1
|
Lévesque M, Gnatkovsky V, Li FR, Scalmani P, Uva L, Avoli M, de Curtis M. Fast activity chirp patterns in focal seizures from patients and animal models. Epilepsia 2024. [PMID: 39723840 DOI: 10.1111/epi.18245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Time-frequency analysis of focal seizure electroencephalographic signals performed with depth electrodes in human temporal lobe structures has revealed the occurrence at onset of oscillations at approximately 30-100 Hz that feature a monotonic rapid decay in frequency content. This seizure onset pattern, referred to as chirp, has been identified as a highly specific and sensitive marker of focal seizures that are characterized by low-voltage fast activity. We report that this chirp pattern is also observed in animal models of temporal lobe epilepsy in both in vivo and in vitro preparations. We propose here that chirps mirror the involvement of synchronous interneuron firing that is known to represent a specific cellular mechanism leading to the initiation of focal seizures, in particular those characterized by low-voltage fast activity.
Collapse
Affiliation(s)
- Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Epileptology, Universitätsklinikum Bonn, Bonn, Germany
| | - Fei Ran Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Lee SH, Kang YJ, Smith BN. Activation of hypoactive parvalbumin-positive fast-spiking interneurons restores dentate inhibition to reduce electrographic seizures in the mouse intrahippocampal kainate model of temporal lobe epilepsy. Neurobiol Dis 2024; 203:106737. [PMID: 39542222 DOI: 10.1016/j.nbd.2024.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/20/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Parvalbumin-positive (PV+) GABAergic interneurons in the dentate gyrus provide powerful perisomatic inhibition of dentate granule cells (DGCs) to prevent overexcitation and maintain the stability of dentate gyrus circuits. Most dentate PV+ interneurons survive status epilepticus, but surviving PV+ interneuron mediated inhibition is compromised in the dentate gyrus shortly after status epilepticus, contributing to epileptogenesis in temporal lobe epilepsy. It is uncertain whether the impaired activity of dentate PV+ interneurons recovers at later times or if it continues for months following status epilepticus. The development of compensatory modifications related to PV+ interneuron circuits in the months following status epilepticus is unknown, although reduced dentate GABAergic inhibition persists long after status epilepticus. We employed whole-cell patch-clamp recordings from dentate PV+ interneurons and DGCs in slices from male and female sham controls and intrahippocampal kainate (IHK) treated mice that developed spontaneous seizures months after status epilepticus to study epilepsy-associated changes in dentate PV+ interneuron circuits. Electrical recordings showed that: 1) Action potential firing rates of dentate PV+ interneurons were reduced in IHK treated mice up to four months after status epilepticus; 2) spontaneous inhibitory postsynaptic currents (sIPSCs) in DGCs exhibited reduced frequency but increased amplitude in IHK treated mice; and 3) the amplitude of IPSCs in DGCs evoked by optogenetic activation of dentate PV+ cells was upregulated without changes in short-term plasticity. Video-EEG recordings revealed that IHK treated mice showed spontaneous electrographic seizures in the dentate gyrus and that chemogenetic activation of PV+ interneurons abolished electrographic seizures. Our results suggest not only that the compensatory changes in PV+ interneuron circuits develop after IHK treatment, but also that increased PV+ interneuron mediated inhibition in the dentate gyrus may compensate for cell loss and reduced intrinsic excitability of dentate PV+ interneurons to stop seizures in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bret N Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Sun Q, Peng S, Xu Q, Weikop P, Hussain R, Song W, Nedergaard M, Ding F. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat Commun 2024; 15:9600. [PMID: 39505840 PMCID: PMC11541706 DOI: 10.1038/s41467-024-53430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Epileptogenesis is the process whereby the previously normally functioning brain begins to generate spontaneous, unprovoked seizures. Status epilepticus (SE), which entails a massive release of neuronal glutamate and other neuroactive substances, is one of the best-known triggers of epileptogenesis. We here asked whether pharmacologically promoting glymphatic clearance during or after SE is beneficial and able to attenuate the subsequent epileptogenesis. We induced SE in adult male mice by intrahippocampal kainic acid (KA) infusion. Acute administration of a cocktail of adrenergic receptor antagonists (propranolol, prazosin, and atipamezole: PPA), enhanced glymphatic flow and effectively reduced the severity of spontaneous seizures in the chronic phase. The PPA treatment also reduced reactive gliosis and inhibited the loss of polarized expression of AQP4 water channels in the vascular endfeet of astrocytes. Administration of PPA after cessation of SE (30 hours post KA) also effectively suppressed epileptogenesis and improved outcome. Conversely, mice with constitutively low glymphatic transport due to genetic deletion of the aquaporin 4 (AQP4) water channel showed exacerbation of KA-induced epileptogenesis. We conclude that the pharmacological modulation of glymphatic fluid transport may represent a potential strategy to dampen epileptogenesis and the occurrence of spontaneous seizures following KA-induced SE.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Slabeva K, Baud MO. Timing Mechanisms for Circadian Seizures. Clocks Sleep 2024; 6:589-601. [PMID: 39449314 PMCID: PMC11503444 DOI: 10.3390/clockssleep6040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
For centuries, epileptic seizures have been noticed to recur with temporal regularity, suggesting that an underlying biological rhythm may play a crucial role in their timing. In this review, we propose to adopt the framework of chronobiology to study the circadian timing of seizures. We first review observations made on seizure timing in patients with epilepsy and animal models of the disorder. We then present the existing chronobiology paradigm to disentangle intertwined circadian and sleep-wake timing mechanisms. In the light of this framework, we review the existing evidence for specific timing mechanisms in specific epilepsy syndromes and highlight that current knowledge is far from sufficient. We propose that individual seizure chronotypes may result from an interplay between independent timing mechanisms. We conclude with a research agenda to help solve the urgency of ticking seizures.
Collapse
Affiliation(s)
- Kristina Slabeva
- Zentrum für Experimentelle Neurologie, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Maxime O. Baud
- Zentrum für Experimentelle Neurologie, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Schlaf-Wach Epilepsie Zentrum, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
5
|
Liu C, Sun J, Shen X, Li S, Luo S, Chen N, Zhang Y. Peimine promotes microglial polarization to the M2 phenotype to attenuate drug-resistant epilepsy through suppressing the TLR4/NF-κB/HIF-1α signaling pathway in a rat model and in BV-2 microglia. Heliyon 2024; 10:e34987. [PMID: 39144974 PMCID: PMC11320464 DOI: 10.1016/j.heliyon.2024.e34987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Epilepsy is a chronic neurological disorder. Drug-resistant epilepsy (DRE) accounts for about one-third of epilepsy patients worldwide. Peimine, a main active component of Fritillaria, has been reported to show anti-inflammatory effects. However, its potential therapeutic role in DRE is not yet fully understood. In this work, a DRE rat model was established by injecting 1 μg kainic acid (KA), followed by a 250 mg/kg administration of valproic acid (VPA) from day 4-31. Rats were treated with different doses of peimine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) daily from day 32-62. In vitro, BV-2 microglia were exposed to different doses of peimine (7.5 μg/ml, 15 μg/ml, and 30 μg/ml) in presence of LPS. The aim of this study was to investigate the potential therapeutic effects of peimine on DRE. The results showed that peimine efficiently suppressed the KA-induced epileptic behaviors of rats in a dose-dependent manner, as recorded by electroencephalography. Furthermore, peimine ameliorated hippocampal neuron injury in DRE rats, and promoted an M1-to-M2 microglial phenotype shift in a dose-dependent manner. Mechanistically, peimine inhibited the TLR4/NF-κB/HIF-1α signaling pathway both in vivo and in vitro. Additionally, peimine suppressed the apoptosis of primary neurons induced by LPS-treated microglia. In conclusion, peimine augments the microglial polarization towards an M2 phenotype by inhibiting the TLR4/NF-κB/HIF-1α signaling pathway, thereby attenuating DRE.
Collapse
Affiliation(s)
- Chongchong Liu
- Second Ward of Encephalopathy Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangyan Sun
- Chronic Disease Prevention and Control Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoming Shen
- Second Ward of Encephalopathy Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shefang Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Sha Luo
- Second Ward of Encephalopathy Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Na Chen
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Padmasola GP, Friscourt F, Rigoni I, Vulliémoz S, Schaller K, Michel CM, Sheybani L, Quairiaux C. Involvement of the contralateral hippocampus in ictal-like but not interictal epileptic activities in the kainate mouse model of temporal lobe epilepsy. Epilepsia 2024; 65:2082-2098. [PMID: 38758110 DOI: 10.1111/epi.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.
Collapse
Affiliation(s)
- Guru Prasad Padmasola
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Fabien Friscourt
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Isotta Rigoni
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
- Department of Clinical and Experimental Epilepsy, Queen's Square Institute of Neurology, London, UK
| | - Charles Quairiaux
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Kalogeropoulos K, Psarropoulou C. Immature Status Epilepticus Alters the Temporal Relationship between Hippocampal Interictal Epileptiform Discharges and High-frequency Oscillations. Neuroscience 2024; 543:108-120. [PMID: 38401712 DOI: 10.1016/j.neuroscience.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The aim was to investigate the long-term effects of a single episode of immature Status Epilepticus (SE) on the excitability of the septal and temporal hippocampus in vitro, by studying the relationship between interictal-like epileptiform discharges (IEDs) and high-frequency oscillations (HFOs; Ripples, Rs and Fast Ripples, FRs). A pentylenetetrazol-induced Status Epilepticus-(SE)-like generalized seizure was induced at postnatal day 20 in 22 male and female juvenile rats, sacrificed >40 days later to prepare hippocampal slices. Spontaneous IEDs induced by Mg2+-free ACSF were recorded from the CA3 area of temporal (T) or septal (S) slices. Recordings were band-pass filtered off-line revealing Rs and FRs and a series of measurements were conducted, with mean values compared with those obtained from age-matched controls (CTRs). In CTR S (vs T) slices, we recorded longer R & FR durations, a longer HFO-IED temporal overlap, higher FR peak power and more frequent FR initiation preceding IEDs (% events). Post-SE, in T slices all types of events duration (IED, R, FR) and the time lag between their onsets (R-IED, FR-IED, R-FR) increased, while FR/R peak power decreased; in S slices, the IED 1st population spike and the FR amplitudes, the R and FR peak power and the (percent) events where Rs or FRs preceded IEDs all decreased. The CA3 IED-HFO relationship offers insights to the septal-to-temporal synchronization patterns; its post-juvenile-SE changes indicate permanent modifications in the septotemporal excitability gradient. Moreover, these findings are in line to region-specific regulation of various currents post-SE, as reported in literature.
Collapse
Affiliation(s)
- Konstantinos Kalogeropoulos
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| |
Collapse
|
8
|
Bekbolatova M, Mayer J, Jose R, Syed F, Kurgansky G, Singh P, Pao R, Zaw H, Devine T, Chan-Akeley R, Toma M. Biomechanical Effects of Seizures on Cerebral Dynamics and Brain Stress. Brain Sci 2024; 14:323. [PMID: 38671975 PMCID: PMC11048267 DOI: 10.3390/brainsci14040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Epilepsy is one of the most common neurological disorders globally, affecting about 50 million people, with nearly 80% of those affected residing in low- and middle-income countries. It is characterized by recurrent seizures that result from abnormal electrical brain activity, with seizures varying widely in manifestation. The exploration of the biomechanical effects that seizures have on brain dynamics and stress levels is relevant for the development of more effective treatments and protective strategies. This study uses a blend of experimental data and computational simulations to assess the brain's physical response during seizures, particularly focusing on the behavior of cerebrospinal fluid and the resulting mechanical stresses on different brain regions. Notable findings show increases in stress, predominantly in the posterior gyri and brainstem, during seizures and an evidence of brain displacement relative to the skull. These observations suggest a dynamic and complex interaction between the brain and skull, with maximum shear stress regions demonstrating the limited yet essential protective role of the CSF. By providing a deeper understanding of the mechanical changes occurring during seizures, this research supports the goal of advancing diagnostic tools, informing more targeted treatment interventions, and guiding the creation of customized therapeutic strategies to enhance neurological care and protect against the adverse effects of seizures.
Collapse
Affiliation(s)
- Molly Bekbolatova
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Jonathan Mayer
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Rejath Jose
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Faiz Syed
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Gregory Kurgansky
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Paramvir Singh
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| | - Rachel Pao
- NewYork-Presbyterian Queens Hospital, New York City, NY 11355, USA;
| | - Honey Zaw
- Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, Atran Berg Building, 8th Floor, New York City, NY 10029, USA;
| | - Timothy Devine
- The Ferrara Center for Patient Safety and Clinical Simulation, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | | | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (M.B.); (J.M.); (R.J.); (F.S.); (G.K.); (P.S.)
| |
Collapse
|
9
|
Nguyen QA, Klein PM, Xie C, Benthall KN, Iafrati J, Homidan J, Bendor JT, Dudok B, Farrell JS, Gschwind T, Porter CL, Keravala A, Dodson GS, Soltesz I. Acetylcholine receptor based chemogenetics engineered for neuronal inhibition and seizure control assessed in mice. Nat Commun 2024; 15:601. [PMID: 38238329 PMCID: PMC10796428 DOI: 10.1038/s41467-024-44853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Epilepsy is a prevalent disorder involving neuronal network hyperexcitability, yet existing therapeutic strategies often fail to provide optimal patient outcomes. Chemogenetic approaches, where exogenous receptors are expressed in defined brain areas and specifically activated by selective agonists, are appealing methods to constrain overactive neuronal activity. We developed BARNI (Bradanicline- and Acetylcholine-activated Receptor for Neuronal Inhibition), an engineered channel comprised of the α7 nicotinic acetylcholine receptor ligand-binding domain coupled to an α1 glycine receptor anion pore domain. Here we demonstrate that BARNI activation by the clinical stage α7 nicotinic acetylcholine receptor-selective agonist bradanicline effectively suppressed targeted neuronal activity, and controlled both acute and chronic seizures in male mice. Our results provide evidence for the use of an inhibitory acetylcholine-based engineered channel activatable by both exogenous and endogenous agonists as a potential therapeutic approach to treating epilepsy.
Collapse
Affiliation(s)
- Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
| | - Cheng Xie
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Katelyn N Benthall
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jillian Iafrati
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Jacob T Bendor
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Charlotte L Porter
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Annahita Keravala
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - G Steven Dodson
- CODA Biotherapeutics, 240 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Vergaelen M, Manzella S, Vonck K, Craey E, Spanoghe J, Sprengers M, Carrette E, Wadman WJ, Delbeke J, Boon P, Larsen LE, Raedt R. Increased Dentate Gyrus Excitability in the Intrahippocampal Kainic Acid Mouse Model for Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:660. [PMID: 38203829 PMCID: PMC10779277 DOI: 10.3390/ijms25010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The intrahippocampal kainic acid (IHKA) mouse model is an extensively used in vivo model to investigate the pathophysiology of mesial temporal lobe epilepsy (mTLE) and to develop novel therapies for drug-resistant epilepsy. It is characterized by profound hippocampal sclerosis and spontaneously occurring seizures with a major role for the injected damaged hippocampus, but little is known about the excitability of specific subregions. The purpose of this study was to electrophysiologically characterize the excitability of hippocampal subregions in the chronic phase of the induced epilepsy in the IHKA mouse model. We recorded field postsynaptic potentials (fPSPs) after electrical stimulation in the CA1 region and in the dentate gyrus (DG) of hippocampal slices of IHKA and healthy mice using a multielectrode array (MEA). In the DG, a significantly steeper fPSP slope was found, reflecting higher synaptic strength. Population spikes were more prevalent with a larger spatial distribution in the IHKA group, reflecting a higher degree of granule cell output. Only minor differences were found in the CA1 region. These results point to increased neuronal excitability in the DG but not in the CA1 region of the hippocampus of IHKA mice. This method, in which the excitability of hippocampal slices from IHKA mice is investigated using a MEA, can now be further explored as a potential new model to screen for new interventions that can restore DG function and potentially lead to novel therapies for mTLE.
Collapse
Affiliation(s)
- Marijke Vergaelen
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Simona Manzella
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Kristl Vonck
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Erine Craey
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Jeroen Spanoghe
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Mathieu Sprengers
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Evelien Carrette
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Wytse Jan Wadman
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Jean Delbeke
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Paul Boon
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| | - Lars Emil Larsen
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
- MEDISIP, Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| | - Robrecht Raedt
- 4BRAIN, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Li D, Yan X, Xing Y, Yan J, Wang J, Zhang H, Wang J, Li X, Su Z, Loh HH, Yang X, Chen X. Local and Remote Chemogenetic Suppression of Hippocampal Seizures in Rats. Curr Neuropharmacol 2024; 22:2240-2255. [PMID: 38333970 PMCID: PMC11337692 DOI: 10.2174/1570159x22999240131122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Innovative treatments of refractory epilepsy are widely desired, for which chemogenetic technology can provide region- and cell-type-specific modulation with relative noninvasiveness. OBJECTIVES We aimed to explore the specific applications of chemogenetics for locally and remotely networks controlling hippocampal seizures. METHODS A virus coding for a modified human Gi-coupled M4 muscarinic receptor (hM4Di) on pyramidal cells was injected into either the right hippocampal CA3 or the bilateral anterior nucleus of the thalamus (ANT) in rats. After one month, seizures were induced by 4-aminopyridine (4-AP) injection into the right CA3. Simultaneously, clozapine-N-oxide (CNO) (2.5 mg/kg) or clozapine (0.1 mg/kg), the specific ligands acting on hM4Di, were injected intraperitoneally. We also set up hM4Di control and clozapine control groups to eliminate the influence of viral transfection and the ligand alone on the experimental results. RESULTS For both local and remote controls, the mean seizure duration was significantly reduced upon ligand application in the experimental groups. Seizure frequency, on the other hand, only showed a significant decrease in local control, with a lower frequency in the clozapine group than in the CNO group. Both the effects of CNO and clozapine were time-dependent, and clozapine was faster than CNO in local seizure control. CONCLUSION This study shows the potency of chemogenetics to attenuate hippocampal seizures locally or remotely by activating the transfected hM4Di receptor with CNO or clozapine. ANT is suggested as a potentially safe chemogenetic application target in the epileptic network for focal hippocampal seizures.
Collapse
Affiliation(s)
- Donghong Li
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Yan
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Yue Xing
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Junling Wang
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Herui Zhang
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | | | - Xiaonan Li
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Zhumin Su
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | - Xiaohong Chen
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Rigoni I, Padmasola GP, Sheybani L, Schaller K, Quairiaux C, Vulliemoz S. Reproducible network changes occur in a mouse model of temporal lobe epilepsy but do not correlate with disease severity. Neurobiol Dis 2024; 190:106382. [PMID: 38114050 DOI: 10.1016/j.nbd.2023.106382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Studying the development of brain network disruptions in epilepsy is challenged by the paucity of data before epilepsy onset. Here, we used the unilateral, kainate mouse model of hippocampal epilepsy to investigate brain network changes before and after epilepsy onset and their stability across time. Using 32 epicranial electrodes distributed over the mouse hemispheres, we analyzed EEG epochs free from epileptic activity in 15 animals before and 28 days after hippocampal injection (group 1) and in 20 animals on two consecutive days (d28 and d29, group 2). Statistical dependencies between electrodes were characterized with the debiased-weighted phase lag index. We analyzed: a) graph metric changes from baseline to chronic stage (d28) in group 1; b) their reliability across d28 and d29, in group 2; c) their correlation with epileptic activity (EA: seizure, spike and fast-ripple rates), averaged over d28 and d29, in group 2. During the chronic stage, intra-hemispheric connections of the non-injected hemisphere strengthened, yielding an asymmetrical network in low (4-8 Hz) and high theta (8-12 Hz) bands. The contralateral hemisphere also became more integrated and segregated within the high theta band. Both network topology and EEG markers of EA were stable over consecutive days but not correlated with each other. Altogether, we show reproducible large-scale network modifications after the development of focal epilepsy. These modifications are mostly specific to the non-injected hemisphere. The absence of correlation with epileptic activity does not allow to specifically ascribe these network changes to mechanisms supporting EA or rather compensatory inhibition but supports the notion that epilepsy extends beyond the sole repetition of EA and impacts network that might not be involved in EA generation.
Collapse
Affiliation(s)
- Isotta Rigoni
- EEG and Epilepsy unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland.
| | - Guru Prasad Padmasola
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Laurent Sheybani
- EEG and Epilepsy unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Karl Schaller
- Department of Neurosurgery, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Paes LCF, Lima DB, Silva DMAD, Valentin JT, Aquino PEAD, García-Jareño AB, Orzaéz M, Fonteles MMDF, Martins AMC. Exploring the neuroprotective potential of antimicrobial peptides from Dinoponera quadriceps venom against pentylenetetrazole-induced seizures in vivo. Toxicon 2024; 237:107538. [PMID: 38030096 DOI: 10.1016/j.toxicon.2023.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Epilepsy affects around 50 million people worldwide and 30% of patients have difficulty controlling the disease. The search for substances that can fill the existing gaps in the treatment of epilepsy is of great importance. Arthropod venoms are promising sources for this purpose due to the presence of small peptides that modulate the activity of ion channels and neuron receptors. The aim of this study was to investigate dinoponeratoxins from the Dinoponera quadriceps ant venom (M-PONTX-Dq3a, M-PONTX-Dq3b and M-PONTX-Dq3c) as potential anticonvulsants. We evaluated them in a seizure model induced by pentylenetetrazole (PTZ) in male swiss mice. Interestingly, intraperitoneal treatment with each peptide increased the time until the first seizure and the percentage of survival, with M-PONTX-Dq3b showing the best results. M-PONTX-Dq3a was discarded due to the appearance of some signs of toxicity with the increase in malondialdehyde (MDA) levels in the striatum. Both, M-PONTX-Dq3b and M-PONTX-Dq3c decreased iNOS and TNF-α in the hippocampus. Notably, M-PONTX-Dq3c treatment decreased the levels of MDA and nitrite in the cortex and hippocampus. Our results indicate that, M-PONTX-Dq3b and M-PONTX-Dq3c have anticonvulsant activity and exhibit anti-inflammatory effects in epilepsy, offering new perspectives for biopharmaceutical development.
Collapse
Affiliation(s)
- Livia Correia Fernandes Paes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - Dânya Bandeira Lima
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil.
| | - Daniel Moreira Alves da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - José Tiago Valentin
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | | | - Alicia Belén García-Jareño
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Mar Orzaéz
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Marta Maria de França Fonteles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil.
| |
Collapse
|
14
|
McGann AM, Westerkamp GC, Chalasani A, Danzer CSK, Parkins EV, Rajathi V, Horn PS, Pedapati EV, Tiwari D, Danzer SC, Gross C. MiR-324-5p inhibition after intrahippocampal kainic acid-induced status epilepticus does not prevent epileptogenesis in mice. Front Neurol 2023; 14:1280606. [PMID: 38033777 PMCID: PMC10687438 DOI: 10.3389/fneur.2023.1280606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Background Acquired epilepsies are caused by an initial brain insult that is followed by epileptogenesis and finally the development of spontaneous recurrent seizures. The mechanisms underlying epileptogenesis are not fully understood. MicroRNAs regulate mRNA translation and stability and are frequently implicated in epilepsy. For example, antagonism of a specific microRNA, miR-324-5p, before brain insult and in a model of chronic epilepsy decreases seizure susceptibility and frequency, respectively. Here, we tested whether antagonism of miR-324-5p during epileptogenesis inhibits the development of epilepsy. Methods We used the intrahippocampal kainic acid (IHpKa) model to initiate epileptogenesis in male wild type C57BL/6 J mice aged 6-8 weeks. Twenty-four hours after IHpKa, we administered a miR-324-5p or scrambled control antagomir intracerebroventricularly and implanted cortical surface electrodes for EEG monitoring. EEG data was collected for 28 days and analyzed for seizure frequency and duration, interictal spike activity, and EEG power. Brains were collected for histological analysis. Results Histological analysis of brain tissue showed that IHpKa caused characteristic hippocampal damage in most mice regardless of treatment. Antagomir treatment did not affect latency to, frequency, or duration of spontaneous recurrent seizures or interictal spike activity but did alter the temporal development of frequency band-specific EEG power. Conclusion These results suggest that miR-324-5p inhibition during epileptogenesis induced by status epilepticus does not convey anti-epileptogenic effects despite having subtle effects on EEG frequency bands. Our results highlight the importance of timing of intervention across epilepsy development and suggest that miR-324-5p may act primarily as a proconvulsant rather than a pro-epileptogenic regulator.
Collapse
Affiliation(s)
- Amanda M. McGann
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Grace C. Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alisha Chalasani
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Cole S. K. Danzer
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Emma V. Parkins
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Valerine Rajathi
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Paul S. Horn
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve C. Danzer
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christina Gross
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
15
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
16
|
Lisgaras CP, Scharfman HE. Interictal Spikes in Alzheimer's Disease: Preclinical Evidence for Dominance of the Dentate Gyrus and Cholinergic Control by Medial Septum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537999. [PMID: 37163065 PMCID: PMC10168266 DOI: 10.1101/2023.04.24.537999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
HIGHLIGHTS Interictal spikes (IIS) occur in 3 mouse lines with Alzheimer's disease featuresIIS in all 3 mouse lines were most frequent during rapid eye movement (REM) sleepThe dentate gyrus showed larger IIS and earlier current sources vs. CA1 or cortexChemogenetic silencing of medial septum (MS) cholinergic neurons reduced IIS during REMMS silencing did not change REM latency, duration, number of bouts or theta power. Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS.We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep.We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects.Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
|
17
|
Franz J, Barheier N, Wilms H, Tulke S, Haas CA, Häussler U. Differential vulnerability of neuronal subpopulations of the subiculum in a mouse model for mesial temporal lobe epilepsy. Front Cell Neurosci 2023; 17:1142507. [PMID: 37066079 PMCID: PMC10090355 DOI: 10.3389/fncel.2023.1142507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Selective loss of inhibitory interneurons (INs) that promotes a shift toward an excitatory predominance may have a critical impact on the generation of epileptic activity. While research on mesial temporal lobe epilepsy (MTLE) has mostly focused on hippocampal changes, including IN loss, the subiculum as the major output region of the hippocampal formation has received less attention. The subiculum has been shown to occupy a key position in the epileptic network, but data on cellular alterations are controversial. Using the intrahippocampal kainate (KA) mouse model for MTLE, which recapitulates main features of human MTLE such as unilateral hippocampal sclerosis and granule cell dispersion, we identified cell loss in the subiculum and quantified changes in specific IN subpopulations along its dorso-ventral axis. We performed intrahippocampal recordings, FluoroJade C-staining for degenerating neurons shortly after status epilepticus (SE), fluorescence in situ hybridization for glutamic acid decarboxylase (Gad) 67 mRNA and immunohistochemistry for neuronal nuclei (NeuN), parvalbumin (PV), calretinin (CR) and neuropeptide Y (NPY) at 21 days after KA. We observed remarkable cell loss in the ipsilateral subiculum shortly after SE, reflected in lowered density of NeuN+ cells in the chronic stage when epileptic activity occurred in the subiculum concomitantly with the hippocampus. In addition, we show a position-dependent reduction of Gad67-expressing INs by ∼50% (along the dorso-ventral as well as transverse axis of the subiculum). This particularly affected the PV- and to a lesser extent CR-expressing INs. The density of NPY-positive neurons was increased, but the double-labeling for Gad67 mRNA expression revealed that an upregulation or de novo expression of NPY in non-GABAergic cells with a concomitant reduction of NPY-positive INs underlies this observation. Our data suggest a position- and cell type-specific vulnerability of subicular INs in MTLE, which might contribute to hyperexcitability of the subiculum, reflected in epileptic activity.
Collapse
Affiliation(s)
- Julia Franz
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nicole Barheier
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Henrike Wilms
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Susanne Tulke
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carola A. Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- *Correspondence: Ute Häussler,
| |
Collapse
|
18
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
19
|
Kilias A, Tulke S, Barheier N, Ruther P, Häussler U. Integration of the CA2 region in the hippocampal network during epileptogenesis. Hippocampus 2023; 33:223-240. [PMID: 36421040 DOI: 10.1002/hipo.23479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
The CA2 pyramidal cells are mostly resistant to cell death in mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, but they are aberrantly integrated into the epileptic hippocampal network via mossy fiber sprouting. Furthermore, they show increased excitability in vitro in hippocampal slices obtained from human MTLE specimens or animal epilepsy models. Although these changes promote CA2 to contribute to epileptic activity (EA) in vivo, the role of CA2 in the epileptic network within and beyond the sclerotic hippocampus is still unclear. We used the intrahippocampal kainate mouse model for MTLE, which recapitulates most features of the human disease including pharmacoresistant epileptic seizures and hippocampal sclerosis, with preservation of dentate gyrus (DG) granule cells and CA2 pyramidal cells. In vivo recordings with electrodes in CA2 and the DG showed that EA occurs at high coincidence between the ipsilateral DG and CA2 and current source density analysis of silicon probe recordings in dorsal ipsilateral CA2 revealed CA2 as a local source of EA. Cell-specific viral tracing in Amigo2-icreERT2 mice confirmed the preservation of the axonal projection from ipsilateral CA2 pyramidal cells to contralateral CA2 under epileptic conditions and indeed, EA propagated from ipsi- to contralateral CA2 with increasing likelihood with time after KA injection, but always at lower intensity than within the ipsilateral hippocampus. Furthermore, we show that CA2 presents with local theta oscillations and like the DG, shows a pathological reduction of theta frequency already from 2 days after KA onward. The early changes in activity might be facilitated by the loss of glutamic acid decarboxylase 67 (Gad67) mRNA-expressing interneurons directly after the initial status epilepticus in ipsi- but not contralateral CA2. Together, our data highlight CA2 as an active player in the epileptic network and with its contralateral connections as one possible router of aberrant activity.
Collapse
Affiliation(s)
- Antje Kilias
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Susanne Tulke
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Nicole Barheier
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Cutia CA, Leverton LK, Christian-Hinman CA. Sex and estrous cycle stage shape left-right asymmetry in chronic hippocampal seizures in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524965. [PMID: 36712086 PMCID: PMC9882284 DOI: 10.1101/2023.01.20.524965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lateralization of hippocampal function is indicated by varied outcomes of patients with neurological disorders that selectively affect one hemisphere of this structure, such as temporal lobe epilepsy (TLE). The intrahippocampal kainic acid (IHKA) injection model of TLE allows for targeted damage to the left or right hippocampus, enabling systematic comparison of effects of left-right asymmetry on seizure and non-seizure outcomes. Although varying non-seizure phenotypic outcomes based on injection side in dorsal hippocampus were recently evaluated in this model, differences in chronic seizure patterns in left- (IHKA-L) vs. right-injected (IHKA-R) IHKA animals have yet to be evaluated. Here, we evaluated hippocampal seizure incidence in male and female IHKA-L and IHKA-R mice. Females displayed increased electrographic seizure activity compared to males at both 2 months and 4 months post-injection (mpi). In addition, IHKA-L females showed higher seizure frequency than IHKA-R on diestrus and estrus at 2 mpi, but seizure duration and time in seizures were only higher in IHKA-L females on diestrus. These cycle stage-associated changes, however, did not persist to 4 mpi. Furthermore, this lateralized difference in seizure burden was not observed in males. These results indicate for the first time that the side of IHKA injection can shape chronic electrographic seizure burden. Overall, these results demonstrate a female-specific left-right asymmetry in hippocampal function can interact with estrous cycle stage to shape chronic seizures in mice with epilepsy, with implications for neural activity and behavior in both normal and disease states.
Collapse
Affiliation(s)
- Cathryn A. Cutia
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Leanna K. Leverton
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Catherine A. Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| |
Collapse
|
21
|
Lisgaras CP, Oliva A, Mckenzie S, LaFrancois J, Siegelbaum SA, Scharman HE. Hippocampal area CA2 controls seizure dynamics, interictal EEG abnormalities and social comorbidity in mouse models of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524149. [PMID: 36711983 PMCID: PMC9882187 DOI: 10.1101/2023.01.15.524149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, abnormal activity between seizures, and impaired behavior. CA2 pyramidal neurons (PNs) are potentially important because inhibiting them with a chemogenetic approach reduces seizure frequency in a mouse model of TLE. However, whether seizures could be stopped by timing inhibition just as a seizure begins is unclear. Furthermore, whether inhibition would reduce the cortical and motor manifestations of seizures are not clear. Finally, whether interictal EEG abnormalities and TLE comorbidities would be improved are unknown. Therefore, real-time optogenetic silencing of CA2 PNs during seizures, interictal activity and behavior were studied in 2 mouse models of TLE. CA2 silencing significantly reduced seizure duration and time spent in convulsive behavior. Interictal spikes and high frequency oscillations were significantly reduced, and social behavior was improved. Therefore, brief focal silencing of CA2 PNs reduces seizures, their propagation, and convulsive manifestations, improves interictal EEG, and ameliorates social comorbidities. HIGHLIGHTS Real-time CA2 silencing at the onset of seizures reduces seizure durationWhen CA2 silencing reduces seizure activity in hippocampus it also reduces cortical seizure activity and convulsive manifestations of seizuresInterictal spikes and high frequency oscillations are reduced by real-time CA2 silencingReal-time CA2 silencing of high frequency oscillations (>250Hz) rescues social memory deficits of chronic epileptic mice.
Collapse
|
22
|
Stieve BJ, Richner TJ, Krook-Magnuson C, Netoff TI, Krook-Magnuson E. Optimization of closed-loop electrical stimulation enables robust cerebellar-directed seizure control. Brain 2023; 146:91-108. [PMID: 35136942 DOI: 10.1093/brain/awac051] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023] Open
Abstract
Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation-a more immediately translatable approach-targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency and pulse width, resulting in over 1000 different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in MATLAB with an Expected Improvement Plus acquisition function. We examined three different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Regardless of experimental setup, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.
Collapse
Affiliation(s)
- Bethany J Stieve
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA
| | - Thomas J Richner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA.,Department of Neuroscience, University of Minnesota, Minneapolis 55455, USA
| | | | - Theoden I Netoff
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA
| | - Esther Krook-Magnuson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA.,Department of Neuroscience, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
23
|
Lisgaras CP, Scharfman HE. High-frequency oscillations (250-500 Hz) in animal models of Alzheimer's disease and two animal models of epilepsy. Epilepsia 2023; 64:231-246. [PMID: 36346209 PMCID: PMC10501735 DOI: 10.1111/epi.17462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To test the hypothesis that high-frequency oscillations (HFOs) between 250 and 500 Hz occur in mouse models of Alzheimer's disease (AD) and thus are not unique to epilepsy. METHODS Experiments were conducted in three mouse models of AD: Tg2576 mice that simulate a form of familial AD, presenilin 2 knock-out (PS2KO) mice, and the Ts65Dn model of Down's syndrome. We recorded HFOs using wideband (0.1-500 Hz, 2 kHz) intra-hippocampal and cortical surface electroencephalography (EEG) at 1 month until 24 months of age during wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. In addition, interictal spikes (IISs) and seizures were analyzed for the possible presence of HFOs. Comparisons were made to the intra-hippocampal kainic acid and pilocarpine models of epilepsy. RESULTS We describe for the first time that hippocampal and cortical HFOs are a new EEG abnormality in AD mouse models. HFOs occurred in all transgenic mice but no controls. They were also detectable as early as 1 month of age and prior to amyloid beta plaque neuropathology. HFOs were most frequent during SWS (vs REM sleep or wakefulness). Notably, HFOs in the AD and epilepsy models were indistinguishable in both spectral frequency and duration. HFOs also occurred during IISs and seizures in the AD models, although with altered spectral properties compared to isolated HFOs. SIGNIFICANCE Our data demonstrate that HFOs, an epilepsy biomarker with high translational value, are not unique to epilepsy and thus not disease specific. Our findings also strengthen the idea of hyperexcitability in AD and its significant overlap with epilepsy. HFOs in AD mouse models may serve as an EEG biomarker, which is detectable from the scalp and thus amenable to noninvasive detection in people at risk for AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962
| | - Helen E. Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962
| |
Collapse
|
24
|
Ghouli MR, Jonak CR, Sah R, Fiacco TA, Binder DK. Regulation of the Volume-Regulated Anion Channel Pore-Forming Subunit LRRC8A in the Intrahippocampal Kainic Acid Model of Mesial Temporal Lobe Epilepsy. ASN Neuro 2023; 15:17590914231184072. [PMID: 37410995 PMCID: PMC10331354 DOI: 10.1177/17590914231184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.
Collapse
Affiliation(s)
- Manolia R. Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California—Riverside, Riverside, CA, USA
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California—Riverside, Riverside, CA, USA
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
- Department of Cell Biology and Neuroscience, University of California—Riverside, Riverside, CA, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California—Riverside, Riverside, CA, USA
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
| |
Collapse
|
25
|
Low-Cost Platform for Multianimal Chronic Local Field Potential Video Monitoring with Graphical User Interface (GUI) for Seizure Detection and Behavioral Scoring. eNeuro 2022; 9:ENEURO.0283-22.2022. [PMID: 36192155 PMCID: PMC9581574 DOI: 10.1523/eneuro.0283-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022] Open
Abstract
Experiments employing chronic monitoring of neurophysiological signals and video are commonly used in studies of epilepsy to characterize behavioral correlates of seizures. Our objective was to design a low-cost platform that enables chronic monitoring of several animals simultaneously, synchronizes bilateral local field potential (LFP) and video streams in real time, and parses recorded data into manageable file sizes. We present a hardware solution leveraging Intan and Open Ephys acquisition systems and a software solution implemented in Bonsai. The platform was tested in 48-h continuous recordings simultaneously from multiple mice (male and female) with chronic epilepsy. To enable seizure detection and scoring, we developed a graphical user interface (GUI) that reads the data produced by our workflow and allows a user with no coding expertise to analyze events. Our Bonsai workflow was designed to maximize flexibility for a wide variety of experimental applications, and our use of the Open Ephys acquisition board would allow for scaling recordings up to 128 channels per animal.
Collapse
|
26
|
Whitebirch AC, LaFrancois JJ, Jain S, Leary P, Santoro B, Siegelbaum SA, Scharfman HE. Enhanced excitability of the hippocampal CA2 region and its contribution to seizure activity in a mouse model of temporal lobe epilepsy. Neuron 2022; 110:3121-3138.e8. [PMID: 35987207 PMCID: PMC9547935 DOI: 10.1016/j.neuron.2022.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to degeneration observed in neighboring CA1 and CA3 regions in both humans and rodent models of TLE. However, little is known about whether alterations in CA2 properties promote seizure generation or propagation. Here, we addressed the role of CA2 using the pilocarpine-induced status epilepticus model of TLE. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 PC intrinsic excitability, reduce CA2 inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective chemogenetic silencing of CA2 pyramidal cells caused a significant decrease in the frequency of spontaneous seizures measured in vivo. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - John J LaFrancois
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, USA
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, NY 10027, USA.
| | - Helen E Scharfman
- Department of Child Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| |
Collapse
|
27
|
Ingram RJ, Leverton LK, Daniels VC, Li J, Christian-Hinman CA. Increased GABA transmission to GnRH neurons after intrahippocampal kainic acid injection in mice is sex-specific and associated with estrous cycle disruption. Neurobiol Dis 2022; 172:105822. [PMID: 35868435 PMCID: PMC9455811 DOI: 10.1016/j.nbd.2022.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with epilepsy develop reproductive endocrine comorbidities at a rate higher than that of the general population. Clinical studies have identified disrupted luteinizing hormone (LH) release patterns in patients of both sexes, suggesting potential epilepsy-associated changes in hypothalamic gonadotropin-releasing hormone (GnRH) neuron function. In previous work, we found that GnRH neuron firing is increased in diestrous females and males in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy. Notably, GABAA receptor activation is depolarizing in adult GnRH neurons. Therefore, here we tested the hypothesis that increased GnRH neuron firing in IHKA mice is associated with increased GABAergic drive to GnRH neurons. When ionotropic glutamate receptors (iGluRs) were blocked to isolate GABAergic postsynaptic currents (PSCs), no differences in PSC frequency were seen between GnRH neurons from control and IHKA diestrous females. In the absence of iGluR blockade, however, GABA PSC frequency was increased in GnRH neurons from IHKA females with disrupted estrous cycles, but not saline-injected controls nor IHKA females without estrous cycle disruption. GABA PSC amplitude was also increased in IHKA females with disrupted estrous cycles. These findings suggest the presence of an iGluR-dependent increase in feed-forward GABAergic transmission to GnRH neurons specific to IHKA females with comorbid cycle disruption. In males, GABA PSC frequency and amplitude were unchanged but PSC duration was reduced. Together, these findings suggest that increased GABA transmission helps drive elevated firing in IHKA females on diestrus and indicate the presence of a sex-specific hypothalamic mechanism underlying reproductive endocrine dysfunction in IHKA mice.
Collapse
Affiliation(s)
- Robbie J Ingram
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Leanna K Leverton
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Victoria C Daniels
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Jiang Li
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
28
|
Cutia CA, Leverton LK, Ge X, Youssef R, Raetzman LT, Christian-Hinman CA. Phenotypic differences based on lateralization of intrahippocampal kainic acid injection in female mice. Exp Neurol 2022; 355:114118. [PMID: 35597270 PMCID: PMC10462257 DOI: 10.1016/j.expneurol.2022.114118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Clinical evidence indicates that patients with temporal lobe epilepsy (TLE) often show differential outcomes of comorbid conditions in relation to the lateralization of the seizure focus. A particularly strong relationship exists between the side of seizure focus and the propensity for distinct reproductive endocrine comorbidities in women with TLE. Therefore, here we evaluated whether targeting of left or right dorsal hippocampus for intrahippocampal kainic acid (IHKA) injection, a model of TLE, produces different outcomes in hippocampal granule cell dispersion, body weight gain, and multiple measures of reproductive endocrine dysfunction in female mice. One, two, and four months after IHKA or saline injection, in vivo measurements of estrous cycles and weight were followed by ex vivo examination of hippocampal dentate granule cell dispersion, circulating ovarian hormone and corticosterone levels, ovarian morphology, and pituitary gene expression. IHKA mice with right-targeted injection (IHKA-R) showed greater granule cell dispersion and pituitary Fshb expression compared to mice with left-targeted injection (IHKA-L). By contrast, pituitary expression of Lhb and Gnrhr were higher in IHKA-L mice compared to IHKA-R, but these values were not different from respective saline-injected controls. IHKA-L mice also showed an increased rate of weight gain compared to IHKA-R mice. Increases in estrous cycle length, however, were similar in both IHKA-L and IHKA-R mice. These findings indicate that although major reproductive endocrine dysfunction phenotypes present similarly after targeting left or right dorsal hippocampus for IHKA injection, distinct underlying mechanisms based on lateralization of epileptogenic insult may contribute to produce similar emergent reproductive endocrine outcomes.
Collapse
Affiliation(s)
- Cathryn A Cutia
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Leanna K Leverton
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rana Youssef
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lori T Raetzman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Li J, Christian-Hinman CA. Epilepsy-associated increase in gonadotropin-releasing hormone neuron firing in diestrous female mice is independent of chronic seizure burden severity. Epilepsy Res 2022; 184:106948. [PMID: 35690025 PMCID: PMC10416707 DOI: 10.1016/j.eplepsyres.2022.106948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
Abstract
Reproductive endocrine disorders are common comorbidities of temporal lobe epilepsy (TLE). Our previous studies using the intrahippocampal kainic acid (IHKA) mouse model of TLE demonstrated that many females show prolonged estrous cycles and hypothalamic gonadotropin-releasing hormone (GnRH) neurons exhibit elevated firing during diestrus. However, it is unknown whether the degree of change in GnRH neuron activity is dependent on epilepsy severity. Here, we used 24/7 in vivo electroencephalography (EEG) and in vitro electrophysiological recordings in acute brain slices to assess GnRH neuron firing in relation to chronic seizure burden in diestrous female mice at two months after IHKA injection. We found that percentage of time in seizure activity in the 24 h prior to slice preparation is an accurate proxy of overall seizure burden. Firing rates of GnRH neurons from EEG-recorded IHKA mice were increased in comparison to controls, but no relationships were found between GnRH neuron firing and seizure burden measured in vivo. The independence of GnRH neuron firing rate in relation to seizure burden was unaffected by GnRH neuron soma location or estrous cycle length. Furthermore, GnRH neuron firing rates were not yet different from control values when measured 1 month after injection, when epileptogenesis is already complete in IHKA mice. These findings indicate that the severity of epilepsy and the degree of downstream disruption to GnRH neuron activity are independent, suggesting that susceptibility to reproductive endocrine comorbidities is driven by other risk factors.
Collapse
Affiliation(s)
- Jiang Li
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|