1
|
Chen Y, Xing Z, Chen J, Sun C, Liu Y, Peng C, Peng F, Li D. SIRT1 activation by Ligustrazine ameliorates migraine via the paracrine interaction of microglia and neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156069. [PMID: 39341123 DOI: 10.1016/j.phymed.2024.156069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Neuroinflammation with associated oxidative stress aggravates the pathogenesis and progression of migraine. Ligustrazine (LGZ) is a key component from traditional edible-medicinal herb Ligusticum chuanxiong Hort., and has the effects of anti-platelet aggregation, expanding small arteries, improving microcirculation and promoting blood circulation and removing blood stasis in clinic. HYPOTHESIS/PURPOSE This study aims to investigate the pharmacological effect and mechanism of LGZ in migraine. STUDY DESIGN/METHODS A mouse model of migraine was induced by nitroglycerin (NTG), and LPS/IFN-γ stimulated microglial cell model was conducted to investigate neuroinflammation, the paracrine interactions between microglia and neurons were determined by the co-culture system, and the effect of LGZ on stability of SIRT1 protein was measured by cellular thermal shift assay (CETSA). Whilst, the SIRT1 inhibitor EX527 was used alone or co-treatment with LGZ in vitro or in vivo. RESULTS LGZ significantly attenuated migraine-like behaviors in NTG-induced mice, and ameliorated neuroinflammation and related oxidative damage in brain tissue, but co-treatment with SIRT1 inhibitor EX527 abolished the protective effects of LGZ. Mechanistically, LGZ mitigated neuroinflammation by upregulating SIRT1 expression and subsequently inhibiting the activation of NF-κB pathway in microglia. CETSA indicated that LGZ significantly maintained the stability of SIRT1 protein in microglia. While, in the co-culture system, culture medium from LPS/IFN-γ-treated microglia exacerbated neuronal damage and oxidative stress, which was suppressed by treating LPS/IFN-γ-induced microglia with LGZ, this effect might be related to the activation of Nrf2 signals in neurons. Notably, SIRT1 inhibitor EX527 abrogated the effects of LGZ both in vitro and in vivo. CONCLUSION Consequently, SIRT1 might be an important pharmacological target of LGZ, which attenuates migraine associated neuroinflammation and oxidative stress by interfering the crosstalk between microglia and neurons, thereby relieving migraine.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Cropper HC, Conway CM, Wyche W, Pradhan AA. Glial activation in pain and emotional processing regions in the nitroglycerin mouse model of chronic migraine. Headache 2024; 64:973-982. [PMID: 38899347 DOI: 10.1111/head.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Our aim was to survey astrocyte and microglial activation across four brain regions in a mouse model of chronic migraine. BACKGROUND Chronic migraine is a leading cause of disability, with higher rates in females. The role of central nervous system neurons and glia in migraine pathophysiology is not fully elucidated. Preclinical studies have shown abnormal glial activation in the trigeminal nucleus caudalis of male rodents. No current reports have investigated glial activation in both sexes in other important brain regions involved with the nociceptive and emotional processing of pain. METHODS The mouse nitroglycerin model of migraine was used, and nitroglycerin (10 mg/kg) or vehicle was administered every other day for 9 days. Prior to injections on days 1, 5, and 9, cephalic allodynia was determined by periorbital von Frey hair testing. Immunofluorescent staining of astrocyte marker, glial fibrillary protein (GFAP), and microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), in male and female trigeminal nucleus caudalis, periaqueductal gray, somatosensory cortex, and nucleus accumbens was completed. RESULTS Behavioral testing demonstrated increased cephalic allodynia in nitroglycerin- versus vehicle-treated mice. An increase in the percent area covered by GFAP+ cells in the trigeminal nucleus caudalis and nucleus accumbens, but not the periaqueductal gray or somatosensory cortex, was observed in response to nitroglycerin. No significant differences were observed for Iba1 staining across brain regions. We did not detect significant sex differences in GFAP or Iba1 quantification. CONCLUSIONS Immunohistochemical analysis suggests that, at the time point tested, immunoreactivity of GFAP+ astrocytes, but not Iba1+ microglia, changes in response to chronic migraine-associated pain. Additionally, there do not appear to be significant differences between males and females in GFAP+ or Iba1+ cells across the four brain regions analyzed.
Collapse
Affiliation(s)
- Haley C Cropper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Catherine M Conway
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Whitney Wyche
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Dalkara T, Kaya Z, Erdener ŞE. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache. J Headache Pain 2024; 25:124. [PMID: 39080518 PMCID: PMC11290240 DOI: 10.1186/s10194-024-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.
Collapse
Affiliation(s)
- Turgay Dalkara
- Departments of Neuroscience and, Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
| | - Zeynep Kaya
- Department of Neurology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Uzay B, Donmez-Demir B, Ozcan SY, Kocak EE, Yemisci M, Ozdemir YG, Dalkara T, Karatas H. The effect of P2X7 antagonism on subcortical spread of optogenetically-triggered cortical spreading depression and neuroinflammation. J Headache Pain 2024; 25:120. [PMID: 39044141 PMCID: PMC11267761 DOI: 10.1186/s10194-024-01807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.
Collapse
Affiliation(s)
- Burak Uzay
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Buket Donmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Sinem Yilmaz Ozcan
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Emine Eren Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Neurology, Hacettepe University, Ankara, Türkiye
| | - Yasemin Gursoy Ozdemir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- School of Medicine, Koc University, Istanbul, Türkiye
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
- Department of Neurology, Hacettepe University, Ankara, Türkiye
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
5
|
Mehta D, de Boer I, Sutherland HG, Pijpers JA, Bron C, Bainomugisa C, Haupt LM, van den Maagdenberg AMJM, Griffiths LR, Nyholt DR, Terwindt GM. Alterations in DNA methylation associate with reduced migraine and headache days after medication withdrawal treatment in chronic migraine patients: a longitudinal study. Clin Epigenetics 2023; 15:190. [PMID: 38087366 PMCID: PMC10717674 DOI: 10.1186/s13148-023-01604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Chronic migraine, a highly disabling migraine subtype, affects nearly 2% of the general population. Understanding migraine chronification is vital for developing better treatment and prevention strategies. An important factor in the chronification of migraine is the overuse of acute headache medication. However, the mechanisms behind the transformation of episodic migraine to chronic migraine and vice versa have not yet been elucidated. We performed a longitudinal epigenome-wide association study to identify DNA methylation (DNAm) changes associated with treatment response in patients with chronic migraine and medication overuse as part of the Chronification and Reversibility of Migraine clinical trial. Blood was taken from patients with chronic migraine (n = 98) at baseline and after a 12-week medication withdrawal period. Treatment responders, patients with ≥ 50% reduction in monthly headache days (MHD), were compared with non-responders to identify DNAm changes associated with treatment response. Similarly, patients with ≥ 50% versus < 50% reduction in monthly migraine days (MMD) were compared. RESULTS At the epigenome-wide significant level (p < 9.42 × 10-8), a longitudinal reduction in DNAm at an intronic CpG site (cg14377273) within the HDAC4 gene was associated with MHD response following the withdrawal of acute medication. HDAC4 is highly expressed in the brain, plays a major role in synaptic plasticity, and modulates the expression and release of several neuroinflammation markers which have been implicated in migraine pathophysiology. Investigating whether baseline DNAm associated with treatment response, we identified lower baseline DNAm at a CpG site (cg15205829) within MARK3 that was significantly associated with MMD response at 12 weeks. CONCLUSIONS Our findings of a longitudinal reduction in HDAC4 DNAm status associated with treatment response and baseline MARK3 DNAm status as an early biomarker for treatment response, provide support for a role of pathways related to chromatin structure and synaptic plasticity in headache chronification and introduce HDAC4 and MARK3 as novel therapeutic targets.
Collapse
Affiliation(s)
- Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Judith A Pijpers
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Charlene Bron
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Charlotte Bainomugisa
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Kaya Z, Belder N, Sever-Bahcekapili M, Donmez-Demir B, Erdener ŞE, Bozbeyoglu N, Bagci C, Eren-Kocak E, Yemisci M, Karatas H, Erdemli E, Gursel I, Dalkara T. Vesicular HMGB1 release from neurons stressed with spreading depolarization enables confined inflammatory signaling to astrocytes. J Neuroinflammation 2023; 20:295. [PMID: 38082296 PMCID: PMC10712196 DOI: 10.1186/s12974-023-02977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The role of high mobility group box 1 (HMGB1) in inflammation is well characterized in the immune system and in response to tissue injury. More recently, HMGB1 was also shown to initiate an "inflammatory signaling cascade" in the brain parenchyma after a mild and brief disturbance, such as cortical spreading depolarization (CSD), leading to headache. Despite substantial evidence implying a role for inflammatory signaling in prevalent neuropsychiatric disorders such as migraine and depression, how HMGB1 is released from healthy neurons and how inflammatory signaling is initiated in the absence of apparent cell injury are not well characterized. We triggered a single cortical spreading depolarization by optogenetic stimulation or pinprick in naïve Swiss albino or transgenic Thy1-ChR2-YFP and hGFAP-GFP adult mice. We evaluated HMGB1 release in brain tissue sections prepared from these mice by immunofluorescent labeling and immunoelectron microscopy. EzColocalization and Costes thresholding algorithms were used to assess the colocalization of small extracellular vesicles (sEVs) carrying HMGB1 with astrocyte or microglia processes. sEVs were also isolated from the brain after CSD, and neuron-derived sEVs were captured by CD171 (L1CAM). sEVs were characterized with flow cytometry, scanning electron microscopy, nanoparticle tracking analysis, and Western blotting. We found that HMGB1 is released mainly within sEVs from the soma of stressed neurons, which are taken up by surrounding astrocyte processes. This creates conditions for selective communication between neurons and astrocytes bypassing microglia, as evidenced by activation of the proinflammatory transcription factor NF-ĸB p65 in astrocytes but not in microglia. Transmission immunoelectron microscopy data illustrated that HMGB1 was incorporated into sEVs through endosomal mechanisms. In conclusion, proinflammatory mediators released within sEVs can induce cell-specific inflammatory signaling in the brain without activating transmembrane receptors on other cells and causing overt inflammation.
Collapse
Affiliation(s)
- Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Nevin Belder
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Melike Sever-Bahcekapili
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Buket Donmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Naz Bozbeyoglu
- Department of Molecular Biology and Genetics, Science Faculty, Bilkent University, Ankara, Turkey
| | - Canan Bagci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Emine Eren-Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Esra Erdemli
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Science Faculty, Bilkent University, Ankara, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, İzmir, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
7
|
Dehghani A, Schenke M, van Heiningen SH, Karatas H, Tolner EA, van den Maagdenberg AMJM. Optogenetic cortical spreading depolarization induces headache-related behaviour and neuroinflammatory responses some prolonged in familial hemiplegic migraine type 1 mice. J Headache Pain 2023; 24:96. [PMID: 37495957 PMCID: PMC10373261 DOI: 10.1186/s10194-023-01628-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Cortical spreading depolarization (CSD), the neurophysiological correlate of the migraine aura, can activate trigeminal pain pathways, but the neurobiological mechanisms and behavioural consequences remain unclear. Here we investigated effects of optogenetically-induced CSDs on headache-related behaviour and neuroinflammatory responses in transgenic mice carrying a familial hemiplegic migraine type 1 (FHM1) mutation. METHODS CSD events (3 in total) were evoked in a minimally invasive manner by optogenetic stimulation through the intact skull in freely behaving wildtype (WT) and FHM1 mutant mice. Related behaviours were analysed using mouse grimace scale (MGS) scoring, head grooming, and nest building behaviour. Neuroinflammatory changes were investigated by assessing HMGB1 release with immunohistochemistry and by pre-treating mice with a selective Pannexin-1 channel inhibitor. RESULTS In both WT and FHM1 mutant mice, CSDs induced headache-related behaviour, as evidenced by increased MGS scores and the occurrence of oculotemporal strokes, at 30 min. Mice of both genotypes also showed decreased nest building behaviour after CSD. Whereas in WT mice MGS scores had normalized at 24 h after CSD, in FHM1 mutant mice scores were normalized only at 48 h. Of note, oculotemporal stroke behaviour already normalized 5 h after CSD, whereas nest building behaviour remained impaired at 72 h; no genotype differences were observed for either readout. Nuclear HMGB1 release in the cortex of FHM1 mutant mice, at 30 min after CSD, was increased bilaterally in both WT and FHM1 mutant mice, albeit that contralateral release was more pronounced in the mutant mice. Only in FHM1 mutant mice, contralateral release remained higher at 24 h after CSD, but at 48 h had returned to abnormal, elevated, baseline values, when compared to WT mice. Blocking Panx1 channels by TAT-Panx308 inhibited CSD-induced headache related behaviour and HMGB1 release. CONCLUSIONS CSDs, induced in a minimally invasive manner by optogenetics, investigated in freely behaving mice, cause various migraine relevant behavioural and neuroinflammatory phenotypes that are more pronounced and longer-lasting in FHM1 mutant compared to WT mice. Prevention of CSD-related neuroinflammatory changes may have therapeutic potential in the treatment of migraine.
Collapse
Affiliation(s)
- Anisa Dehghani
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands.
- Department of Anesthesia and Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Sandra H van Heiningen
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands.
| |
Collapse
|
8
|
Zhang S, Azubuine J, Schmeer C. A systematic literature review on the role of glial cells in the pathomechanisms of migraine. Front Mol Neurosci 2023; 16:1219574. [PMID: 37456527 PMCID: PMC10347403 DOI: 10.3389/fnmol.2023.1219574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background The pathomechanisms underlying migraine are intricate and remain largely unclear. Initially regarded as a neuronal disorder, migraine research primarily concentrated on understanding the pathophysiological changes within neurons. However, recent advances have revealed the significant involvement of neuroinflammation and the neuro-glio-vascular interplay in migraine pathogenesis. Methods A systematic search was conducted in PubMed, Scopus, and Web of Science databases from their inception until November 2022. The retrieved results underwent a screening process based on title and abstract, and the full texts of the remaining papers were thoroughly assessed for eligibility. Only studies that met the predetermined inclusion criteria were included in the review. Results Fifty-nine studies, consisting of 6 human studies and 53 animal studies, met the inclusion criteria. Among the 6 human studies, 2 focused on genetic analyses, while the remaining studies employed functional imaging, serum analyses and clinical trials. Regarding the 53 animal studies investigating glial cells in migraine, 19 of them explored the role of satellite glial cells and/or Schwann cells in the trigeminal ganglion and/or trigeminal nerve. Additionally, 17 studies highlighted the significance of microglia and/or astrocytes in the trigeminal nucleus caudalis, particularly in relation to central sensitization during migraine chronification. Furthermore, 17 studies examined the involvement of astrocytes and/or microglia in the cortex. Conclusion Glial cells, including astrocytes, microglia, satellite glial cells and Schwann cells in the central and peripheral nervous system, participate both in the development as well as chronic progression of migraine in disease-associated regions such as the trigeminovascular system, trigeminal nucleus caudalis and cortex, among other brain regions.
Collapse
|
9
|
Luo L, Wang S, Chen B, Zhong M, Du R, Wei C, Huang F, Kou X, Xing Y, Tong G. Inhibition of inflammatory liver injury by the HMGB1-A box through HMGB1/TLR-4/NF-κB signaling in an acute liver failure mouse model. Front Pharmacol 2022; 13:990087. [PMID: 36313316 PMCID: PMC9614247 DOI: 10.3389/fphar.2022.990087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate the preventive effect of high mobility group box 1 (HMGB1)-A box and the mechanism by which it alleviates inflammatory injury in acute liver failure (ALF) by inhibiting the extracellular release of HMGB1. BALB/c mice were intraperitoneally (i.p.) administered LPS/D-GalN to establish an ALF mouse model. HMGB1-A box was administered (i.p.) 1 h before establishing the ALF mouse model. The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules, the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and COX-2 were measured in the liver tissue and/or serum by Immunohistochemistry, Western blotting and Enzyme-linked immunosorbent assay (ELISA). The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules and proinflammatory cytokines were measured in Huh7 cells as well as LPS- and/or HMGB1-A box treatment by confocal microscopy, Western blotting and ELISA. In the ALF mouse model, the levels of HMGB1 were significantly increased both in the liver and serum, TLR-4/NF-κB signaling molecules and proinflammatory cytokines also was upregulated. Notably, HMGB1-A box could reverse these changes. HMGB1-A box could also cause these changes in LPS-induced Huh7 cells. HMGB1-A box played a protective role by inhibiting inflammatory liver injury via the regulation of HMGB1/TLR-4/NF-κB signaling in the LPS/D-GaIN-induced ALF mouse model, which may be related to inhibiting the extracellular release of HMGB1.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| | - Shuai Wang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Bohao Chen
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Mei Zhong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Ruili Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - ChunShan Wei
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Furong Huang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xinhui Kou
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| | - Guangdong Tong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- *Correspondence: Lidan Luo, ; Yufeng Xing, ; Guangdong Tong,
| |
Collapse
|
10
|
Changes in Plasma Lipid Levels Following Cortical Spreading Depolarization in a Transgenic Mouse Model of Familial Hemiplegic Migraine. Metabolites 2022; 12:metabo12030220. [PMID: 35323663 PMCID: PMC8953552 DOI: 10.3390/metabo12030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023] Open
Abstract
Metabolite levels in peripheral body fluids can correlate with attack features in migraine patients, which underscores the potential of plasma metabolites as possible disease biomarkers. Migraine headache can be preceded by an aura that is caused by cortical spreading depolarization (CSD), a transient wave of neuroglial depolarization. We previously identified plasma amino acid changes after CSD in familial hemiplegic migraine type 1 (FHM1) mutant mice that exhibit increased neuronal excitability and various migraine-related features. Here, we aimed to uncover lipid metabolic pathways affected by CSD, guided by findings on the involvement of lipids in hemiplegic migraine pathophysiology. Using targeted lipidomic analysis, we studied plasma lipid metabolite levels at different time points after CSD in wild-type and FHM1 mutant mice. Following CSD, the most prominent plasma lipid change concerned a transient increase in PGD2, which lasted longer in mutant mice. In wild-type mice only, levels of anti-inflammatory lipid mediators DPAn-3, EPA, ALA, and DHA were elevated 24 h following CSD compared to Sham-treated animals. Given the role of PGs and neuroinflammation in migraine pathophysiology, our findings underscore the potential of monitoring peripheral changes in lipids to gain insight in central brain mechanisms.
Collapse
|
11
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 2021; 22:138. [PMID: 34794382 PMCID: PMC8600694 DOI: 10.1186/s10194-021-01353-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pain is generally concomitant with an inflammatory reaction at the site where the nociceptive fibers are activated. Rodent studies suggest that a sterile meningeal inflammatory signaling cascade may play a role in migraine headache as well. Experimental studies also suggest that a parenchymal inflammatory signaling cascade may report the non-homeostatic conditions in brain to the meninges to induce headache. However, how these signaling mechanisms function in patients is unclear and debated. Our aim is to discuss the role of inflammatory signaling in migraine pathophysiology in light of recent developments. Body Rodent studies suggest that a sterile meningeal inflammatory reaction can be initiated by release of peptides from active trigeminocervical C-fibers and stimulation of resident macrophages and dendritic/mast cells. This inflammatory reaction might be needed for sustained stimulation and sensitization of meningeal nociceptors after initial activation along with ganglionic and central mechanisms. Most migraines likely have cerebral origin as suggested by prodromal neurologic symptoms. Based on rodent studies, a parenchymal inflammatory signaling cascade has been proposed as a potential mechanism linking cortical spreading depolarization (CSD) to meningeal nociception. A recent PET/MRI study using a sensitive inflammation marker showed the presence of meningeal inflammatory activity in migraine with aura patients over the occipital cortex generating the visual aura. These studies also suggest the presence of a parenchymal inflammatory activity, supporting the experimental findings. In rodents, parenchymal inflammatory signaling has also been shown to be activated by migraine triggers such as sleep deprivation without requiring a CSD because of the resultant transcriptional changes, predisposing to inadequate synaptic energy supply during intense excitatory transmission. Thus, it may be hypothesized that neuronal stress created by either CSD or synaptic activity-energy mismatch could both initiate a parenchymal inflammatory signaling cascade, propagating to the meninges, where it is converted to a lasting headache with or without aura. Conclusion Experimental studies in animals and emerging imaging findings from patients warrant further research to gain deeper insight to the complex role of inflammatory signaling in headache generation in migraine.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|