1
|
Nielsen BE, Ford CP. Reduced striatal M4-cholinergic signaling following dopamine loss contributes to parkinsonian and l-DOPA-induced dyskinetic behaviors. SCIENCE ADVANCES 2024; 10:eadp6301. [PMID: 39565858 PMCID: PMC11578179 DOI: 10.1126/sciadv.adp6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
A dynamic equilibrium between dopamine and acetylcholine (ACh) is essential for striatal circuitry and motor function, as imbalances are associated with Parkinson's disease (PD) and levodopa-induced dyskinesia (LID). Conventional theories posit that cholinergic signaling is pathologically elevated in PD as a result of increased ACh release, which contributes to motor deficits. However, using approaches to measure receptor-mediated signaling, we found that, rather than the predicted enhancement, the strength of cholinergic transmission at muscarinic M4 receptor synapses on direct pathway medium spiny neurons was decreased in dopamine-depleted mice. This adaptation was due to a reduced postsynaptic M4 receptor function, resulting from down-regulated receptors and downstream signaling. Restoring M4 transmission unexpectedly led to a partial alleviation of motor deficits and LID dyskinetic behavior, revealing an unexpected prokinetic effect in addition to the canonical antikinetic role of M4 receptors. These findings indicate that decreased M4 function differentially contributes to parkinsonian and LID pathophysiology, representing a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz E. Nielsen
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Cadeddu R, Braccagni G, Branca C, van Luik ER, Pittenger C, Thomsen MS, Bortolato M. Activation of M 4 muscarinic receptors in the striatum reduces tic-like behaviours in two distinct murine models of Tourette syndrome. Br J Pharmacol 2024; 181:3064-3081. [PMID: 38689378 DOI: 10.1111/bph.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND PURPOSE Current pharmacotherapies for Tourette syndrome (TS) are often unsatisfactory and poorly tolerated, underscoring the need for novel treatments. Insufficient striatal acetylcholine has been suggested to contribute to tic ontogeny. Thus, we tested whether activating M1 and/or M4 receptors-the two most abundant muscarinic receptors in the striatum-reduced tic-related behaviours in mouse models of TS. EXPERIMENTAL APPROACH Studies were conducted using CIN-d and D1CT-7 mice, two TS models characterized by early-life depletion of striatal cholinergic interneurons and cortical neuropotentiation, respectively. First, we tested the effects of systemic and intrastriatal xanomeline, a selective M1/M4 receptor agonist, on tic-like and other TS-related responses. Then, we examined whether xanomeline effects were reduced by either M1 or M4 antagonists or mimicked by the M1/M3 agonist cevimeline or the M4 positive allosteric modulator (PAM) VU0467154. Finally, we measured striatal levels of M1 and M4 receptors and assessed the impact of VU0461754 on the striatal expression of the neural marker activity c-Fos. KEY RESULTS Systemic and intrastriatal xanomeline reduced TS-related behaviours in CIN-d and D1CT-7 mice. Most effects were blocked by M4, but not M1, receptor antagonists. VU0467154, but not cevimeline, elicited xanomeline-like ameliorative effects in both models. M4, but not M1, receptors were down-regulated in the striatum of CIN-d mice. Additionally, VU0467154 reduced striatal c-Fos levels in these animals. CONCLUSION AND IMPLICATIONS Activation of striatal M4, but not M1, receptors reduced tic-like manifestations in mouse models, pointing to xanomeline and M4 PAMs as novel putative therapeutic strategies for TS.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Easton R van Luik
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychology, School of Arts and Sciences, Yale University, New Haven, Connecticut, USA
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut, USA
- Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Cinelli E, Iovino L, Bongianni F, Pantaleo T, Lavorini F, Mannini C, Mutolo D. Reply to Myslivecek. Am J Physiol Lung Cell Mol Physiol 2023; 325:L92-L93. [PMID: 37405948 DOI: 10.1152/ajplung.00146.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Elenia Cinelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fulvia Bongianni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tito Pantaleo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Mannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Dean B. Muscarinic M1 and M4 receptor agonists for schizophrenia: promising candidates for the therapeutic arsenal. Expert Opin Investig Drugs 2023; 32:1113-1121. [PMID: 37994870 DOI: 10.1080/13543784.2023.2288074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Successful phase 3 trials of KarXT in people with schizophrenia herald a new era of treating the disorder with drugs that do not target the dopamine D2 receptor. The active component of KarXT is xanomeline, a muscarinic (CHRM) M1 and M4 agonist, making muscarinic receptors a viable target for treating schizophrenia. AREAS COVERED This review covers the process of taking drugs that activate the muscarinic M1 and M4 receptors from conceptualization to the clinic and details the mechanisms by which activating the CHRM1 and 4 can affect the broad spectrum of symptoms experienced by people with schizophrenia. EXPERT OPINION Schizophrenia is a syndrome which means drugs that activate muscarinic M1 and M4 receptors, as was the case for antipsychotic drugs acting on the dopamine D2 receptor, will not give optimal outcomes in everyone within the syndrome. Thus, it would be ideal to identify people who are responsive to drugs activating the CHRM1 and 4. Given knowledge of the actions of these receptors, it is possible treatment non-response could be restricted to sub-groups within the syndrome who have deficits in cortical CHRM1 or those with one of the cognitive endophenotypes that may be identifiable by changes in the blood transcriptome.
Collapse
Affiliation(s)
- Brian Dean
- The Synaptic Biology and Cognition Laboratory, The Florey, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Pisanò CA, Mercatelli D, Mazzocchi M, Brugnoli A, Morella I, Fasano S, Zaveri NT, Brambilla R, O'Keeffe GW, Neubig RR, Morari M. Regulator of G-Protein Signalling 4 (RGS4) negatively modulates nociceptin/orphanin FQ opioid receptor signalling: Implication for l-Dopa-induced dyskinesia. Br J Pharmacol 2023; 180:927-942. [PMID: 34767639 DOI: 10.1111/bph.15730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia. EXPERIMENTAL APPROACH HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured. KEY RESULTS RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum. CONCLUSIONS AND IMPLICATIONS RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Clarissa A Pisanò
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Martina Mazzocchi
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Ilaria Morella
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
| | - Nurulain T Zaveri
- Astraea Therapeutics, Medicinal Chemistry Division, Mountain View, California, USA
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
7
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|
8
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
9
|
Malave L, Zuelke DR, Uribe-Cano S, Starikov L, Rebholz H, Friedman E, Qin C, Li Q, Bezard E, Kottmann AH. Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson's disease and L-Dopa induced dyskinesia. Commun Biol 2021; 4:1071. [PMID: 34552196 PMCID: PMC8458306 DOI: 10.1038/s42003-021-02567-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
L-Dopa induced dyskinesia (LID) is a debilitating side effect of dopamine replacement therapy for Parkinson’s Disease. The mechanistic underpinnings of LID remain obscure. Here we report that diminished sonic hedgehog (Shh) signaling in the basal ganglia caused by the degeneration of midbrain dopamine neurons facilitates the formation and expression of LID. We find that the pharmacological activation of Smoothened, a downstream effector of Shh, attenuates LID in the neurotoxic 6-OHDA- and genetic aphakia mouse models of Parkinson’s Disease. Employing conditional genetic loss-of-function approaches, we show that reducing Shh secretion from dopamine neurons or Smoothened activity in cholinergic interneurons promotes LID. Conversely, the selective expression of constitutively active Smoothened in cholinergic interneurons is sufficient to render the sensitized aphakia model of Parkinson’s Disease resistant to LID. Furthermore, acute depletion of Shh from dopamine neurons through prolonged optogenetic stimulation in otherwise intact mice and in the absence of L-Dopa produces LID-like involuntary movements. These findings indicate that augmenting Shh signaling in the L-Dopa treated brain may be a promising therapeutic approach for mitigating the dyskinetic side effects of long-term treatment with L-Dopa. Lauren Malave et al. examine the impact of sonic hedgehog signaling in the dorsal striatum in L-Dopa induced dyskinesia (LID) animal models. Their results suggest that increasing sonic hedgehog signaling can reduce the severity of LID and abnormal involuntary movements, suggesting future therapeutic approaches to mitigate dyskinetic comorbidities of long-term treatment with L-Dopa.
Collapse
Affiliation(s)
- Lauren Malave
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Dustin R Zuelke
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Santiago Uribe-Cano
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA
| | - Lev Starikov
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.,Blue Rock Therapeutics, Inc, New York, NY, USA
| | - Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,GHU Psychiatrie et Neurosciences, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Universite de Paris, Paris, France.,Center of Neurodegeneration, Danube Private University, Krems, Austria
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qin Li
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK.,Universite de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Andreas H Kottmann
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA. .,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA. .,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.
| |
Collapse
|
10
|
Yang K, Zhao X, Wang C, Zeng C, Luo Y, Sun T. Circuit Mechanisms of L-DOPA-Induced Dyskinesia (LID). Front Neurosci 2021; 15:614412. [PMID: 33776634 PMCID: PMC7988225 DOI: 10.3389/fnins.2021.614412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
L-DOPA is the criterion standard of treatment for Parkinson disease. Although it alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–induced dyskinesia (LID). Several theoretical models including the firing rate model, the firing pattern model, and the ensemble model are proposed to explain the mechanisms of LID. The “firing rate model” proposes that decreasing the mean firing rates of the output nuclei of basal ganglia (BG) including the globus pallidus internal segment and substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing pattern model” claimed that abnormal firing pattern of a single unit activity and local field potentials may disturb the information processing in the BG, resulting in dyskinesia. The “ensemble model” described that dyskinesia symptoms might represent a distributed impairment involving many brain regions, but the number of activated neurons in the striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit mechanisms in driving LID symptoms has also been presented. LID is a multisystem disease that affects wide areas of the brain. Brain regions including the striatum, the pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are all involved in the pathophysiology of LID. In addition, although both amantadine and deep brain stimulation help reduce LID, these approaches have complications that limit their wide use, and a novel antidyskinetic drug is strongly needed; these require us to understand the circuit mechanism of LID more deeply.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Cheng Zeng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yan Luo
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|