1
|
Maghraby Y, Ibrahim AH, El-Shabasy RM, Azzazy HMES. Overview of Nanocosmetics with Emphasis on those Incorporating Natural Extracts. ACS OMEGA 2024; 9:36001-36022. [PMID: 39220491 PMCID: PMC11360025 DOI: 10.1021/acsomega.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is rapidly rising worldwide. To overcome certain deficiencies of conventional cosmetics, nanomaterials have been introduced to formulations of nails, lips, hair, and skin for treating/alleviating hyperpigmentation, hair loss, acne, dandruff, wrinkles, photoaging, etc. Innovative nanocarrier materials applied in the cosmetic sector for carrying the active ingredients include niosomes, fullerenes, liposomes, carbon nanotubes, and nanoemulsions. These exhibit several advantages, such as elevated stability, augmented skin penetration, specific site targeting, and sustained release of active contents. Nevertheless, continuous exposure to nanomaterials in cosmetics may pose some health hazards. This review features the different new nanocarriers applied for delivering cosmetics, their positive impacts and shortcomings, currently marketed nanocosmetic formulations, and their possible toxic effects. The role of natural ingredients, including vegetable oils, seed oils, essential oils, fats, and plant extracts, in the formulation of nanocosmetics is also reviewed. This review also discusses the current trend of green cosmetics and cosmetic regulations in selected countries.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, Sixth
of October,12578 Giza, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, 32512 Shebin El-Kom, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Jena 07745, Germany
| |
Collapse
|
2
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
3
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Rohilla S, Rohilla A, Narwal S, Dureja H, Bhagwat DP. Global Trends of Cosmeceutical in Nanotechnology: A Review. Pharm Nanotechnol 2023; 11:410-424. [PMID: 37157203 DOI: 10.2174/2211738511666230508161611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 05/10/2023]
Abstract
Nanotechnology suggests different innovative solutions to augment the worth of cosmetic products through the targeted delivery of content that manifests scientific innovation in research and development. Different nanosystems, like liposomes, niosomes, microemulsions, solid lipid nanoparticles, nanoform lipid carriers, nanoemulsions, and nanospheres, are employed in cosmetics. These nanosystems exhibit various innovative cosmetic functions, including site-specific targeting, controlled content release, more stability, improved skin penetration and enhanced entrapment efficiency of loaded compounds. Thus, cosmeceuticals are assumed as the highest-progressing fragment of the personal care industries that have progressed drastically over the years. In recent decades, cosmetic science has widened the origin of its application in different fields. Nanosystems in cosmetics are beneficial in treating different conditions like hyperpigmentation, wrinkles, dandruff, photoaging and hair damage. This review highlights the different nanosystems used in cosmetics for the targeted delivery of loaded content and commercially available formulations. Moreover, this review article has delineated different patented nanocosmetic formulation nanosystems and future aspects of nanocarriers in cosmetics.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Sonia Narwal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Prabhakar Bhagwat
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| |
Collapse
|
5
|
Xu L, Liu J, Yun Daphne Ma X, Li Z, He C, Lu X. Facile anchoring mussel adhesive mimic tentacles on biodegradable polymer cargo carriers via self-assembly for microplastic-free cosmetics. J Colloid Interface Sci 2022; 612:13-22. [PMID: 34974254 DOI: 10.1016/j.jcis.2021.12.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Enhancing the deposition of fragrance delivery systems contained in personal care products on target surfaces is crucial for increasing the longevity of scent, efficiently utilizing expensive functional compounds and limiting the generation of microplastics in domestic waste water. In this work, we designed and synthesized a new type of biomimetic macromolecules, chitosan-graft-L-lysine-L-DOPA (C-L-D), as a versatile biodegradable adhesion promoter to facilitate the deposition of biodegradable fragrance carriers on diverse surfaces including hair, cotton and skin. The C-L-D has hyperbranched chain architecture with many oligopeptide adhesive tentacles, each being a simple mimic of mussel adhesive proteins. It also exhibits unique amphiphilic characteristic. As a result, it could be facilely anchored on cargo-loaded poly(lactic-co-glycolic acid) nanoparticle surface via self-assembly in the particle preparation process. The C-L-D-modified nanoparticles show significantly higher deposition efficiencies than polyvinyl alcohol- and chitosan-coated particles when deposited on the target surfaces in different aqueous media as the lysine and DOPA units are capable of providing multi-noncovalent interactions, including electrostatic, polar, hydrophobic interactions, and bidentate hydrogen bonds, with the target surfaces, and possibly also inducing oxidative cross-linking. A much higher retention rate of the C-L-D-modified nanoparticles on cotton surface is also observed after washing with a soap solution, which could be attributed to the significant role played by bidentate hydrogen bonds. These findings suggest that C-L-D is a versatile biodegradable adhesion promoter and has the potential to be applied for various personal care applications and beyond.
Collapse
Affiliation(s)
- Lulu Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jian Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiu Yun Daphne Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
6
|
Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, Aldawsari MF, Alalaiwe AS, Mirza MA, Iqbal Z. Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements. Gels 2022; 8:173. [PMID: 35323286 PMCID: PMC8951203 DOI: 10.3390/gels8030173] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology has the potential to generate advancements and innovations in formulations and delivery systems. This fast-developing technology has been widely exploited for diagnostic and therapeutic purposes. Today, cosmetic formulations incorporating nanotechnology are a relatively new yet very promising and highly researched area. The application of nanotechnology in cosmetics has been shown to overcome the drawbacks associated with traditional cosmetics and also to add more useful features to a formulation. Nanocosmetics and nanocosmeceuticals have been extensively explored for skin, hair, nails, lips, and teeth, and the inclusion of nanomaterials has been found to improve product efficacy and consumer satisfaction. This is leading to the replacement of many traditional cosmeceuticals with nanocosmeceuticals. However, nanotoxicological studies on nanocosmeceuticals have raised concerns in terms of health hazards due to their potential skin penetration, resulting in toxic effects. This review summarizes various nanotechnology-based approaches being utilized in the delivery of cosmetics as well as cosmeceutical products, along with relevant patents. It outlines their benefits, as well as potential health and environmental risks. Further, it highlights the regulatory status of cosmeceuticals and analyzes the different regulatory guidelines in India, Europe, and the USA and discusses the different guidelines and recommendations issued by various regulatory authorities. Finally, this article seeks to provide an overview of nanocosmetics and nanocosmeceuticals and their applications in cosmetic industries, which may help consumers and regulators to gain awareness about the benefits as well as the toxicity related to the continuous and long-term uses of these products, thus encouraging their judicious use.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University, 61300 Brno, Czech Republic;
| | - Uzma Farooq
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Keshav Kumar
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Ahmed S. Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| |
Collapse
|
7
|
Dang F, Wang Q, Huang Y, Wang Y, Xing B. Key knowledge gaps for One Health approach to mitigate nanoplastic risks. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:11-22. [PMID: 38078201 PMCID: PMC10702905 DOI: 10.1016/j.eehl.2022.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2023]
Abstract
There are increasing concerns over the threat of nanoplastics to environmental and human health. However, multidisciplinary barriers persist between the communities assessing the risks to environmental and human health. As a result, the hazards and risks of nanoplastics remain uncertain. Here, we identify key knowledge gaps by evaluating the exposure of nanoplastics in the environment, assessing their bio-nano interactions, and examining their potential risks to humans and the environment. We suggest considering nanoplastics a complex and dynamic mixture of polymers, additives, and contaminants, with interconnected risks to environmental and human health. We call for comprehensive integration of One Health approach to produce robust multidisciplinary evidence to nanoplastics threats at the planetary level. Although there are many challenges, this holistic approach incorporates the relevance of environmental exposure and multi-sectoral responses, which provide the opportunity to identify the risk mitigation strategies of nanoplastics to build resilient health systems.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingyu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
8
|
Dermal Delivery of Lipid Nanoparticles: Effects on Skin and Assessment of Absorption and Safety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:83-114. [DOI: 10.1007/978-3-030-88071-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Abstract
Abstract
The field of nanotechnology is being greatly explored by cosmetic industries in order to improve the efficacy of cosmetic products. The increased use of nanomaterials in the field of cosmetics can have two sides as health-related benefits and detrimental effects. This review mainly seeks the pros and cons of the use of nanomaterials in cosmetics along with some examples of nanomaterials that are widely used in cosmetic industries along with different types of nanotechnology-based cosmetic products. The benefits of nanomaterials in cosmetic formulations are huge. Moreover the study regarding the toxic effects on the health also equally matters. This review gives a brief outline of the advantages as well as disadvantages of nanotechnology in cosmetics.
Collapse
|
10
|
Nanomaterials in Cosmetics: Recent Updates. NANOMATERIALS 2020; 10:nano10050979. [PMID: 32443655 PMCID: PMC7279536 DOI: 10.3390/nano10050979] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
This review paper collects the recent updates regarding the use of nanomaterials in cosmetics. Special focus is given to the applications of nanomaterials in the cosmetic industry, their unique features, as well as the advantages of nanoscale ingredients compared to non-nanoscale products. The state-of-the-art practices for physicochemical and toxicological characterization of nanomaterials are also reviewed. Moreover, special focus is given to the current regulations and safety assessments that are currently in place regarding the use of nanomaterials in cosmetics—the new 2019 European guidance for the safety assessment of nanomaterials in cosmetics, together with the new proposed methodologies for the toxicity evaluation of nanomaterials. Concerns over health risks have limited the further incorporation of nanomaterials in cosmetics, and since new nanomaterials may be used in the future by the cosmetic industry, a detailed characterization and risk assessment are needed to fulfill the standard safety requirements.
Collapse
|
11
|
Mitrano DM, Beltzung A, Frehland S, Schmiedgruber M, Cingolani A, Schmidt F. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. NATURE NANOTECHNOLOGY 2019; 14:362-368. [PMID: 30718833 PMCID: PMC6451641 DOI: 10.1038/s41565-018-0360-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/21/2018] [Indexed: 05/22/2023]
Abstract
Research on the distribution and effects of particulate plastic has intensified in recent years and yet, due to analytical challenges, our understanding of nanoplastic occurrence and behaviour has remained comparatively elusive. However, process studies could greatly aid in defining key parameters for nanoplastic interactions within and transfers between technical and environmental compartments. Here we provide a method to synthesize nanoplastic particles doped with a chemically entrapped metal used as a tracer, which provides a robust way to detect nanoplastics more easily, accurately and quantitatively in complex media. We show the utility of this approach in batch studies that simulate the activated sludge process of a municipal waste water treatment plant and so better understand the fate of nanoplastics in urban environments. We found that the majority of particles were associated with the sludge (>98%), with an average recovery of over 93% of the spiked material achieved. We believe that this approach can be developed further to study the fate, transport, mechanistic behaviour and biological uptake of nanoplastics in a variety of systems on different scales.
Collapse
Affiliation(s)
- Denise M Mitrano
- Process Engineering, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Process Engineering, Dubendorf, Switzerland.
| | - Anna Beltzung
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Stefan Frehland
- Process Engineering, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Process Engineering, Dubendorf, Switzerland
| | - Michael Schmiedgruber
- Process Engineering, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Process Engineering, Dubendorf, Switzerland
| | - Alberto Cingolani
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Felix Schmidt
- Process Engineering, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Process Engineering, Dubendorf, Switzerland
| |
Collapse
|
12
|
Santos AC, Morais F, Simões A, Pereira I, Sequeira JAD, Pereira-Silva M, Veiga F, Ribeiro A. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv 2019; 16:313-330. [DOI: 10.1080/17425247.2019.1585426] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisca Morais
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Simões
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana A. D. Sequeira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - António Ribeiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- i3S, Group Genetics of Cognitive Dysfunction, Institute for Molecular and Cell Biology, Porto, Portugal
| |
Collapse
|
13
|
Kaur R, Kukkar D, Bhardwaj SK, Kim KH, Deep A. Potential use of polymers and their complexes as media for storage and delivery of fragrances. J Control Release 2018; 285:81-95. [DOI: 10.1016/j.jconrel.2018.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/15/2022]
|
14
|
Bigon JP, Montoro FE, Lona LMF. Vegetable Oils Acting as Encapsulated Bioactives and Costabilizers in Miniemulsion Polymerization Reactions. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joice P. Bigon
- Department of Materials Engineering and Bioprocess, School of Chemical EngineeringUniversity of Campinas − UNICAMPCampinasSão PauloBrazil
| | - Fabiano E. Montoro
- Brazilian National Nanotechnology Laboratory − LNNanoCampinasSão PauloBrazil
| | - Liliane M. F. Lona
- Department of Materials Engineering and Bioprocess, School of Chemical EngineeringUniversity of Campinas − UNICAMPCampinasSão PauloBrazil
| |
Collapse
|
15
|
Abstract
The preparation methods and applications of flavor and fragrance capsules based on polymeric, inorganic and polymeric–inorganic wall materials are summarized.
Collapse
Affiliation(s)
- Lei He
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jing Hu
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Weijun Deng
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|
16
|
Song J, Chen H. Preparation of aroma microcapsules with sodium alginate and tetradecylallyldimethylammonium bromide (TADAB) and its potential applications in cosmetics. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jia Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Hongling Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| |
Collapse
|
17
|
Zhang Y, Song J, Chen H. Preparation of polyacrylate/paraffin microcapsules and its application in prolonged release of fragrance. J Appl Polym Sci 2016. [DOI: 10.1002/app.44136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering; Department of Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Jia Song
- State Key Laboratory of Materials-Oriented Chemical Engineering; Department of Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Hongling Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering; Department of Chemical Engineering; Nanjing Tech University; Nanjing 210009 China
| |
Collapse
|