide level, using three in-house monoclonal antibodies targeting distinct protein domains and nano-liquid chromatography coupled to high-resolution tandem mass spectrometry. This study profiled and compared plasma neurofilament light chain to CSF in 102 older individuals (73.9 ± 6.3 years old), 37 of which had a clinical dementia rating greater than 0. We observed elevated neurofilament light chain in preclinical Alzheimer's disease plasma for two measures (NfL101 and NfL324) and CSF for seven measures (NfL92, NfL101, NfL117, NfL137, NfL148, NfL165 and NfL530). We found five plasma peptides (NfL92, NfL101, NfL117, NfL324 and NfL530) significantly associated with age and two (NfL148 and NfL324) with body mass index.
Collapse
Affiliation(s)
- John B Coulton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Tato-Fernández C, Ekblad LL, Pietilä E, Saunavaara V, Helin S, Parkkola R, Zetterberg H, Blennow K, Rinne JO, Snellman A. Cognitively healthy APOE4/4 carriers show white matter impairment associated with serum NfL and amyloid-PET. Neurobiol Dis 2024; 192:106439. [PMID: 38365046 DOI: 10.1016/j.nbd.2024.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Except for aging, carrying the APOE ε4 allele (APOE4) is the most important risk factor for sporadic Alzheimer's disease. APOE4 carriers may have reduced capacity to recycle lipids, resulting in white matter microstructural abnormalities. In this study, we evaluated whether white matter impairment measured by diffusion tensor imaging (DTI) differs between healthy individuals with a different number of APOE4 alleles, and whether white matter impairment associates with brain beta-amyloid (Aβ) load and serum levels of neurofilament light chain (NfL). We studied 96 participants (APOE3/3, N = 37; APOE3/4, N = 39; APOE4/4, N = 20; mean age 70.7 (SD 5.22) years, 63% females) with a brain MRI including a DTI sequence (N = 96), Aβ-PET (N = 89) and a venous blood sample for the serum NfL concentration measurement (N = 88). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) in six a priori-selected white matter regions-of-interest (ROIs) were compared between the groups using ANCOVA, with sex and age as covariates. A voxel-weighted average of FA, MD, RD and AxD was calculated for each subject, and correlations with Aβ-PET and NfL levels were evaluated. APOE4/4 carriers exhibited a higher MD and a higher RD in the body of corpus callosum than APOE3/4 (p = 0.0053 and p = 0.0049, respectively) and APOE3/3 (p = 0.026 and p = 0.042). APOE4/4 carriers had a higher AxD than APOE3/4 (p = 0.012) and APOE3/3 (p = 0.040) in the right cingulum adjacent to cingulate cortex. In the total sample, composite MD, RD and AxD positively correlated with the cortical Aβ load (r = 0.26 to 0.33, p < 0.013 for all) and with serum NfL concentrations (r = 0.31 to 0.36, p < 0.0028 for all). In conclusion, increased local diffusivity was detected in cognitively unimpaired APOE4/4 homozygotes compared to APOE3/4 and APOE3/3 carriers, and increased diffusivity correlated with biomarkers of Alzheimer's disease and neurodegeneration. White matter impairment seems to be an early phenomenon in the Alzheimer's disease pathologic process in APOE4/4 homozygotes.
Collapse
Affiliation(s)
- Claudia Tato-Fernández
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland.
| | - Laura L Ekblad
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Geriatric Medicine, Turku University Hospital, Turku, Finland
| | - Elina Pietilä
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, Turku, Finland; Department of Radiology, University of Turku, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Hermesdorf M, Wulms N, Maceski A, Leppert D, Benkert P, Wiendl H, Kuhle J, Berger K. Serum neurofilament light and white matter characteristics in the general population: a longitudinal analysis. GeroScience 2024; 46:463-472. [PMID: 37285009 PMCID: PMC10828306 DOI: 10.1007/s11357-023-00846-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Neurofilament light polypeptide (NfL) is a component of the neuronal cytoskeleton and particularly abundant in large-caliber axons. When axonal injury occurs, NfL is released and reaches the cerebrospinal fluid and the blood. Associations between NfL and white matter alterations have previously been observed in studies based on patients with neurological diseases. The current study aimed to explore the relationship between serum NfL (sNfL) and white matter characteristics in a population-based sample. The cross-sectional associations between sNfL as dependent variable, fractional anisotropy (FA), and white matter lesion (WML) volume were analyzed with linear regression models in 307 community-dwelling adults aged between 35 and 65 years. These analyses were repeated with additional adjustment for the potential confounders age, sex, and body mass index (BMI). Longitudinal associations over a mean follow-up of 5.39 years were analyzed with linear mixed models. The unadjusted cross-sectional models yielded significant associations between sNfL, WML volume, and FA, respectively. However, after the adjustment for confounders, these associations did not reach significance. In the longitudinal analyses, the findings corroborated the baseline findings showing no significant associations between sNfL and white matter macrostructure and microstructure beyond the effects of age. In synopsis with previous studies in patients with acute neurological diseases showing a significant association of sNfL with white matter changes beyond the effects of age, the present results based on a sample from the general population suggest the perspective that changes in sNfL reflect age-related effects that also manifest in altered white matter macrostructure and microstructure.
Collapse
Affiliation(s)
- Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
| | - Niklas Wulms
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Aleksandra Maceski
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Jung Y, Damoiseaux JS. The potential of blood neurofilament light as a marker of neurodegeneration for Alzheimer's disease. Brain 2024; 147:12-25. [PMID: 37540027 PMCID: PMC11484517 DOI: 10.1093/brain/awad267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL. In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer's continuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we determine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hypometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by Alzheimer's disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker for predicting the progression of neurodegeneration in patients with Alzheimer's disease but also as a susceptibility/risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unimpaired individuals with a higher risk of developing Alzheimer's disease (e.g. those with a higher amyloid-β). There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer's disease-related neurodegeneration in clinical settings, as well as in research settings.
Collapse
Affiliation(s)
- Youjin Jung
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Chong JSX, Tan YJ, Koh AJ, Ting SKS, Kandiah N, Ng ASL, Zhou JH. Plasma Neurofilament Light Relates to Divergent Default and Salience Network Connectivity in Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2024; 99:965-980. [PMID: 38759005 PMCID: PMC11191491 DOI: 10.3233/jad-231251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) show differential vulnerability to large-scale brain functional networks. Plasma neurofilament light (NfL), a promising biomarker of neurodegeneration, has been linked in AD patients to glucose metabolism changes in AD-related regions. However, it is unknown whether plasma NfL would be similarly associated with disease-specific functional connectivity changes in AD and bvFTD. Objective Our study examined the associations between plasma NfL and functional connectivity of the default mode and salience networks in patients with AD and bvFTD. Methods Plasma NfL and neuroimaging data from patients with bvFTD (n = 16) and AD or mild cognitive impairment (n = 38; AD + MCI) were analyzed. Seed-based functional connectivity maps of key regions within the default mode and salience networks were obtained and associated with plasma NfL in these patients. RESULTS We demonstrated divergent associations between NfL and functional connectivity in AD + MCI and bvFTD patients. Specifically, AD + MCI patients showed lower default mode network functional connectivity with higher plasma NfL, while bvFTD patients showed lower salience network functional connectivity with higher plasma NfL. Further, lower NfL-related default mode network connectivity in AD + MCI patients was associated with lower Montreal Cognitive Assessment scores and higher Clinical Dementia Rating sum-of-boxes scores, although NfL-related salience network connectivity in bvFTD patients was not associated with Neuropsychiatric Inventory Questionnaire scores. CONCLUSIONS Our findings indicate that plasma NfL is differentially associated with brain functional connectivity changes in AD and bvFTD.
Collapse
Affiliation(s)
- Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Human Potential Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Human Potential Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Simon Kang Seng Ting
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Human Potential Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
11
|
McGettigan S, Nolan Y, Ghosh S, O'Mahony D. The emerging role of blood biomarkers in diagnosis and treatment of Alzheimer's disease. Eur Geriatr Med 2023; 14:913-917. [PMID: 37648817 DOI: 10.1007/s41999-023-00847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
| | - Yvonne Nolan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Subrata Ghosh
- Department of Medicine, University College Cork, Cork, Ireland
| | - Denis O'Mahony
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
13
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
14
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
15
|
Johnson ECB, Bian S, Haque RU, Carter EK, Watson CM, Gordon BA, Ping L, Duong DM, Epstein MP, McDade E, Barthélemy NR, Karch CM, Xiong C, Cruchaga C, Perrin RJ, Wingo AP, Wingo TS, Chhatwal JP, Day GS, Noble JM, Berman SB, Martins R, Graff-Radford NR, Schofield PR, Ikeuchi T, Mori H, Levin J, Farlow M, Lah JJ, Haass C, Jucker M, Morris JC, Benzinger TLS, Roberts BR, Bateman RJ, Fagan AM, Seyfried NT, Levey AI. Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease. Nat Med 2023; 29:1979-1988. [PMID: 37550416 PMCID: PMC10427428 DOI: 10.1038/s41591-023-02476-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023]
Abstract
Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-β (Aβ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aβ plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aβ plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aβ and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aβ and tau.
Collapse
Affiliation(s)
- Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Shijia Bian
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rafi U Haque
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - E Kathleen Carter
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline M Watson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Lingyan Ping
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Chengjie Xiong
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- Division of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Aliza P Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
- Division of Mental Health, Atlanta VA Medical Center, Atlanta, GA, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah B Berman
- Departments of Neurology and Clinical and Translational Science, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ralph Martins
- Edith Cowan University, Perth, Western Australia, Australia
| | | | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Mori
- Osaka Metropolitan University Medical School, Nagaoka Sutoku University, Nagaoka, Japan
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Blaine R Roberts
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Wheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Jucker M, Karch C, Käser S, Kasuga K, Keefe S, Klunk W, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Lee JH, Levey A, Levin J, Li Y, Lopez O, Marsh J, Martinez R, Martins R, Mason NS, Masters C, Mawuenyega K, McCullough A, McDade E, Mejia A, Morenas-Rodriguez E, Mori H, Morris J, Mountz J, Mummery C, Nadkami N, Nagamatsu A, Neimeyer K, Niimi Y, Noble J, Norton J, Nuscher B, O'Connor A, Obermüller U, Patira R, Perrin R, Ping L, Preische O, Renton A, Ringman J, Salloway S, Sanchez-Valle R, Schofield P, Senda M, Seyfried N, Shady K, Shimada H, Sigurdson W, Smith J, Smith L, Snitz B, Sohrabi H, Stephens S, Taddei K, Thompson S, Vöglein J, Wang P, Wang Q, Weamer E, Xiong C, Xu J, Xu X. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease. Brain 2023; 146:2928-2943. [PMID: 36625756 PMCID: PMC10316768 DOI: 10.1093/brain/awac498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Jeremy F Strain
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David M Cash
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Nick C Fox
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | | | - Jason Hassenstab
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric M McDade
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University in St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Randal J Bateman
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tammie L S Benzinger
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Ma L, Liang D, Song B, Chen J, Huang Y, Xu L, Zhao P, Wu W, Zhang N, Xue R. Neurofilament Light Protein Predicts Disease Progression in Idiopathic REM Sleep Behavior Disorder. JOURNAL OF PARKINSON'S DISEASE 2023:JPD223519. [PMID: 37182898 DOI: 10.3233/jpd-223519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (iRBD) is increasingly recognized as a manifestation preceding the α-synucleinopathies like Parkinson's disease (PD). Neurofilament light chain (NfL) have been reported to be higher in synucleinopathies as a sign of neurodegeneration. OBJECTIVE To evaluate whether plasma NfL is valuable in reflecting cognitive and motor status in iRBD and PD with a premorbid history of RBD (PDRBD), and predicting disease progression in iRBD. METHODS Thirty-one patients with iRBD, 30 with PDRBD, and 18 healthy controls were included in the cross-sectional and prospective study. Another cohort from the Parkinson's Progression Markers Initiative (PPMI) dataset was enrolled for verification analysis. All patients received evaluations of cognitive, motor, and autonomic function by a battery of clinical tests at baseline and follow-up. Blood NfL was measured by the Quanterix Simoa HD-1. RESULTS In our cohort, 26 patients with iRBD completed the follow-up evaluations, among whom eight (30.8%) patients displayed phenoconversion. Baseline plasma NfL cutoff value of 22.93 pg/mL performed best in distinguishing the iRBD converters from non-converters (sensitivity: 75.0%, specificity: 83.3%, area under the curve: 0.84). Cognitive and motor function were significantly correlated with NfL levels in PDRBD (correlation coefficients: -0.379, 0.399; respectively). Higher baseline NfL levels in iRBD were significantly associated with higher risks for cognitive, motor, autonomic function progression, and phenoconversion at follow-up (hazard ratios: 1.069, 1.065, 1.170, 1.065; respectively). The findings were supported by the PPMI dataset. CONCLUSION Plasma NfL is valuable in reflecting disease severity of PDRBD and predicting disease progression and phenoconversion in iRBD.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Li Ma
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Danqi Liang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingxin Song
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingshan Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaqin Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Malek-Ahmadi M, Su Y, Ghisays V, Luo J, Devadas V, Chen Y, Lee W, Protas H, Chen K, Zetterberg H, Blennow K, Caselli RJ, Reiman EM. Plasma NfL is associated with the APOE ε4 allele, brain imaging measurements of neurodegeneration, and lower recall memory scores in cognitively unimpaired late-middle-aged and older adults. Alzheimers Res Ther 2023; 15:74. [PMID: 37038190 PMCID: PMC10084600 DOI: 10.1186/s13195-023-01221-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Plasma neurofilament light (NfL) is an indicator of neurodegeneration and/or neuroaxonal injury in persons with Alzheimer's disease (AD) and a wide range of other neurological disorders. Here, we characterized and compared plasma NfL concentrations in cognitively unimpaired (CU) late-middle-aged and older adults with two, one, or no copies of the APOE ε4 allele, the major genetic risk factor for AD. We then assessed plasma NfL associations with brain imaging measurements of AD-related neurodegeneration (hippocampal atrophy and a hypometabolic convergence index [HCI]), brain imaging measurements of amyloid-β plaque burden, tau tangle burden and white matter hyperintensity volume (WMHV), and delayed and total recall memory scores. METHODS Plasma NfL concentrations were measured in 543 CU 69 ± 9 year-old participants in the Arizona APOE Cohort Study, including 66 APOE ε4 homozygotes (HM), 165 heterozygotes (HT), and 312 non-carriers (NC). Robust regression models were used to characterize plasma NfL associations with APOE ε4 allelic dose before and after adjustment for age, sex, and education. They were also used to characterize plasma NfL associations with MRI-based hippocampal volume and WMHV measurements, an FDG PET-based HCI, mean cortical PiB PET measurements of amyloid-β plaque burden and meta-region-of-interest (meta-ROI) flortaucipir PET measurements of tau tangle burden, and Auditory Verbal Learning Test (AVLT) Delayed and Total Recall Memory scores. RESULTS After the adjustments noted above, plasma NfL levels were significantly greater in APOE ε4 homozygotes and heterozygotes than non-carriers and significantly associated with smaller hippocampal volumes (r = - 0.43), greater tangle burden in the entorhinal cortex and inferior temporal lobes (r = 0.49, r = 0.52, respectively), and lower delayed (r = - 0.27), and total (r = - 0.27) recall memory scores (p < 0.001). NfL levels were not significantly associated with PET measurements of amyloid-β plaque or total tangle burden. CONCLUSIONS Plasma NfL concentrations are associated with the APOE ε4 allele, brain imaging biomarkers of neurodegeneration, and less good recall memory in CU late-middle-aged and older adults, supporting its value as an indicator of neurodegeneration in the preclinical study of AD.
Collapse
Affiliation(s)
| | - Yi Su
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Valentina Ghisays
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Ji Luo
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Vivek Devadas
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Yinghua Chen
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Wendy Lee
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Eric M Reiman
- Banner Alzheimer's Institute, 901 E. Willetta St., Phoenix, AZ, 85006, USA
- Translation Genomics Research Institute, Phoenix, AZ, USA
- University of Arizona, Phoenix, AZ, USA
- Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Beydoun MA, Noren Hooten N, Weiss J, Maldonado AI, Beydoun HA, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light as blood marker for poor brain white matter integrity among middle-aged urban adults. Neurobiol Aging 2023; 121:52-63. [PMID: 36371816 PMCID: PMC9733693 DOI: 10.1016/j.neurobiolaging.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Plasma neurofilament light chain (NfL)'s link to dementia may be mediated through white matter integrity (WMI). In this study, we examined plasma NfL's relationships with diffusion tensor magnetic resonance imaging markers: global and cortical white matter fractional anisotropy (FA) and trace (TR). Plasma NfL measurements at 2 times (v1: 2004-2009 and v2: 2009-2013) and ancillary dMRI (vscan: 2011-2015) were considered (n = 163, mean time v1 to vscan = 5.4 years and v2 to vscan: 1.1 years). Multivariable-adjusted regression models, correcting for multiple-testing revealed that, overall, higher NfLv1 was associated with greater global TR (β ± SE: +0.0000560 ± 0.0000186, b = 0.27, p = 0.003, q = 0.012), left frontal WM TR (β ± SE: + 0.0000706 ± 0.0000201, b ± 0.30, p = 0.001, q = 0.0093) and right frontal WM TR (β ± SE: + 0.0000767 ± 0.000021, b ± 0.31, p < 0.001, q = 0.0093). These associations were mainly among males and White adults. Among African American adults only, NfLv2 was associated with greater left temporal lobe TR. "Tracking high" in NfL was associated with reduced left frontal FA (Model 2, body mass index-adjusted: β ± SE:-0.01084 ± 0.00408, p = 0.009). Plasma NfL is a promising biomarker predicting future brain white matter integrity (WMI) in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, University of Maryland, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Leslie I Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Catonsville, MD, USA; Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Lower White Matter Volume and Worse Executive Functioning Reflected in Higher Levels of Plasma GFAP among Older Adults with and Without Cognitive Impairment. J Int Neuropsychol Soc 2022; 28:588-599. [PMID: 34158138 PMCID: PMC8692495 DOI: 10.1017/s1355617721000813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There are minimal data directly comparing plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in aging and neurodegenerative disease research. We evaluated associations of plasma NfL and plasma GFAP with brain volume and cognition in two independent cohorts of older adults diagnosed as clinically normal (CN), mild cognitive impairment (MCI), or Alzheimer's dementia. METHODS We studied 121 total participants (Cohort 1: n = 50, age 71.6 ± 6.9 years, 78% CN, 22% MCI; Cohort 2: n = 71, age 72.2 ± 9.2 years, 45% CN, 25% MCI, 30% dementia). Gray and white matter volumes were obtained for total brain and broad subregions of interest (ROIs). Neuropsychological testing evaluated memory, executive functioning, language, and visuospatial abilities. Plasma samples were analyzed in duplicate for NfL and GFAP using single molecule array assays (Quanterix Simoa). Linear regression models with structural MRI and cognitive outcomes included plasma NfL and GFAP simultaneously along with relevant covariates. RESULTS Higher plasma GFAP was associated with lower white matter volume in both cohorts for temporal (Cohort 1: β = -0.33, p = .002; Cohort 2: β = -0.36, p = .03) and parietal ROIs (Cohort 1: β = -0.31, p = .01; Cohort 2: β = -0.35, p = .04). No consistent findings emerged for gray matter volumes. Higher plasma GFAP was associated with lower executive function scores (Cohort 1: β = -0.38, p = .01; Cohort 2: β = -0.36, p = .007). Plasma NfL was not associated with gray or white matter volumes, or cognition after adjusting for plasma GFAP. CONCLUSIONS Plasma GFAP may be more sensitive to white matter and cognitive changes than plasma NfL. Biomarkers reflecting astroglial pathophysiology may capture complex dynamics of aging and neurodegenerative disease.
Collapse
|
21
|
Eisenstein SA, Boodram RS, Sutphen CL, Lugar HM, Gordon BA, Marshall BA, Urano F, Fagan AM, Hershey T. Plasma Neurofilament Light Chain Levels Are Elevated in Children and Young Adults With Wolfram Syndrome. Front Neurosci 2022; 16:795317. [PMID: 35495027 PMCID: PMC9039397 DOI: 10.3389/fnins.2022.795317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Wolfram syndrome is a rare disease caused by pathogenic variants in the WFS1 gene with progressive neurodegeneration. As an easily accessible biomarker of progression of neurodegeneration has not yet been found, accurate tracking of the neurodegenerative process over time requires assessment by costly and time-consuming clinical measures and brain magnetic resonance imaging (MRI). A blood-based measure of neurodegeneration, neurofilament light chain (NfL), is relatively inexpensive and can be repeatedly measured at remote sites, standardized, and measured in individuals with MRI contraindications. To determine whether NfL levels may be of use in disease monitoring and reflect disease activity in Wolfram syndrome, plasma NfL levels were compared between children and young adults with Wolfram syndrome (n = 38) and controls composed of their siblings and parents (n = 35) and related to clinical severity and selected brain region volumes within the Wolfram group. NfL levels were higher in the Wolfram group [median (interquartile range) NfL = 11.3 (7.8-13.9) pg/mL] relative to controls [5.6 (4.5-7.4) pg/mL]. Within the Wolfram group, higher NfL levels related to worse visual acuity, color vision and smell identification, smaller brainstem and thalamic volumes, and faster annual rate of decrease in thalamic volume over time. Our findings suggest that plasma NfL levels can be a powerful tool to non-invasively assess underlying neurodegenerative processes in children, adolescents and young adults with Wolfram syndrome.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Raveena S. Boodram
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Courtney L. Sutphen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Heather M. Lugar
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bess A. Marshall
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Desai P, Dhana K, DeCarli C, Wilson RS, McAninch EA, Evans DA, Rajan KB. Examination of Neurofilament Light Chain Serum Concentrations, Physical Activity, and Cognitive Decline in Older Adults. JAMA Netw Open 2022; 5:e223596. [PMID: 35315915 PMCID: PMC8941360 DOI: 10.1001/jamanetworkopen.2022.3596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Little is known about the association of serum neurofilament light chain (NfL) concentrations and physical activity with the rate of cognitive decline in older adults. OBJECTIVE To examine the association of physical activity and NfL concentrations with cognitive decline in older adults over time. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Chicago Health and Aging Project (CHAP), a population-based cohort study that recruited participants through door-to-door census in 4 Chicago-area communities and collected data between 1993 and 2012 in cycles of 3 years. Participants in CHAP who had 2 or more cognitive function assessments and at least 1 blood sample collected for NfL measurement were selected for inclusion in the current study. Data were analyzed from January to December 2021. EXPOSURES Self-reported physical activity (minutes per week) and serum NfL concentration (pg/mL). MAIN OUTCOMES AND MEASURES Associations of baseline physical activity and NfL concentrations with changes in global cognitive function over time as evaluated using the East Boston Memory Test for episodic memory, the Symbol Digit Modalities Test for perceptual speed, and the Mini-Mental State Examination. Mixed-effects regression analyses were conducted to examine associations at baseline and longitudinally. RESULTS The study sample included 1158 participants (695 [60%] African American; 728 [63%] female), with a mean (SD) age of 77.4 (6.0) years and a mean educational level of 12.6 (3.5) years. Among participants with high NfL concentrations (>25 pg/mL), those who engaged in medium physical activity (<150 minutes per week) had a 12% slower rate of global cognitive decline (SD units, or β, -0.065; 95% CI, -0.099 to -0.032) and participants who engaged in high physical activity (≥150 minutes per week) had a 36% slower rate of decline (β, -0.048; 95% CI, -0.080 to -0.016) than did participants with low physical activity (no reported participation) (β, -0.075; 95% CI, -0.108 to -0.041). For participants with low NfL concentrations (≤25 pg/mL), those who took part in medium physical activity had 43% slower global cognitive decline (β, -0.025; 95% CI, -0.043 to -0.007) and individuals who participated in high physical activity had 30% slower decline (β, -0.031; 95% CI, -0.048 to -0.014) than did those who participated in low physical activity (β, -0.046; 95% CI, -0.066 to -0.025). CONCLUSIONS AND RELEVANCE The findings suggest that physical activity is associated with diminished cognitive decline among older adults with increased serum NfL concentrations. The results support the potential use of blood biomarkers in measuring the benefits of health behaviors, such as physical activity, and early intervention for older adults at risk for cognitive decline.
Collapse
Affiliation(s)
- Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | | | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | | | - Denis A. Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois
- Department of Neurology, University of California at Davis
| |
Collapse
|
23
|
Plasma neurofilament light levels correlate with white matter damage prior to Alzheimer's disease: results from ADNI. Aging Clin Exp Res 2022; 34:2363-2372. [PMID: 35226303 DOI: 10.1007/s40520-022-02095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The blood biomarker neurofilament light (NFL) is one of the most widely used for monitoring Alzheimer's disease (AD). According to recent research, a higher NFL plasma level has a substantial predictive value for cognitive deterioration in AD patients. Diffusion tensor imaging (DTI) is an MRI-based approach for detecting neurodegeneration, white matter (WM) disruption, and synaptic damage. There have been few studies on the relationship between plasma NFL and WM microstructure integrity. AIMS The goal of the current study is to assess the associations between plasma levels of NFL, CSF total tau, phosphorylated tau181 (P-tau181), and amyloid-β (Aβ) with WM microstructural alterations. METHODS We herein have investigated the cross-sectional association between plasma levels of NFL and WM microstructural alterations as evaluated by DTI in 92 patients with mild cognitive impairment (MCI) provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. We analyzed the potential association between plasma NFL levels and radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD), and fractional anisotropy (FA) in each region of the Montreal Neurological Institute and Hospital (MNI) atlas, using simple linear regression models stratified by age, sex, and APOE ε4 genotype. RESULTS Our findings demonstrated a significant association between plasma NFL levels and disrupted WM microstructure across the brain. In distinct areas, plasma NFL has a negative association with FA in the fornix, fronto-occipital fasciculus, corpus callosum, uncinate fasciculus, internal capsule, and corona radiata and a positive association with RD, AxD, and MD values in sagittal stratum, corpus callosum, fronto-occipital fasciculus, corona radiata, internal capsule, thalamic radiation, hippocampal cingulum, fornix, and cingulum. Lower FA and higher RD, AxD, and MD values are related to demyelination and degeneration in WM. CONCLUSION Our findings revealed that the level of NFL in the blood is linked to WM alterations in MCI patients. Plasma NFL has the potential to be a biomarker for microstructural alterations. However, further longitudinal studies are necessary to validate the predictive role of plasma NFL in cognitive decline.
Collapse
|
24
|
Vorobev SV, Yanishevskij SN, Emelin AY, Lebedev AA, Lebedev SP, Makarov YN, Usikov AS, Klotchenko SA, Vasin AV. Prospects for the use of graphene-based biological sensors in the early diagnosis of Alzheimer's disease (review of literature). Klin Lab Diagn 2022; 67:5-12. [PMID: 35077063 DOI: 10.51620/0869-2084-2022-67-1-5-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the most significant challenges presented to modern medicine is the problem of cognitive disorders. The relevance of her research is determined by the wide spread of disorders of the higher cortical functions, their significant negative impact on the quality of life of patients, as well as high economic costs on the part of the state and the patient's relatives aimed at organizing medical, diagnostic and rehabilitation processes. The main cause of cognitive impairment in the elderly is Alzheimer's disease. Currently, the criteria for the diagnosis of this nosological form have been developed and are widely used in practice. However, it should be noted that their use is most effective if the patient has a detailed clinical picture, at the stage of dementia. In addition, they provide for the study of biomarkers in a number of cases in the cerebrospinal fluid or using positron emission tomography, which presents certain technical difficulties. Especially significant problems arise in the pre-dement stages. This situation dictates the need to search for new promising diagnostic methods that will have high sensitivity and specificity, as well as the possibility of application in the early stages of Alzheimer's disease, including in outpatient settings. The article provides information about modern methods of computer neuroimaging, discusses the research directions of individual biomarkers, and also shows the prospects for using diagnostic test panels developed on the basis of graphene biosensors, taking into account the latest achievements of nanotechnology and their integration into medical science.
Collapse
Affiliation(s)
- S V Vorobev
- Almazov National Medical Research Centre.,Saint-Petersburg State Pediatric Medical University
| | - S N Yanishevskij
- Almazov National Medical Research Centre.,Military Medical Academy named after S.M. Kirov
| | - A Yu Emelin
- Military Medical Academy named after S.M. Kirov
| | - A A Lebedev
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Ioffe Institute
| | | | - Yu N Makarov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Nitride Crystals Group Ltd
| | - A S Usikov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Nitride Crystals Group Ltd
| | | | - A V Vasin
- Smorodintsev Research Institute of Influenza.,Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University
| |
Collapse
|
25
|
Welton T, Tan YJ, Saffari SE, Ng SYE, Chia NSY, Yong ACW, Choi X, Heng DL, Shih YC, Hartono S, Lee W, Xu Z, Tay KY, Au WL, Tan EK, Chan LL, Ng ASL, Tan LCS. Plasma Neurofilament Light Concentration Is Associated with Diffusion-Tensor MRI-Based Measures of Neurodegeneration in Early Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2135-2146. [PMID: 36057833 DOI: 10.3233/jpd-223414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurofilament light is a marker of axonal degeneration, whose measurement from peripheral blood was recently made possible by new assays. OBJECTIVE We aimed to determine whether plasma neurofilament light chain (NfL) concentration reflects brain white matter integrity in patients with early Parkinson's disease (PD). METHODS 137 early PD patients and 51 healthy controls were included. Plasma NfL levels were measured using ultrasensitive single molecule array. 3T MRI including diffusion tensor imaging was acquired for voxelwise analysis of association between NfL and both fractional anisotropy (FA) and mean diffusivity (MD) in white matter tracts and subcortical nuclei. RESULTS A pattern of brain microstructural changes consistent with neurodegeneration was associated with increased plasma NfL in most of the frontal lobe and right internal capsule, with decreased FA and increased MD. The same clusters were also associated with poorer global cognition. A significant cluster in the left putamen was associated with increased NfL, with a significantly greater effect in PD than controls. CONCLUSION Plasma NfL may be associated with brain microstructure, as measured using diffusion tensor imaging, in patients with early PD. Higher plasma NfL was associated with a frontal pattern of neurodegeneration that also correlates with cognitive performance in our cohort. This may support a future role for plasma NfL as an accessible biomarker for neurodegeneration and cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Thomas Welton
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Seyed Ehsan Saffari
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Samuel Y E Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Nicole S Y Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Alisa C W Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Xinyi Choi
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Dede Liana Heng
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Yao-Chia Shih
- Radiological Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Septian Hartono
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Weiling Lee
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Kay Yaw Tay
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Wing Lok Au
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Ling Ling Chan
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Radiological Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
26
|
Singh K, Cheung BM, Xu A. Ultrasensitive detection of blood biomarkers of Alzheimer's and Parkinson's diseases: a systematic review. Biomark Med 2021; 15:1693-1708. [PMID: 34743546 DOI: 10.2217/bmm-2021-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Neurodegenerative disorders are a global health burden with costly and invasive diagnoses relying on brain imaging technology or CSF-based biomarkers. Therefore, considerable efforts to identify blood-biomarkers for Alzheimer's (AD) and Parkinson's diseases (PD) are ongoing. Objectives: This review evaluates the blood biomarkers for AD and PD for their diagnostic value. Methods: This study systematically reviewed articles published between July 1984 and February 2021. Among 1266 papers, we selected 42 studies for a systematic review and 23 studies for meta-analysis. Results & conclusion: Our analysis highlights P-tau181, T-tau and Nfl as promising blood biomarkers for AD diagnosis. Nfl levels were consistently raised in 16 AD and three PD cohorts. P-tau181 and T-tau were also significantly increased in 12 and eight AD cohorts, respectively.
Collapse
Affiliation(s)
- Kailash Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Bernard My Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.,Department of Pharmacy & Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
28
|
The Potential Effects of Oxidative Stress-Related Plasma Abnormal Protein Aggregate Levels on Brain Volume and Its Neuropsychiatric Consequences in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3666327. [PMID: 34434484 PMCID: PMC8382529 DOI: 10.1155/2021/3666327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress has been implicated in the pathogenesis of many diseases, including Parkinson's disease. Large protein aggregates may be produced after the breakdown of the proteostasis network due to overt oxidative stress. Meanwhile, brain volume loss and neuropsychiatric deficits are common comorbidities in Parkinson's disease patients. In this study, we applied a mediation model to determine the potential influences of oxidative stress-related plasma abnormal protein aggregate levels on brain volume and neuropsychiatric consequences in Parkinson's disease. Method 31 patients with PD and 24 healthy controls participated in this study. The PD patients were further grouped according to the presentation of cognitive decline or not. All participants received complete examinations to determine plasma abnormal protein aggregates levels, brain volume, and neuropsychiatric performance. The results were collected and analyzed in a single-level three-variable mediation model. Results Patients with PD cognitive decline exhibited higher plasma NfL levels, decreased regional brain volume, and poor neuropsychiatric subtest results compared with PD patients with normal cognition, with several correlations among these clinical presentations. The mediation model showed that the superior temporal gyrus completely mediated the effects of elevated plasma NfL levels due to the poor psychiatric performance of picture completion and digit span. Conclusion This study provides insight into the effects of oxidative stress-related plasma abnormal protein aggregate levels on regional brain volume and neuropsychiatric consequences in Parkinson's disease patients.
Collapse
|
29
|
Peng Q, Zhang Z. The fluid biomarkers of Alzheimer’s disease. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. However, it still has no available disease‐modifying therapies. Its pathology cascade begins decades before symptomatic presentation. For these reasons, highly sensitive and highly specific fluid biomarkers should be developed for the early diagnosis of AD. In this study, the well‐established and emerging fluid biomarkers of AD are summarized, and recent advances on their role in early diagnosis and progression monitoring as well as their correlations with AD pathology are highlighted. Future prospects and related research directions are also discussed.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
30
|
Kondo T, Banno H, Okunomiya T, Amino Y, Endo K, Nakakura A, Uozumi R, Kinoshita A, Tada H, Morita S, Ishikawa H, Shindo A, Yasuda K, Taruno Y, Maki T, Suehiro T, Mori K, Ikeda M, Fujita K, Izumi Y, Kanemaru K, Ishii K, Shigenobu K, Kutoku Y, Sunada Y, Kawakatsu S, Shiota S, Watanabe T, Uchikawa O, Takahashi R, Tomimoto H, Inoue H. Repurposing bromocriptine for Aβ metabolism in Alzheimer's disease (REBRAnD) study: randomised placebo-controlled double-blind comparative trial and open-label extension trial to investigate the safety and efficacy of bromocriptine in Alzheimer's disease with presenilin 1 (PSEN1) mutations. BMJ Open 2021; 11:e051343. [PMID: 34193504 PMCID: PMC8246358 DOI: 10.1136/bmjopen-2021-051343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the most common causes of dementia. Pathogenic variants in the presenilin 1 (PSEN1) gene are the most frequent cause of early-onset AD. Medications for patients with AD bearing PSEN1 mutation (PSEN1-AD) are limited to symptomatic therapies and no established radical treatments are available. Induced pluripotent stem cell (iPSC)-based drug repurposing identified bromocriptine as a therapeutic candidate for PSEN1-AD. In this study, we used an enrichment strategy with iPSCs to select the study population, and we will investigate the safety and efficacy of an orally administered dose of bromocriptine in patients with PSEN1-AD. METHODS AND ANALYSIS This is a multicentre, randomised, placebo-controlled trial. AD patients with PSEN1 mutations and a Mini Mental State Examination-Japanese score of ≤25 will be randomly assigned, at a 2:1 ratio, to the trial drug or placebo group (≥4 patients in TW-012R and ≥2 patients in placebo). This clinical trial consists of a screening period, double-blind phase (9 months) and extension phase (3 months). The double-blind phase for evaluating the efficacy and safety is composed of the low-dose maintenance period (10 mg/day), high-dose maintenance period (22.5 mg/day) and tapering period of the trial drug. Additionally, there is an open-labelled active drug extension period for evaluating long-term safety. Primary outcomes are safety and efficacy in cognitive and psychological function. Also, exploratory investigations for the efficacy of bromocriptine by neurological scores and biomarkers will be conducted. ETHICS AND DISSEMINATION The proposed trial is conducted according to the Declaration of Helsinki, and was approved by the Institutional Review Board (K070). The study results are expected to be disseminated at international or national conferences and published in international journals following the peer-review process. TRIAL REGISTRATION NUMBER jRCT2041200008, NCT04413344.
Collapse
Affiliation(s)
- Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Haruhiko Banno
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Taro Okunomiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Kayoko Endo
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Akiyoshi Nakakura
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Ryuji Uozumi
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akemi Kinoshita
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken Yasuda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Suehiro
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Fujita
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutomi Kanemaru
- Department of Stroke, Tokyo Metropolitan Geriatric Medical Center, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Fukushima Medical University Aizu Medical Center, Aizu, Japan
| | | | | | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
31
|
Pichet Binette A, Theaud G, Rheault F, Roy M, Collins DL, Levin J, Mori H, Lee JH, Farlow MR, Schofield P, Chhatwal JP, Masters CL, Benzinger T, Morris J, Bateman R, Breitner JC, Poirier J, Gonneaud J, Descoteaux M, Villeneuve S. Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer's disease. eLife 2021; 10:62929. [PMID: 33983116 PMCID: PMC8169107 DOI: 10.7554/elife.62929] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focused on free-water-corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - François Rheault
- Electrical Engineering, Vanderbilt University, Nashville, United States
| | - Maggie Roy
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Jae Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Peter Schofield
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jasmeer P Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - Randall Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Cs Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Julie Gonneaud
- Douglas Mental Health University Institute, Montreal, Canada.,Normandie Univ, UNICAEN, INSERM, U1237, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | | | | |
Collapse
|
32
|
Bangen KJ, Thomas KR, Weigand AJ, Edmonds EC, Clark AL, Solders S, Delano-Wood L, Galasko DR, Bondi MW. Elevated plasma neurofilament light predicts a faster rate of cognitive decline over 5 years in participants with objectively-defined subtle cognitive decline and MCI. Alzheimers Dement 2021; 17:1756-1762. [PMID: 33860596 DOI: 10.1002/alz.12324] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Neurofilament light (NFL) reflects neuroaxonal damage and is implicated in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Little is known about NFL in pre-MCI stages, such as in individuals with objectively-defined subtle cognitive decline (Obj-SCD). METHODS Two hundred ninety-four participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) underwent baseline blood draw and serial neuropsychological testing over 5 years of follow-up. RESULTS Individuals with Obj-SCD and MCI showed elevated baseline plasma NFL relative to the cognitively normal (CN) group. Across the sample, elevated NFL predicted faster rate of cognitive and functional decline. Within the Obj-SCD and MCI groups, higher NFL levels predicted faster rate of decline in memory and preclinical AD composite score compared to the CN group. DISCUSSION Findings demonstrate the utility of plasma NFL as a biomarker of early AD-related changes, and provide support for the use of Obj-SCD criteria in clinical research to better capture subtle cognitive changes.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Alexandra J Weigand
- Research Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, California, USA.,San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Emily C Edmonds
- Research Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Alexandra L Clark
- Research Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Seraphina Solders
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Lisa Delano-Wood
- Research Service, VA San Diego Healthcare System, San Diego, California, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Douglas R Galasko
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, California, USA
| | | |
Collapse
|
33
|
Saraste M, Bezukladova S, Matilainen M, Tuisku J, Rissanen E, Sucksdorff M, Laaksonen S, Vuorimaa A, Kuhle J, Leppert D, Airas L. High serum neurofilament associates with diffuse white matter damage in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e926. [PMID: 33293460 PMCID: PMC7803327 DOI: 10.1212/nxi.0000000000000926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Objective To evaluate to which extent serum neurofilament light chain (NfL) increase is
related to diffusion tensor imaging–MRI measurable diffuse
normal-appearing white matter (NAWM) damage in MS. Methods Seventy-nine patients with MS and 10 healthy controls underwent MRI including
diffusion tensor sequences and serum NfL determination by single molecule
array (Simoa). Fractional anisotropy and mean, axial, and radial
diffusivities were calculated within the whole and segmented (frontal,
parietal, temporal, occipital, cingulate, and deep) NAWM. Spearman
correlations and multiple regression models were used to assess the
associations between diffusion tensor imaging, volumetric MRI data, and
NfL. Results Elevated NfL correlated with decreased fractional anisotropy and increased
mean, axial, and radial diffusivities in the entire and segmented NAWM (for
entire NAWM ρ = −0.49, p = 0.005;
ρ = 0.49, p = 0.005; ρ = 0.43,
p = 0.018; and ρ = 0.48,
p = 0.006, respectively). A multiple regression
model examining the effect of diffusion tensor indices on NfL showed
significant associations when adjusted for sex, age, disease type, the
expanded disability status scale, treatment, and presence of relapses. In
the same model, T2 lesion volume was similarly associated with NfL. Conclusions Our findings suggest that elevated serum NfL in MS results from neuroaxonal
damage both within the NAWM and focal T2 lesions. This pathologic
heterogeneity ought to be taken into account when interpreting NfL findings
at the individual patient level.
Collapse
Affiliation(s)
- Maija Saraste
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland.
| | - Svetlana Bezukladova
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Markus Matilainen
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Jouni Tuisku
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Eero Rissanen
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Marcus Sucksdorff
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Sini Laaksonen
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Anna Vuorimaa
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Jens Kuhle
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - David Leppert
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Laura Airas
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| |
Collapse
|
34
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|