1
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
2
|
Ladeveze S, Zurek PJ, Kaminski TS, Emond S, Hollfelder F. Versatile Product Detection via Coupled Assays for Ultrahigh-Throughput Screening of Carbohydrate-Active Enzymes in Microfluidic Droplets. ACS Catal 2023; 13:10232-10243. [PMID: 37560191 PMCID: PMC10407846 DOI: 10.1021/acscatal.3c01609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/06/2023] [Indexed: 08/11/2023]
Abstract
Enzyme discovery and directed evolution are the two major contemporary approaches for the improvement of industrial processes by biocatalysis in various fields. Customization of catalysts for improvement of single enzyme reactions or de novo reaction development is often complex and tedious. The success of screening campaigns relies on the fraction of sequence space that can be sampled, whether for evolving a particular enzyme or screening metagenomes. Ultrahigh-throughput screening (uHTS) based on in vitro compartmentalization in water-in-oil emulsion of picoliter droplets generated in microfluidic systems allows screening rates >1 kHz (or >107 per day). Screening for carbohydrate-active enzymes (CAZymes) catalyzing biotechnologically valuable reactions in this format presents an additional challenge because the released carbohydrates are difficult to monitor in high throughput. Activated substrates with large optically active hydrophobic leaving groups provide a generic optical readout, but the molecular recognition properties of sugars will be altered by the incorporation of such fluoro- or chromophores and their typically higher reactivity, as leaving groups with lowered pKa values compared to native substrates make the observation of promiscuous reactions more likely. To overcome these issues, we designed microdroplet assays in which optically inactive carbohydrate products are made visible by specific cascades: the primary reaction of an unlabeled substrate leads to an optical signal downstream. Successfully implementing such assays at the picoliter droplet scale allowed us to detect glucose, xylose, glucuronic acid, and arabinose as final products of complex oligosaccharide degradation by glycoside hydrolases by absorbance measurements. Enabling the use of uHTS for screening CAZyme reactions that have been thus far elusive will chart a route toward faster and easier development of specific and efficient biocatalysts for biovalorization, directing enzyme discovery by challenging catalysts for reaction with natural rather than model substrates.
Collapse
Affiliation(s)
| | - Paul J. Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, U.K.
| | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, U.K.
| |
Collapse
|
3
|
Mitchell DA, Krieger N. Estimation of selectivities in transglycosylation systems with multiple transglycosylation products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Molecular dynamics simulation guided distal mutation of Thermotoga naphthophila β-glucosidase for significantly enhanced synthesis of galactooligosaccharides and expanded product scope. Int J Biol Macromol 2022; 210:21-32. [DOI: 10.1016/j.ijbiomac.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
|
5
|
Enzymatic transglycosylation by the Ping Pong bi bi mechanism: Selectivity for transglycosylation versus primary and secondary hydrolysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhao J, Esque J, André I, O'Donohue MJ, Fauré R. Synthesis of α-l-Araf and β-d-Galf series furanobiosides using mutants of a GH51 α-l-arabinofuranosidase. Bioorg Chem 2021; 116:105245. [PMID: 34482168 DOI: 10.1016/j.bioorg.2021.105245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
The GH-51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus (TxAbf) possesses versatile catalytic properties, displaying not only the ability to hydrolyze glycosidic linkages but also to synthesize furanobiosides in α-l-Araf and β-d-Galf series. Herein, mutants are investigated to evaluate their ability to perform self-condensation, assessing both yield improvements and changes in regioselectivity. Overall yields of oligo-α-l-arabino- and oligo-β-d-galactofuranosides were increased up to 4.8-fold compared to the wild-type enzyme. In depth characterization revealed that the mutants exhibit increased transfer rates and thus a hydrolysis/self-condensation ratio in favor of synthesis. The consequence of the substitution N216W is the creation of an additional binding subsite that provides the basis for an alternative acceptor substrate binding mode. As a result, mutants bearing N216W synthesize not only (1,2)-linked furanobiosides, but also (1,3)- and even (1,5)-linked furanobiosides. Since the self-condensation is under kinetic control, the yield of homo-disaccharides was maximized using higher substrate concentrations. In this way, the mutant R69H-N216W produced oligo-β-d-galactofuranosides in > 70% yield. Overall, this study further demonstrates the potential usefulness of TxAbf mutants for glycosynthesis and shows how these might be used to synthesize biologically-relevant glycoconjugates.
Collapse
Affiliation(s)
- Jiao Zhao
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jérémy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Isabelle André
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
7
|
Teze D, Zhao J, Wiemann M, Kazi ZGA, Lupo R, Zeuner B, Vuillemin M, Rønne ME, Carlström G, Duus JØ, Sanejouand YH, O'Donohue MJ, Nordberg Karlsson E, Fauré R, Stålbrand H, Svensson B. Rational Enzyme Design without Structural Knowledge: A Sequence-Based Approach for Efficient Generation of Transglycosylases. Chemistry 2021; 27:10323-10334. [PMID: 33914359 DOI: 10.1002/chem.202100110] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Glycobiology is dogged by the relative scarcity of synthetic, defined oligosaccharides. Enzyme-catalysed glycosylation using glycoside hydrolases is feasible but is hampered by the innate hydrolytic activity of these enzymes. Protein engineering is useful to remedy this, but it usually requires prior structural knowledge of the target enzyme, and/or relies on extensive, time-consuming screening and analysis. Here, a straightforward strategy that involves rational rapid in silico analysis of protein sequences is described. The method pinpoints 6-12 single-mutant candidates to improve transglycosylation yields. Requiring very little prior knowledge of the target enzyme other than its sequence, the method is generic and procures catalysts for the formation of glycosidic bonds involving various d/l-, α/β-pyranosides or furanosides, and exo or endo action. Moreover, mutations validated in one enzyme can be transposed to others, even distantly related enzymes.
Collapse
Affiliation(s)
- David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Jiao Zhao
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse CEDEX 04, France
| | - Mathias Wiemann
- Department of Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Zubaida G A Kazi
- Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| | - Rossana Lupo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Birgitte Zeuner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Marlène Vuillemin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Mette E Rønne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Göran Carlström
- Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| | - Jens Ø Duus
- Department of Chemistry, Technical University of Denmark, Kemitorvet, bulding 207, DK-2800, Kongens Lyngby, Denmark
| | - Yves-Henri Sanejouand
- UFIP, UMR 6286, Université de Nantes, CNRS, 2, chemin de la Houssiniere, Nantes, France
| | - Michael J O'Donohue
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse CEDEX 04, France
| | | | - Régis Fauré
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse CEDEX 04, France
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Jocquel C, Muzard M, Plantier-Royon R, Rémond C. An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/Xylose Laurate Esters From Wheat Bran. Front Bioeng Biotechnol 2021; 9:647442. [PMID: 33898404 PMCID: PMC8058420 DOI: 10.3389/fbioe.2021.647442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alkyl glycosides and sugars esters are non-ionic surfactants of interest for various applications (cosmetics, food, detergency,…). In the present study, xylans and cellulose from wheat bran were enzymatically converted into pentyl xylosides and glucose and xylose laurate monoesters. Transglycosylation reaction catalyzed by the commercial enzymatic cocktail Cellic Ctec2 in the presence of pentanol led to the synthesis of pentyl β-D-xylosides from DP1 to 3 with an overall yield of 520 mg/g of xylans present in wheat bran. Enzymatic hydrolysis of wheat bran with Cellic Ctec2 and subsequent acylation of the recovered D-glucose and D-xylose catalyzed by the commercial lipase N435 in the presence of lauric acid or methyl laurate produced one D-glucose laurate monoester and one D-xylose laurate monoester. An integrated approach combining transglycosylation and (trans)esterification reactions was successfully developed to produce both pentyl xylosides and D-glucose and D-xylose laurate esters from the same batch of wheat bran.
Collapse
Affiliation(s)
- Chloé Jocquel
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, Reims, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, Reims, France
| |
Collapse
|
9
|
Zhao J, Tandrup T, Bissaro B, Barbe S, Poulsen JCN, André I, Dumon C, Lo Leggio L, O'Donohue MJ, Fauré R. Probing the determinants of the transglycosylation/hydrolysis partition in a retaining α-l-arabinofuranosidase. N Biotechnol 2021; 62:68-78. [PMID: 33524585 DOI: 10.1016/j.nbt.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
The use of retaining glycoside hydrolases as synthetic tools for glycochemistry is highly topical and the focus of considerable research. However, due to the incomplete identification of the molecular determinants of the transglycosylation/hydrolysis partition (t/h), rational engineering of retaining glycoside hydrolases to create transglycosylases remains challenging. Therefore, to understand better the factors that underpin transglycosylation in a GH51 retaining α-l-arabinofuranosidase from Thermobacillus xylanilyticus, the investigation of this enzyme's active site was pursued. Specifically, the properties of two mutants, F26L and L352M, located in the vicinity of the active site are described, using kinetic and 3D structural analyses and molecular dynamics simulations. The results reveal that the presence of L352M in the context of a triple mutant (also containing R69H and N216W) generates changes both in the donor and acceptor subsites, the latter being the result of a domino-like effect. Overall, the mutant R69H-N216W-L352M displays excellent transglycosylation activity (70 % yield, 78 % transfer rate and reduced secondary hydrolysis of the product). In the course of this study, the central role played by the conserved R69 residue was also reaffirmed. The mutation R69H affects both the catalytic nucleophile and the acid/base, including their flexibility, and has a determinant effect on the t/h partition. Finally, the results reveal that increased loop flexibility in the acceptor subsites creates new interactions with the acceptor, in particular with a hydrophobic binding platform composed of N216W, W248 and W302.
Collapse
Affiliation(s)
- Jiao Zhao
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Bastien Bissaro
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Sophie Barbe
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Isabelle André
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
10
|
Karnaouri A, Zerva A, Christakopoulos P, Topakas E. Screening of Recombinant Lignocellulolytic Enzymes Through Rapid Plate Assays. Methods Mol Biol 2021; 2178:479-503. [PMID: 33128767 DOI: 10.1007/978-1-0716-0775-6_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the search for novel biomass-degrading enzymes through mining microbial genomes, it is necessary to apply functional tests during high-throughput screenings, which are capable of detecting enzymatic activities directly by way of plate assay. Using the most efficient expression systems of Escherichia coli and Pichia pastoris, the production of a high amount of His-tagged recombinant proteins could be thrived, allowing the one-step isolation by affinity chromatography. Here, we describe simple and efficient assay techniques for the detection of various biomass-degrading enzymatic activities on agar plates, such as cellulolytic, hemicellulolytic, and ligninolytic activities and their isolation using immobilized-metal affinity chromatography.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
11
|
Chen X, Jin L, Jiang X, Guo L, Gu G, Xu L, Lu L, Wang F, Xiao M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl Microbiol Biotechnol 2019; 104:661-673. [PMID: 31822984 DOI: 10.1007/s00253-019-10253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
We have recently derived a β-N-acetylhexosaminidase, BbhI, from Bifidobacterium bifidum JCM 1254, which could regioselectively synthesize GlcNAcβ1-3Galβ1-4Glc with a yield of 44.9%. Here, directed evolution of BbhI by domain-targeted mutagenesis was carried out. Firstly, the GH20 domain was selected for random mutagenesis using MEGAWHOP method and a small library of 1300 clones was created. A total of 734 colonies with reduced hydrolytic activity were isolated, and three mutants with elevated transglycosylation yields, GlcNAcβ1-3Galβ1-4Glc yields of 68.5%, 74.7%, and 81.1%, respectively, were obtained. Subsequently, nineteen independent mutants were constructed according to all the mutation sites in these three mutants. After transglycosylation analysis, Asp714 and Trp773 were identified as key residues for improvement in transglycosylation ability and were chosen for the second round of directed evolution by site-saturation mutagenesis. Two most efficient mutants D714T and W773R that acted as trans-β-N-acetylhexosaminidase were finally achieved. D714T with the substitution at the putative nucleophile assistant residue Asp714 by threonine showed high yield of 84.7% with unobserved hydrolysis towards transglycosylation product. W773R with arginine substitution at Trp773 residue locating at the entrance of catalytic cavity led to the yield up to 81.8%. The kcat/Km values of D714T and W773R for hydrolysis of pNP-β-GlcNAc displayed drastic decreases. NMR investigation of protein-substrate interaction revealed an invariable mode of the catalytic cavity of D714T, W773R, and WT BbhI. The collective motions of protein model showed the mutations Thr714 and Arg773 exerted little effect on the dynamics of the inside but a large effect on the dynamics of the outside of catalytic cavity.
Collapse
Affiliation(s)
- Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xukai Jiang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Longcheng Guo
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Guofeng Gu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
12
|
Qin Z, Li S, Huang X, Kong W, Yang X, Zhang S, Cao L, Liu Y. Improving Galactooligosaccharide Synthesis Efficiency of β-Galactosidase Bgal1-3 by Reshaping the Active Site with an Intelligent Hydrophobic Amino Acid Scanning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11158-11166. [PMID: 31537069 DOI: 10.1021/acs.jafc.9b04774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There are ongoing interests in improving the galactooligosaccharide (GOS) synthesis efficiency of β-galactosidase by protein engineering. In this study, an intelligent double-hydrophobic amino acid scanning strategy was proposed and employed to target nine residues forming the glycon-binding site (-1 subsite) of β-galactosidase Bgal1-3. Two mutants C510V and H512I with significantly improved GOS synthesis efficiency were obtained. When 40% (w/v) lactose was used as a substrate, Bgal1-3 reached a maximum GOS yield of 45.3% at 16 h, while the mutants reached higher yields in a much shorter time (59.1% at 10 h for C510V, 51.5% at 2 h for H512I). When skim milk was treated with these enzymes, more GOS was produced (19.9 g/L for C510V, 12.7 g/L for H512I) than that for Bgal1-3 (10.3 g/L) at a lactose conversion of 90%. These results validated hydrophobicity scanning as an efficient method to engineer β-galactosidases into promising catalysts for the preparation of GOS and GOS-enriched milk.
Collapse
Affiliation(s)
- Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xiangpeng Yang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Sufang Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
13
|
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 2019; 37:667-697. [DOI: 10.1016/j.biotechadv.2019.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
|
14
|
You X, Qin Z, Yan Q, Yang S, Li Y, Jiang Z. Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from Amphibacillus xylanus. J Biol Chem 2018; 293:11746-11757. [PMID: 29871927 DOI: 10.1074/jbc.ra118.002363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
β-1,4-Mannanase degrades β-1,4-mannan polymers into manno-oligosaccharides with a low degree of polymerization. To date, only one glycoside hydrolase (GH) family 113 β-1,4-mannanase, from Alicyclobacillus acidocaldarius (AaManA), has been structurally characterized, and no complex structure of enzyme-manno-oligosaccharides from this family has been reported. Here, crystal structures of a GH family 113 β-1,4-mannanase from Amphibacillus xylanus (AxMan113A) and its complexes with mannobiose, mannotriose, mannopentaose, and mannahexaose were solved. AxMan113A had higher affinity for -1 and +1 mannoses, which explains why the enzyme can hydrolyze mannobiose. At least six subsites (-4 to +2) exist in the groove, but mannose units preferentially occupied subsites -4 to -1 because of steric hindrance formed by Lys-238 and Trp-239. Based on the structural information and bioinformatics, rational design was implemented to enhance hydrolysis activity. Enzyme activity of AxMan113A mutants V139C, N237W, K238A, and W239Y was improved by 93.7, 63.4, 112.9, and 36.4%, respectively, compared with the WT. In addition, previously unreported surface-binding sites were observed. Site-directed mutagenesis studies and kinetic data indicated that key residues near the surface sites play important roles in substrate binding and recognition. These first GH family 113 β-1,4-mannanase-manno-oligosaccharide complex structures may be useful in further studying the catalytic mechanism of GH family 113 members, and provide novel insight into protein engineering of GHs to improve their hydrolysis activity.
Collapse
Affiliation(s)
- Xin You
- From the Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083
| | - Zhen Qin
- the School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, and
| | - Qiaojuan Yan
- From the Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083
| | - Shaoqing Yang
- the College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- From the Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083
| | - Zhengqiang Jiang
- the College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Camarasa C, Chiron H, Daboussi F, Della Valle G, Dumas C, Farines V, Floury J, Gagnaire V, Gorret N, Leonil J, Mouret JR, O'Donohue MJ, Sablayrolles JM, Salmon JM, Saulnier L, Truan G. INRA's research in industrial biotechnology: For food, chemicals, materials and fuels. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
17
|
Durand J, Biarnés X, Watterlot L, Bonzom C, Borsenberger V, Planas A, Bozonnet S, O’Donohue MJ, Fauré R. A Single Point Mutation Alters the Transglycosylation/Hydrolysis Partition, Significantly Enhancing the Synthetic Capability of an endo-Glycoceramidase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Durand
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Xevi Biarnés
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Laurie Watterlot
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Cyrielle Bonzom
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Régis Fauré
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
18
|
Qin Z, Yan Q, Yang S, Jiang Z. Modulating the function of a β-1,3-glucanosyltransferase to that of an endo-β-1,3-glucanase by structure-based protein engineering. Appl Microbiol Biotechnol 2016; 100:1765-1776. [PMID: 26490553 DOI: 10.1007/s00253-015-7057-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/08/2023]
Abstract
A glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase (RmBgt17A) from Rhizomucor miehei CAU432 (CGMCC No. 4967) shared very low sequence homology (∼20 % identity) with that of other β-1,3-glucanases,despite their similar structural folds. Structural comparison and sequence alignment between RmBgt17A and GH family 17 β-1,3-glucanases suggested important roles for three residues (Tyr102, Trp157, and Glu158) located in the substrate-binding cleft of RmBgt17A in transglycosylation activity. A series of site-directed mutagenesis studies indicated that a single Glu-to-Ala mutation (E158A) modulates the function of RmBgt17A to that of a β-1,3-glucanase. Mutant E158A exhibited high hydrolytic activity (39.95 U/mg) toward reduced laminarin, 348.5-fold higher than the wild type. Optimal pH and temperature of the purified RmBgt17A-E158A were 4.5 and 55 °C, respectively. TLC analysis suggested that RmBgt17A-E158A is an endo-β-1,3-glucanase. Our study provides novel insight into protein engineering of the substrate-binding cleft of glycoside hydrolases to modulate the function of transglycosylation and hydrolysis.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| |
Collapse
|
19
|
Bissaro B, Durand J, Biarnés X, Planas A, Monsan P, O’Donohue MJ, Fauré R. Molecular Design of Non-Leloir Furanose-Transferring Enzymes from an α-l-Arabinofuranosidase: A Rationale for the Engineering of Evolved Transglycosylases. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00949] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bastien Bissaro
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Julien Durand
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Xevi Biarnés
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 08017 Barcelona, Spain
| | - Pierre Monsan
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Toulouse White
Biotechnology, UMS INRA/INSA 1337, UMS CNRS/INSA 3582, 3 Rue des Satellites, 31400 Toulouse, France
| | - Michael J. O’Donohue
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Régis Fauré
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
20
|
Slámová K, Krejzová J, Marhol P, Kalachova L, Kulik N, Pelantová H, Cvačka J, Křen V. Synthesis of Derivatized Chitooligomers using Transglycosidases Engineered from the Fungal GH20 β-N-Acetylhexosaminidase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500075] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Arab-Jaziri F, Bissaro B, Tellier C, Dion M, Fauré R, O’Donohue MJ. Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-l-arabinofuranosidase. Carbohydr Res 2015; 401:64-72. [DOI: 10.1016/j.carres.2014.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
|
22
|
Giacobbe S, Vincent F, Faraco V. Development of an improved variant of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus by directed evolution. N Biotechnol 2014; 31:230-6. [PMID: 24565609 DOI: 10.1016/j.nbt.2014.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 02/02/2023]
Abstract
In this study, the α-l-arabinofuranosidase from Pleurotus ostreatus was subjected to directed evolution by expressing a library of around 7000 randomly mutated variants by error prone Polymerase Chain Reaction. High-throughput screening of the library for the most active variants was performed by assaying activity towards p-nitrophenyl α-l-arabinofuranoside, and a variant with higher activity than the wild type was selected, purified and characterised. It exhibited a kcat of 7.3 ×1 0¹ ± 0.3 min⁻¹, around 3-fold higher than that of the wild type (2.2 × 10³ ± 0.2 min⁻¹), and a KM (0.54 ± 0.0 6mM) 30% lower than that of the wild type (0.70 ± 0.05 mM) towards this substrate. The mutant also showed improved catalytic properties towards pNP-β-d-glucopyranoside (kcat of 50.85 ± 0.21 min⁻¹ versus 11.0 ± 0.6 min⁻¹) and it was shown able to hydrolyse larch arabinogalactan which is not recognised by the wild type. The mutant was also more active than the wild type towards arabinoxylan and was able to hydrolyse arabinan, which was not transformed by the wild type. The ability of rPoAbf F435Y/Y446F to hydrolyse these insoluble substrates expands its potential for application also to hemicelluloses, which in some types of pretreatment are recovered in solid fractions.
Collapse
Affiliation(s)
- Simona Giacobbe
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Florence Vincent
- CNRS, UMR7257, Aix-Marseille Universite, 163 Avenue de Luminy, Case 932, 13288 Marseille cedex 09, France
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy.
| |
Collapse
|
23
|
Bissaro B, Saurel O, Arab-Jaziri F, Saulnier L, Milon A, Tenkanen M, Monsan P, O'Donohue MJ, Fauré R. Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochim Biophys Acta Gen Subj 2014; 1840:626-36. [DOI: 10.1016/j.bbagen.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/23/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
|