1
|
Hashmi MZ, Mughal AF. Microbial and chemically induced reductive dechlorination of polychlorinated biphenyls in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2167-2181. [PMID: 39762530 DOI: 10.1007/s11356-024-35831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment. Under anaerobic conditions, reductive dechlorination of PCBs occurs, and PCBs congeners serve as potential electron acceptors which stimulate the growth of PCBs-dechlorinating microorganisms. In this review, microbial and chemically induced reductive dechlorination was summarized. During anaerobic conditions, highly chlorinated PCBs undergo reductive dechlorination and are converted into less chlorinated PCBs. The mechanisms involved in reductive dechlorination are mainly attacks on meta and/or para chlorines of PCBs mixtures in a contaminated environment and ortho dechlorination of PCBs. Based on methods, PCBs removal efficiency was as chemical > biological. Activated carbon (90%) showed more treatment efficiency than bacterial (84%). The review suggested that microbial remediation is a slow process; however, efficiency could be enhanced after amendments. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. However, PCBs dechlorination rate, extent, and route are influenced by pH, temperature, availability of carbon sources, and the presence or absence of H2 or competing electron acceptors and other electron donors.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Amina F Mughal
- The State University of New York College of Environmental Science and Forestry, Syracuse, USA
| |
Collapse
|
2
|
Yan M, Peng T, Zhao L, Li Q, Wu R, Wang Y, Wu Y, Teng Y, Xiang X, Zeng J, Lin X. The roles of organic amendments and plant treatments in soil polychlorinated biphenyl dissipation under oxic and sequential anoxic-oxic conditions. ENVIRONMENTAL RESEARCH 2024; 262:119943. [PMID: 39276835 DOI: 10.1016/j.envres.2024.119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Understanding polychlorinated biphenyl (PCB) degradation in sequential anaerobic-aerobic remediation is crucial for effective remediation strategies. In this study, microcosm and greenhouse experiments were conducted to dissect the effects of organic amendments (carbon-based) and plant treatments (ryegrass) on soil PCB dissipation under oxic and sequential anoxic-oxic conditions. We analyzed the soil bacterial community in greenhouse experiments using high-throughput sequencing to explore plant-pollutant-microbe interactions. Microcosm results showed that organic amendments alone did not facilitate aerobic PCB removal, but significantly accelerated PCB dechlorination under anoxic conditions altering the profiles of PCB congeners. In standard greenhouses, plant treatments substantially increased PCB dissipation to 50.8 ± 3.9%, while organic amendments aided phytoremediation by promoting plant growth, increasing PCB removal to 65.9 ± 3.2%. In sequential anaerobic-aerobic greenhouses, plant growth was inhibited by flooding treatment while flooding stress was markedly alleviated by organic amendments. Plant treatments alone during sequential treatments did not lead to PCB dissipation; however, dissipation was significantly promoted following organic amendments, achieving a removal of 41.2 ± 5.7%. This PCB removal was primarily due to anaerobic dechlorination during flooding (27.8 ± 0.5% removal), rather than from plant growth stimulation in subsequent planting phase. Co-occurrence network and functional prediction analyses revealed that organic amendments recruited specific bacterial clusters with distinct functions under different conditions, especially stimulating plant-microbe interactions and xenobiotics biodegradation pathways in planted systems. The findings provide valuable guidance for the design of practical remediation strategies under various remedy scenarios, such as in arable or paddy fields.
Collapse
Affiliation(s)
- Meng Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Tingting Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Ling Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Qigang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Ruini Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Yucheng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China.
| | - Jun Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing, 211135, PR China
| |
Collapse
|
3
|
Narciso A, Grenni P, Spataro F, De Carolis C, Rauseo J, Patrolecco L, Garbini GL, Rolando L, Iannelli MA, Bustamante MA, Alvarez-Alonso C, Barra Caracciolo A. Effects of sulfamethoxazole and copper on the natural microbial community from a fertilized soil. Appl Microbiol Biotechnol 2024; 108:516. [PMID: 39540947 PMCID: PMC11564247 DOI: 10.1007/s00253-024-13324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Cattle manure or its digestate, which often contains antibiotic residues, can be used as an organic fertilizer and copper (Cu) as a fungicide in agriculture. Consequently, both antibiotics and Cu are considered soil contaminants. In this work, microcosms were performed with soil amended with either manure or digestate with Cu and an antibiotic (sulfamethoxazole, SMX) co-presence and the planting of Lactuca sativa. After the addition of the organic amendments, a prompt increase in the microbial activity and at the same time of the sul1 and intI1 genes was observed, although ARGs generally decreased over time. In the amended and spiked microcosms, the microbial community was able to remove more than 99% of SMX in 36 days and the antibiotic did not bioaccumulate in the lettuce. Interestingly, where Cu and SMX were co-present, ARGs (particularly sul2) increased, showing how copper had a strong effect on resistance persistence in the soil. Copper also had a detrimental effect on the plant-microbiome system, affecting plant biomass and microbial activity in all conditions except in a digestate presence. When adding digestate microbial activity, biodiversity and lettuce biomass increased, with or without copper present. Not only did the microbial community favour plant growth, but lettuce also positively influenced its composition by increasing bacterial diversity and classes (e.g., Alphaproteobacteria) and genera (e.g., Bacillus), thus indicating a good-quality soil. KEY POINTS: • Cattle digestate promoted the highest microbial activity, diversity, and plant growth • Cattle digestate counteracted detrimental contaminant effects • Cu presence promoted antibiotic cross-resistance in soil.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- Department of Ecological and Biological Sciences, Tuscia University, 01100, Viterbo, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Spataro
- National Biodiversity Future Center (NBFC), Palermo, Italy.
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy.
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185, Rome, Italy
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Montelibretti, 00010, Rome, Italy
| | - Jasmin Rauseo
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy
| | - Luisa Patrolecco
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| | - Ludovica Rolando
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| | | | - Maria Angeles Bustamante
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Orihuela, 03312, Alicante, Spain
| | - Cristina Alvarez-Alonso
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Orihuela, 03312, Alicante, Spain
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| |
Collapse
|
4
|
Roy J, Rahman A, Mosharaf MK, Hossain MS, Talukder MR, Ahmed M, Haque MA, Shozib HB, Haque MM. Augmentation of physiology and productivity, and reduction of lead accumulation in lettuce grown in lead contaminated soil by rhizobacteria-assisted rhizoengineeing. CHEMOSPHERE 2024; 360:142418. [PMID: 38795913 DOI: 10.1016/j.chemosphere.2024.142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Microbial-assisted rhizoengineering is a promising biotechnology for improving crop productivity. In this study, lettuce roots were bacterized with two lead (Pb) tolerant rhizobacteria including Pseudomonas azotoformans ESR4 and P. poae ESR6, and a consortium consisted of ESR4 and ESR6 to increase productivity, physiology and antioxidants, and reduce Pb accumulation grown in Pb-contaminated soil i.e., 80 (Pb in native soil), 400 and 800 mg kg-1 Pb. In vitro studies showed that these strains and the consortium produced biofilms, synthesized indole-3-acetic acid and NH3, and solubilized phosphate challenging to 0, 100, 200 and 400 mg L-1 of Pb. In static conditions and 400 mg L-1 Pb, ESR4, ESR6 and the consortium adsorbed 317.0, 339.5 and 357.4 mg L-1 Pb, respectively, while 384.7, 380.7 and 373.2 mg L-1 Pb, respectively, in shaking conditions. Fourier transform infrared spectroscopy results revealed that several functional groups [Pb-S, M - O, O-M-O (M = metal ions), S-S, PO, CO, -NH, -NH2, C-C-O, and C-H] were involved in Pb adsorption. ESR4, ESR6 and the consortium-assisted rhizoengineering (i) increased leaf numbers and biomass production, (ii) reduced H2O2 production, malondialdehyde, electrolyte leakages, and transpiration rate, (iii) augmented photosynthetic pigments, photosynthetic rate, water use efficiency, total antioxidant capacity, total flavonoid content, total phenolic content, and minerals like Ca2+ and Mg2+ in comparison to non-rhizoengineering plants grown in Pb-contaminated soil. Principal component analysis revealed that higher pigment production and photosynthetic rate, improved water use efficiency and increased uptake of Ca2+ were interlinked to increased productivity by bacterial rhizoengineering of lettuce grown in different levels of Pb exposures. Surprisingly, Pb accumulation in lettuce roots and shoots was remarkably decreased by rhizoengineering than in non-rhizoengineering. Thus, these bacterial strains and this consortium could be utilized to improve productivity and reduce Pb accumulation in lettuce.
Collapse
Affiliation(s)
- Joty Roy
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashikur Rahman
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Saddam Hossain
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Raihan Talukder
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Minhaz Ahmed
- Department of Agroforestry and Environment, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Amdadul Haque
- Department of Agro-processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Habibul Bari Shozib
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
5
|
Gamalero E, Glick BR. Use of plant growth-promoting bacteria to facilitate phytoremediation. AIMS Microbiol 2024; 10:415-448. [PMID: 38919713 PMCID: PMC11194615 DOI: 10.3934/microbiol.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Here, phytoremediation studies of toxic metal and organic compounds using plants augmented with plant growth-promoting bacteria, published in the past few years, were summarized and reviewed. These studies complemented and extended the many earlier studies in this area of research. The studies summarized here employed a wide range of non-agricultural plants including various grasses indigenous to regions of the world. The plant growth-promoting bacteria used a range of different known mechanisms to promote plant growth in the presence of metallic and/or organic toxicants and thereby improve the phytoremediation ability of most plants. Both rhizosphere and endophyte PGPB strains have been found to be effective within various phytoremediation schemes. Consortia consisting of several PGPB were often more effective than individual PGPB in assisting phytoremediation in the presence of metallic and/or organic environmental contaminants.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
6
|
Kostić O, Jarić S, Pavlović D, Matić M, Radulović N, Mitrović M, Pavlović P. Ecophysiological response of Populus alba L. to multiple stress factors during the revitalisation of coal fly ash lagoons at different stages of weathering. FRONTIERS IN PLANT SCIENCE 2024; 14:1337700. [PMID: 38269133 PMCID: PMC10805861 DOI: 10.3389/fpls.2023.1337700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The enormous quantities of fly ash (FA) produced by thermal power plants is a global problem and safe, sustainable approaches to reduce the amount and its toxic effects are still being sought. Vegetation cover comprising long-living species can help reduce FA dump-related environmental health issues. However, the synergistic effect of multiple abiotic factors, like drought, low organic matter content, a deficit of essential nutrients, alkaline pH, and phytotoxicity due to high potentially toxic element (PTE) and soluble salt content, limits the number of species that can grow under such stressful conditions. Thus, we hypothesised that Populus alba L., which spontaneously colonised two FA disposal lagoons at the 'Nikola Tesla A' thermal power plant (Obrenovac, Serbia) 3 years (L3) and 11 years (L11) ago, has high restoration potential thanks to its stress tolerance. We analysed the basic physical and chemical properties of FA at different weathering stages, while the ecophysiological response of P. alba to multiple stresses was determined through biological indicators [the bioconcentration factor (BCF) and translocation factor (TF) for PTEs (As, B, Cr, Cu, Mn, Ni, Se, and Zn)] and by measuring the following parameters: photosynthetic efficiency and chlorophyll concentration, non-enzymatic antioxidant defence (carotenoids, anthocyanins, and phenols), oxidative stress (malondialdehyde (MDA) concentrations), and total antioxidant capacity (IC50) to neutralise DPPH free radical activity. Unlike at L3, toxic As, B, and Zn concentrations in leaves induced oxidative stress in P. alba at L11, shown by the higher MDA levels, lower vitality, and reduced synthesis of chlorophyll, carotenoids, and total antioxidant activity, suggesting its stress tolerance decreases with long-term exposure to adverse abiotic factors. Although P. alba is a fast-growing species with good metal accumulation ability and high stress tolerance, it has poor stabilisation potential for substrates with high As and B concentrations, making it highly unsuitable for revitalising such habitats.
Collapse
Affiliation(s)
- Olga Kostić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
7
|
Mazzon M, Bozzi Cionci N, Buscaroli E, Alberoni D, Baffoni L, Di Gioia D, Marzadori C, Barbanti L, Toscano A, Braschi I. Pot experimental trial for assessing the role of different composts on decontamination and reclamation of a polluted soil from an illegal dump site in Southern Italy using Brassica juncea and Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2640-2656. [PMID: 38066270 PMCID: PMC10791941 DOI: 10.1007/s11356-023-31256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
A pot experiment was carried out to evaluate the remediation potential of Brassica juncea and Sorghum bicolor in the decontamination of soil polluted with heavy metals such as copper, lead, tin, and zinc along with polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy hydrocarbons. Two composts obtained from different composting processes were tested as biostimulating agents. At the end of the trial, the effect of plant/compost combinations on soil microbial composition, contaminant removal, biochemical indicators, and plant biomass production was determined. The results highlighted that compost addition improved plant biomass despite slowing down plants' removal of organic and inorganic contaminants. In addition, compost partially enhanced the soil biochemical indicators and modified the relative abundance of the rhizosphere microorganisms. Sorghum showed better mitigation performance than Brassica due to its higher growth. The soil fertility level, the choice of plant species, and microbial richness were found fundamental to perform soil remediation. In contrast, compost was relevant for a higher crop biomass yield.
Collapse
Affiliation(s)
- Martina Mazzon
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Enrico Buscaroli
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy.
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Claudio Marzadori
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| |
Collapse
|
8
|
Cheng Z, Zhang S, Su H, Zhao H, Su G, Fang M, Wang L. Emerging organic contaminants of liquid crystal monomers: Environmental occurrence, recycling and removal technologies, toxicities and health risks. ECO-ENVIRONMENT & HEALTH 2023; 2:131-141. [PMID: 38074986 PMCID: PMC10702903 DOI: 10.1016/j.eehl.2023.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/19/2024]
Abstract
Liquid crystal monomers (LCMs) are a family of synthetic organic chemicals applied in the liquid crystal displays (LCDs) of various electric and electronic products (e-products). Due to their unique properties (i.e., persistence, bioaccumulative potential, and toxicity) and widespread environmental distributions, LCMs have attracted increasing attention across the world. Recent studies have focused on the source, distribution, fate, and toxicity of LCMs; however, a comprehensive review is scarce. Herein, we highlighted the persistence and bioaccumulation potential of LCMs by reviewing their physical-chemical properties. The naming rules were suggested to standardize the abbreviations regarding LCMs. The sources and occurrences of LCMs in different environmental compartments, including dust, sediment, soil, leachate, air and particulate, human serum, and biota samples, were reviewed. It is concluded that the LCMs in the environment mainly originate from the usage and disassembly of e-products with LCDs. Moreover, the review of the potential recycling and removal technologies regarding LCMs from waste LCD panels suggests that a combination of natural attenuation and physic-chemical remediation should be developed for LCMs remediations in the future. By reviewing the health risks and toxicity of LCMs, it is found that a large gap exists in their toxicity and risk to organisms. The fate and toxicity investigation of LCMs, and further investigations on the effects on the human exposure risks of LCMs to residents, especially to occupational workers, should be considered in the future.
Collapse
Affiliation(s)
- Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoduo Zhao
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Tőzsér D, Horváth R, Simon E, Magura T. Heavy metal uptake by plant parts of Populus species: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69416-69430. [PMID: 37131011 DOI: 10.1007/s11356-023-27244-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Populus species are well documented for being potentially suitable for phytoremediation purposes regarding their accumulation characteristics. However, published results are contradictory. Based on the data gathered during an extensive literature search, we aimed to assess and revise the metal accumulation potential in the root, stem, and leaf of Populus species growing in contaminated soils, with meta-analysis. We evaluated the influences of pollution level, soil pH, and exposure time on the metal uptake patterns. We found accumulations of Cd, Cr, Cu, Pb, and Zn to be significant in each plant part, while that was only moderate for Ni, and limited for Mn. By calculating the soil pollution index (PI), we observed significantly intensive, PI-independent accumulation for Cd, Cr, Cu, Ni, Pb, and Zn. A decrease in soil pH significantly increased the uptake of Mn and significantly decreased the accumulation of Pb in the stem. Metal uptake was significantly influenced by exposure time as well; Cd concentration was significantly decreased in the stem, while concentrations of Cr in the stem and leaf, and Mn in the stem were significantly increased with time. These aforementioned findings support a well-founded metal-and-growth condition-specific application of poplars in phytoremediation processes, also triggering further in-depth assessments to enhance the efficiency of relevant poplar-based technologies.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, Páter Károly str. 1, Gödöllő, H-2100, Hungary
| | - Roland Horváth
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary.
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary.
| | - Edina Simon
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
| | - Tibor Magura
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
| |
Collapse
|
10
|
Chen Y, Zhen Z, Li G, Li H, Wei T, Huang F, Li T, Yang C, Ren L, Liang Y, Lin Z, Zhang D. Di-2-ethylhexyl phthalate (DEHP) degradation and microbial community change in mangrove rhizosphere gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162022. [PMID: 36775151 DOI: 10.1016/j.scitotenv.2023.162022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a widespread persistent organic pollutant in the environment. As an ultimate barrier preventing pollutant entry into the ocean, mangrove plays an important role in coastal ecosystem. However, little information is known about DEHP degradation in mangrove rhizosphere. In this study, a rhizobox was used to separate four consecutive rhizosphere compartments with distance of 0-2, 2-4, 4-6, and > 6 mm to the rhizoplane of Kandelia obovata and investigate DEHP gradient degradation behavior in rhizosphere. Sediments closer to the rhizoplane exhibited higher DEHP degradation efficiencies (74.4 % in 0-2 mm layer). More precisely, mangrove rhizosphere promoted the benzoic acid pathway and non-selectively accelerated the production of mono(2-ethylhexyl) phthalate, phthalic acid and benzoic acid. Higher sediment organic matter content, lower pH and less humus in rhizosphere benefited DEHP hydrolysis. In addition, rhizosphere significantly increased microbial biomass and activities comparing to bulk sediments. Some bacterial lineages with potential DEHP degradation capability exhibited a distance-dependent pattern that decreased with the distance to the rhizoplane, including Bacillales, Acidothermaceae, Gammaproteobacteria, and Sphingobacteriales. Our findings suggested that mangrove rhizosphere could accelerate DEHP degradation by altering sediment physicochemical properties and microbial composition, showing positive effects on coastal ecosystem services for eliminating phthalate acid ester contamination.
Collapse
Affiliation(s)
- Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tao Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
11
|
Jiang L, Zhu X, Luo C, Song D, Song M. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere. ENVIRONMENT INTERNATIONAL 2022; 170:107629. [PMID: 36395556 DOI: 10.1016/j.envint.2022.107629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dandan Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, China.
| |
Collapse
|
12
|
Sarma H, Narayan M, Peralta-Videa JR, Lam SS. Exploring the significance of nanomaterials and organic amendments - Prospect for phytoremediation of contaminated agroecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119601. [PMID: 35709913 DOI: 10.1016/j.envpol.2022.119601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 05/22/2023]
Abstract
Emerging micro-pollutants have rapidly contaminated the agro-ecosystem, posing serious challenges to a sustainable future. The vast majority of them have infiltrated the soil and damaged agricultural fields and crops after being released from industry. These pollutants and their transformed products are also transported in vast quantities which further exacerbate the damage. Sustainable remediation techniques are warranted for such large amounts of contaminants. As aforementioned, many of them have been detected at very high concentrations in soil and water which adversely affect crop physiology by disrupting different metabolic processes. To combat this situation, nanomaterials and other organic amendments assisted phytoremediation ware considered as a viable alternative. It is a potent synergistic activity between the biological system and the supplied organic or nanomaterial material to eliminate emerging contaminants and micropollutants from crop fields. This can be effectively be applied to degraded crop fields and could potentially embody a green technology for sustainable agriculture.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar(BTR), Assam, 783370, India; Institutional Biotech Hub, Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
13
|
Sanli GE, Tasdemir Y. Accumulations and temporal trends of polychlorinated biphenyls (PCBs) in olive tree components. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2577-2594. [PMID: 34347211 DOI: 10.1007/s10653-021-01046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, ambient air samples, olive tree branches (1- and 2-year-old) and their leaves (particulate and dissolved phase) were collected simultaneously between January and December months at a suburban site of Bursa-Turkey. Total polychlorinated biphenyl (PCB) concentrations, sampled by employing passive air samplers, ranged from 0.03 to 0.08 ng/m3 in the atmosphere. The average annual total PCB concentrations belonging to the tree components were 1.14 ± 0.32 ng/g DM in dissolved phase in leaves, 0.71 ± 0.32 ng/g DM in particle phase on leaves, 1.06 ± 0.25 ng/g DM in 1-year-old branches, and 0.93 ± 0.23 ng/g DM in 2-year-old branches. It was determined that the correlation between PCB concentrations in olive tree components and the air was low. This result indicated that besides the tree-air exchange, other possible factors (such as soil-to-tree transitions, wind effect, etc.) affect the levels of PCB concentrations in the tree components. Total PCB concentrations decreased from summer to winter in all samples. The percentage ratio of PCB in the dissolved phase in the leaves was generally higher than other tree components in seasons. PCB homologous distributions indicated 5-CBs were dominant in the tree components and 3-CBs were dominant in the air samples. Highly chlorinated PCB congeners (8-CBs and 9-CBs) were found at low concentrations in both air and tree components samples. The samples indicated that the ratio of PCBs in tree components to the total (tree component+ambient air) PCBs slightly increased with increasing the chlorine number.
Collapse
Affiliation(s)
- Gizem Eker Sanli
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer/Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer/Bursa, Turkey.
| |
Collapse
|
14
|
Šrédlová K, Cajthaml T. Recent advances in PCB removal from historically contaminated environmental matrices. CHEMOSPHERE 2022; 287:132096. [PMID: 34523439 DOI: 10.1016/j.chemosphere.2021.132096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Despite being drastically restricted in the 1970s, polychlorinated biphenyls (PCBs) still belong among the most hazardous contaminants. The chemical stability and dielectric properties of PCBs made them suitable for a number of applications, which then lead to their ubiquitous presence in the environment. PCBs are highly bioaccumulative and persistent, and their teratogenic, carcinogenic, and endocrine-disrupting features have been widely reported in the literature. This review discusses recent advances in different techniques and approaches to remediate historically contaminated matrices, which are one of the most problematic in regard to decontamination feasibility and efficiency. The current knowledge published in the literature shows that PCBs are not sufficiently removed from the environment by natural processes, and thus, the suitability of some approaches (e.g., natural attenuation) is limited. Physicochemical processes are still the most effective; however, their extensive use is constrained by their high cost and often their destructiveness toward the matrices. Despite their limited reliability, biological methods and their application in combinations with other techniques could be promising. The literature reviewed in this paper documents that a combination of techniques differing in their principles should be a future research direction. Other aspects discussed in this work include the incompleteness of some studies. More attention should be given to the evaluation of toxicity during these processes, particularly in terms of monitoring different modes of toxic action. In addition, decomposition mechanisms and products need to be sufficiently clarified before combined, tailor-made approaches can be employed.
Collapse
Affiliation(s)
- Kamila Šrédlová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
15
|
Valizadeh S, Lee SS, Baek K, Choi YJ, Jeon BH, Rhee GH, Andrew Lin KY, Park YK. Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. ENVIRONMENTAL RESEARCH 2021; 200:111757. [PMID: 34303678 DOI: 10.1016/j.envres.2021.111757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are hazardous organic contaminants threatening human health and environmental safety due to their toxicity and carcinogenicity. Biochar (BC) is an eco-friendly carbonaceous material that can extensively be utilized for the remediation of PCBs-contaminated soils. In the last decade, many studies reported that BC is beneficial for soil quality enhancement and agricultural productivity based on its physicochemical characteristics. In this review, the potential of BC application in PCBs-contaminated soils is elaborated as biological strategies (e.g., bioremediation and phytoremediation) and specific mechanisms are also comprehensively demonstrated. Further, the synergy effects of BC application on PCBs-contaminated soils are discussed, in view of eco-friendly, beneficial, and productive aspects.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
16
|
Gómez-Sagasti MT, Garbisu C, Urra J, Míguez F, Artetxe U, Hernández A, Vilela J, Alkorta I, Becerril JM. Mycorrhizal-Assisted Phytoremediation and Intercropping Strategies Improved the Health of Contaminated Soil in a Peri-Urban Area. FRONTIERS IN PLANT SCIENCE 2021; 12:693044. [PMID: 34276742 PMCID: PMC8283827 DOI: 10.3389/fpls.2021.693044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Soils of abandoned and vacant lands in the periphery of cities are frequently subjected to illegal dumping and can undergo degradation processes such as depletion of organic matter and nutrients, reduced biodiversity, and the presence of contaminants, which may exert an intense abiotic stress on biological communities. Mycorrhizal-assisted phytoremediation and intercropping strategies are highly suitable options for remediation of these sites. A two-year field experiment was conducted at a peri-urban site contaminated with petroleum hydrocarbons and polychlorinated biphenyls, to assess the effects of plant growth (spontaneous plant species, Medicago sativa, and Populus × canadensis, alone vs. intercropped) and inoculation of a commercial arbuscular mycorrhizal and ectomycorrhizal inoculum. Contaminant degradation, plant performance, and biodiversity, as well as a variety of microbial indicators of soil health (microbial biomass, activity, and diversity parameters) were determined. The rhizosphere bacterial and fungal microbiomes were assessed by measuring the structural diversity and composition via amplicon sequencing. Establishment of spontaneous vegetation led to greater plant and soil microbial diversity. Intercropping enhanced the activity of soil enzymes involved in nutrient cycling. The mycorrhizal treatment was a key contributor to the establishment of intercropping with poplar and alfalfa. Inoculated and poplar-alfalfa intercropped soils had a higher microbial abundance than soils colonized by spontaneous vegetation. Our study provided evidence of the potential of mycorrhizal-assisted phytoremediation and intercropping strategies to improve soil health in degraded peri-urban areas.
Collapse
Affiliation(s)
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, NEIKER, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Julen Urra
- Department of Conservation of Natural Resources, NEIKER, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Fátima Míguez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Antonio Hernández
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Vilela
- Centro de Estudios Ambientales, Vitoria-Gasteiz, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José M. Becerril
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
17
|
Above and below-ground involvement in cyclic energy transformation that helps in the establishment of rhizosphere microbial communities. Symbiosis 2021. [DOI: 10.1007/s13199-021-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Salvatori E, Rauseo J, Patrolecco L, Barra Caracciolo A, Spataro F, Fusaro L, Manes F. Germination, root elongation, and photosynthetic performance of plants exposed to sodium lauryl ether sulfate (SLES): an emerging contaminant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27900-27913. [PMID: 33523379 PMCID: PMC8164587 DOI: 10.1007/s11356-021-12574-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The anionic surfactant SLES (sodium lauryl ether sulfate) is an emerging contaminant, being the main component of foaming agents that are increasingly used by the tunnel construction industry. To fill the gap of knowledge about the potential SLES toxicity on plants, acute and chronic effects were assessed under controlled conditions. The acute ecotoxicological test was performed on Lepidum sativum L. (cress) and Zea mays L. (maize). Germination of both species was not affected by SLES in soil, even at concentrations (1200 mg kg-1) more than twice higher than the maximum realistic values found in contaminated debris, thus confirming the low acute SLES toxicity on terrestrial plants. The root elongation of the more sensitive species (cress) was instead reduced at the highest SLES concentration. In the chronic phytotoxicity experiment, photosynthesis of maize was downregulated, and the photosynthetic performance (PITOT) significantly reduced already under realistic exposures (360 mg kg-1), owing to the SLES ability to interfere with water and/or nutrients uptake by roots. However, such reduction was transient, likely due to the rapid biodegradation of the surfactant by the soil microbial community. Indeed, SLES amount decreased in soil more than 90% of the initial concentration in only 11 days. A significant reduction of the maximum photosynthetic capacity (Pnmax) was still evident at the end of the experiment, suggesting the persistence of negative SLES effects on plant growth and productivity. Overall results, although confirming the low phytotoxicity and high biodegradability of SLES in natural soils, highlight the importance of considering both acute and nonlethal stress effects to evaluate the environmental compatibility of soil containing SLES residues.
Collapse
Affiliation(s)
- Elisabetta Salvatori
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, SSPT-STS, R.C. Casaccia, Via Anguillarese, 301 - 00123 S.Maria di Galeria, Rome, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
| | - Anna Barra Caracciolo
- Water Research Institute - National Research Council (IRSA-CNR), Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences - National Research Council (ISP-CNR), Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
| | - Lina Fusaro
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Fausto Manes
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| |
Collapse
|
19
|
Terzaghi E, Alberti E, Raspa G, Zanardini E, Morosini C, Anelli S, Armiraglio S, Di Guardo A. A new dataset of PCB half-lives in soil: Effect of plant species and organic carbon addition on biodegradation rates in a weathered contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141411. [PMID: 32841806 DOI: 10.1016/j.scitotenv.2020.141411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper presents a new dataset of Polychlorinated Biphenyls (PCBs) half-lives in soil. Data were obtained from a greenhouse experiment performed with an aged contaminated soil under semi-field conditions, collected from a National Relevance Site (SIN) located in Northern Italy (SIN Brescia-Caffaro). Ten different treatments (combination of seven plant species and different soil conditions) were considered together with the respective controls (soil without plants). PCB concentration reduction in soil was measured over a period of 18 months to evaluate the ability of plants to stimulate the biodegradation of these compounds. Tall fescue, tall fescue cultivated together with pumpkin and tall fescue amended with compost reduced more than the 50% of the 79 measured PCB congeners, including the most chlorinated ones (octa to deca-PCBs). However, the data obtained showed that no plant species was uniquely responsible for the effective degradation of all isomeric classes and congeners. The obtained half-lives ranged from 1.3 to 5.6 years and were up to a factor of 8 lower compared to generic HL values reported in literature. This highlighted the importance of cultivation and plant-microbe interactions in speeding up the PCB biodegradation. This new dataset could contribute to substantially improve the predictions of soil remediation time, multimedia fate and the long-range transport of PCBs. Additionally, the half-lives obtained here can also be used in the evaluation of the food chain transfer of these chemicals, and finally the exposure and potential for effects on ecosystems.
Collapse
Affiliation(s)
- Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | - Elena Alberti
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | - Giuseppe Raspa
- DICMA, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | | | | | | | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | | |
Collapse
|
20
|
Hou XL, Han H, Tigabu M, Li QY, Li ZX, Zhu CL, Huang SQ, Cai LP, Liu AQ. Lead contamination alters enzyme activities and microbial composition in the rhizosphere soil of the hyperaccumulator Pogonatherum crinitum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111308. [PMID: 32931972 DOI: 10.1016/j.ecoenv.2020.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Pogonatherum crinitum is a promising lead (Pb) hyperaccumulator; however, the effects of Pb contamination on P. crinitum rhizosphere soil enzymatic activities and microbial composition remain largely unexplored. Thus, an indoor experiment was conducted by cultivating P. crinitum seedlings and exposing them to four Pb concentrations (0, 1,000, 2000 and 3000 mg/kg Pb). Protease, urease, acid phosphatase and invertase activities were determined using standard methods while soil bacterial composition was determined by 16 S rDNA sequencing. The results showed that rhizosphere soil acid phosphatase activity significantly increased with increasing Pb concentration, while urease activity was significantly greater in rhizosphere soil contaminated with 1000 and 2000 mg/kg than in the control. There was a clear shift in bacterial composition during phytoremediation by P. crinitum. Compared to the control, Bacteroidetes was more abundant in all Pb-contaminated soils, Actinobacteria was more abundant in 1000 mg/kg Pb-treated soil, and Firmicutes was more abundant in 3000 mg/kg Pb-treated soil. Positive correlations were observed between dominant bacterial phyla and soil enzyme activities. Metabolic pathways, such as ABC transporter, quinine reductase, and ATP-binding protein were significantly increased in rhizosphere soil bacteria with Pb contamination. In conclusion, Pb contamination differentially influenced the activities of rhizosphere soil enzymes, specifically increasing acid phosphatase and urease activities, and alters the dominance of soil bacteria through up-regulation of genes related to some metabolic pathways. The strong correlations between dominant bacterial phyla and enzymatic activities suggest synergetic effects on the growth of P. crinitum during Pb contamination.
Collapse
Affiliation(s)
- Xiao-Long Hou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of the State Forestry and Grassland Administration for Soil and Water Conservation in Southern Red Soil Region, Fuzhou, 350002, China
| | - Hang Han
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mulualem Tigabu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 230 53, Alnarp, Sweden
| | - Qi-Yan Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zong-Xun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen-Lu Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Si-Qi Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Ping Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of the State Forestry and Grassland Administration for Soil and Water Conservation in Southern Red Soil Region, Fuzhou, 350002, China
| | - Ai-Qin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of the State Forestry and Grassland Administration for Soil and Water Conservation in Southern Red Soil Region, Fuzhou, 350002, China.
| |
Collapse
|
21
|
Pescatore T, Patrolecco L, Rolando L, Spataro F, Rauseo J, Grenni P, Ademollo N, Barra Caracciolo A. Co-presence of the anionic surfactant sodium lauryl ether sulphate and the pesticide chlorpyrifos and effects on a natural soil microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30987-30997. [PMID: 32314285 DOI: 10.1007/s11356-020-08840-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern about the simultaneous presence in the environment of different kinds of pollutants, because of the possible synergic or additive effects of chemical mixtures on ecosystems. Chlorpyrifos (CPF) is an organophosphate insecticide extensively used in agricultural practices. The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component of several commercial products, including foaming agents used in underground mechanised excavation. Both compounds are produced and sold in high amounts worldwide and can be found in the environment as soil contaminants. The persistence of SLES and CPF in agricultural soils and their possible effects on the natural microbial community was evaluated in microcosms. The experimental set consisted of soil samples containing the autochthonous microbial community and treated with only SLES (70 mg/kg), only CPF (2 mg/kg) or with a mix of both compounds. Control microcosms (without the contaminants) were also performed. Soil samples were collected over the experimental period (0, 7, 14, 21 and 28 days) and analysed for CPF, SLES and the main metabolite of CPF (3, 5, 6-trichloropyridinol, TCP). The half-life time (DT50) of each parent compound was estimated in all experimental conditions. At the same time, the abundance, activity and structure of the microbial community were also evaluated. The results showed that the co-presence of SLES and CPF did not substantially affect their persistence in soil (DT50 of 11 and 9 days with co-presence and 13 and 10 days, respectively, when alone); however, in the presence of SLES, a higher amount of the metabolite TCP was found. Interestingly, some differences were found in the bacterial community structure, abundance and activity among the various conditions.
Collapse
Affiliation(s)
- Tanita Pescatore
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
- Department of Ecological and Biological Science (DEB), Tuscia University, Viterbo, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences-National Research Council (ISP-CNR), Rome, Italy.
| | - Ludovica Rolando
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
- Department of Ecological and Biological Science (DEB), Tuscia University, Viterbo, Italy
| | - Francesca Spataro
- Institute of Polar Sciences-National Research Council (ISP-CNR), Rome, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Rome, Italy
| | - Paola Grenni
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Rome, Italy
| | | |
Collapse
|
22
|
Barra Caracciolo A, Grenni P, Garbini GL, Rolando L, Campanale C, Aimola G, Fernandez-Lopez M, Fernandez-Gonzalez AJ, Villadas PJ, Ancona V. Characterization of the Belowground Microbial Community in a Poplar-Phytoremediation Strategy of a Multi-Contaminated Soil. Front Microbiol 2020; 11:2073. [PMID: 32983051 PMCID: PMC7477336 DOI: 10.3389/fmicb.2020.02073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their widespread use in industrial applications in recent decades, Polychlorobiphenyls (PCBs) and heavy metals (HMs) are the most common soil contaminants worldwide, posing a risk for both ecosystems and human health. In this study, a poplar-assisted bioremediation strategy has been applied for more than 4 years to a historically contaminated area (PCBs and HMs) in Southern Italy using the Monviso poplar clone. This clone was effective in promoting a decrease in all contaminants and an increase in soil quality in terms of organic carbon and microbial abundance. Moreover, a significant shift in the structure and predicted function of the belowground microbial community was also observed when analyzing both DNA and cDNA sequencing data. In fact, an increase in bacterial genera belonging to Proteobacteria able to degrade PCBs and resist HMs was observed. Moreover, the functional profiling of the microbial community predicted by PICRUSt2 made it possible to identify several genes associated with PCB transformation (e.g., bphAa, bphAb, bphB, bphC), response to HM oxidative stress (e.g., catalase, superoxide reductase, peroxidase) and HM uptake and expulsion (e.g., ABC transporters). This work demonstrated the effectiveness of the poplar clone Monviso in stimulating the natural belowground microbial community to remove contaminants and improve the overall soil quality. It is a practical example of a nature based solution involving synergic interactions between plants and the belowground microbial community.
Collapse
Affiliation(s)
| | - Paola Grenni
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy
| | - Gian Luigi Garbini
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy
| | - Ludovica Rolando
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy.,Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Giorgia Aimola
- National Research Council, Water Research Institute, Bari, Italy
| | - Manuel Fernandez-Lopez
- Consejo Superior de Investigaciones Científicas (CSIC), Zaidin Experimental Station, Granada, Spain
| | | | - Pablo José Villadas
- Consejo Superior de Investigaciones Científicas (CSIC), Zaidin Experimental Station, Granada, Spain
| | - Valeria Ancona
- National Research Council, Water Research Institute, Bari, Italy
| |
Collapse
|
23
|
Terzaghi E, Vitale CM, Salina G, Di Guardo A. Plants radically change the mobility of PCBs in soil: Role of different species and soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121786. [PMID: 31836368 DOI: 10.1016/j.jhazmat.2019.121786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/23/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
The mobility of Polychlorinated Biphenyls (PCBs) in soil cultivated with different plant species was evaluated by means of a column experiment to investigate the specific plant influence on PCB environmental fate and the potential for leaching. The soil was collected at a National Relevance Site for remediation located in Northern Italy (SIN Brescia-Caffaro) and underwent a rhizoremediation treatment for 18 months with different plant species (Festuca arundinacea, Cucurbita pepo ssp pepo and Medicago sativa). The same but unplanted soil was also considered as control for comparison. The columns were leached with tap water and PCB concentrations were measured in the leachate after 7 days of soil/water contact. Soil previously cultivated with different plant species exhibited statistically different behavior in terms of chemical leaching among the different fractions. Total PCB bulk concentrations ranged from 24 to 219 ng/L. Leachate samples were enriched in tetra- to hepta-PCBs. While PCB concentrations in the dissolved phases varied within a factor of 2 between controls and treatments, PCB associated to particulate organic carbon (POC) differed by more than one order of magnitude. More specifically, Medicago sativa enriched the soil with POC doubling PCB leaching with respect to the other plant species and the unplanted controls.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy
| | - Chiara Maria Vitale
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy
| | - Georgia Salina
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
24
|
Combined Effects of Compost and Medicago Sativa in Recovery a PCB Contaminated Soil. WATER 2020. [DOI: 10.3390/w12030860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effectiveness of adding compost and the plant Medicago sativa in improving the quality of a soil historically contaminated by polychlorinated biphenyls (PCBs) was tested in greenhouse microcosms. Plant pots, containing soil samples from an area contaminated by PCBs, were treated with the compost and the plant, separately or together. Moreover, un-treated and un-planted microcosms were used as controls. At fixed times (1, 133 and 224 days), PCBs were analysed and the structure (cell abundance, phylogenetic characterization) and functioning (cell viability, dehydrogenase activity) of the natural microbial community were also measured. The results showed the effectiveness of the compost and plant in increasing the microbial activity, cell viability, and bacteria/fungi ratio, and in decreasing the amount of higher-chlorinated PCBs. Moreover, a higher number of α-Proteobacteria, one of the main bacterial groups involved in the degradation of PCBs, was found in the compost and plant co-presence.
Collapse
|
25
|
Microcosm Experiment to Assess the Capacity of a Poplar Clone to Grow in a PCB-Contaminated Soil. WATER 2019. [DOI: 10.3390/w11112220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polychlorinated byphenyls (PCBs) are a class of Persistent Organic Pollutants extremely hard to remove from soil. The use of plants to promote the degradation of PCBs, thanks to synergic interactions between roots and the natural soil microorganisms in the rhizosphere, has been proved to constitute an effective and environmentally friendly remediation technique. Preliminary microcosm experiments were conducted in a greenhouse for 12 months to evaluate the capacity of the Monviso hybrid poplar clone, a model plant for phytoremediation, to grow in a low quality and PCB-contaminated soil in order to assess if this clone could be subsequently used in a field experiment. For this purpose, three different soil conditions (Microbiologically Active, Pre-sterilized and Hypoxic soils) were set up in order to assess the capacity of this clone to grow in the polluted soil in these different conditions and support the soil microbial community activity. The growth and physiology (chlorophyll content, chlorophyll fluorescence, ascorbate, phenolic compounds and flavonoid contents) of the poplar were determined. Moreover, chemical analyses were performed to assess the concentrations of PCB indicators in soil and plant roots. Finally, the microbial community was evaluated in terms of total abundance and activity under the different experimental conditions. Results showed that the poplar clone was able to grow efficiently in the contaminated soil and to promote microbial transformations of PCBs. Plants grown in the hypoxic condition promoted the formation of a higher number of higher-chlorinated PCBs and accumulated lower PCBs in their roots. However, plants in this condition showed a higher stress level than the other microcosms, producing higher amounts of phenolic, flavonoid and ascorbate contents, as a defence mechanism.
Collapse
|
26
|
Terzaghi E, Vergani L, Mapelli F, Borin S, Raspa G, Zanardini E, Morosini C, Anelli S, Nastasio P, Sale VM, Armiraglio S, Di Guardo A. Rhizoremediation of weathered PCBs in a heavily contaminated agricultural soil: Results of a biostimulation trial in semi field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:484-496. [PMID: 31185397 DOI: 10.1016/j.scitotenv.2019.05.458] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
This paper describes the results of a rhizoremediation greenhouse experiment planned to select the best plant species and soil management for the bioremediation of weathered polychlorinated biphenyls (PCBs). We evaluated the ability of different plant species to stimulate activity and diversity of the soil microbial community leading to the reduction of PCB concentrations in a heavily contaminated soil (at mg kg-1 dw level), of the national priority site for remediation (SIN) "Brescia-Caffaro" in Italy. Biostimulation was determined in large size (6kg) pots, to reflect semi-field conditions with a soil/root volume ratio larger than in most rhizoremediation experiments present in the literature. In total, 10 treatments were tested in triplicates comparing 7 plant species (grass and trees) and 5 soil/cultivation conditions (i.e., only one plant species, plant consociation, redox cycle, compost or ammonium thiosulfate addition) with the appropriate unplanted controls. After 18months of biostimulation the overall reduction of total PCBs varied between 14 and 20%. Microbial analysis revealed a shift in the microbial community structure over time and showed that all the planted treatments significantly enhanced microbial hydrolytic activity and the abundance of bacterial populations, including potential PCB degraders, in the soil surrounding plant roots. The plant species most effective in reducing the contaminant concentrations were Festuca arundinacea cultivated adding compost or in consociation with Cucurbita pepo ssp. pepo and Medicago sativa cultivated with Rhizobium spp. and mycorrhizal fungi; they reduced total PCB concentrations of about 20% and showed the significant depletion of a high number of PCB congeners (29, 37 and 23, respectively, out of the 79 measured). Our results suggest that these plant species are particularly efficient in increasing soil PCB bioavailability and in stimulating microbial degradation. They could be used in field rhizoremediation strategies to enhance the natural attenuation process and reduce PCB levels in historically contaminated sites.
Collapse
Affiliation(s)
- Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | | | | | - Sara Borin
- DeFENS, University of Milan, Via Celoria 2, Milan, Italy
| | - Giuseppe Raspa
- DCEME, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | | | | | | | | | | | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | | |
Collapse
|
27
|
Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One 2019; 14:e0221253. [PMID: 31437185 PMCID: PMC6705854 DOI: 10.1371/journal.pone.0221253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/04/2019] [Indexed: 12/28/2022] Open
Abstract
Extended soil contamination by polychlorinated biphenyls (PCBs) represents a global environmental issue that can hardly be addressed with the conventional remediation treatments. Rhizoremediation is a sustainable alternative, exploiting plants to stimulate in situ the degradative bacterial communities naturally occurring in historically polluted areas. This approach can be enhanced by the use of bacterial strains that combine PCB degradation potential with the ability to promote plant and root development. With this aim, we established a collection of aerobic bacteria isolated from the soil of the highly PCB-polluted site “SIN Brescia-Caffaro” (Italy) biostimulated by the plant Phalaris arundinacea. The strains, selected on biphenyl and plant secondary metabolites provided as unique carbon source, were largely dominated by Actinobacteria and a significant number showed traits of interest for remediation, harbouring genes homologous to bphA, involved in the PCB oxidation pathway, and displaying 2,3-catechol dioxygenase activity and emulsification properties. Several strains also showed the potential to alleviate plant stress through 1-aminocyclopropane-1-carboxylate deaminase activity. In particular, we identified three Rhodococcus strains able to degrade in vitro several PCB congeners and to promote lateral root emergence in the model plant Arabidopsis thaliana in vivo. In addition, these strains showed the capacity to colonize the root system and to increase the plant biomass in PCB contaminated soil, making them ideal candidates to sustain microbial-assisted PCB rhizoremediation through a bioaugmentation approach.
Collapse
|
28
|
Huang H, Tang J, Niu Z, Giesy JP. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. CHEMOSPHERE 2019; 229:418-425. [PMID: 31082709 DOI: 10.1016/j.chemosphere.2019.04.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 03/09/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
An electrokinetics (EK)-enhanced phytoremediation system with ryegrass was constructed to remediate crude oil-polluted soil. The four treatments employed in this study included (1) without EK or ryegrass (CK-NR), (2) EK only (EK-NR), (3) ryegrass only (CK-R), and (4) EK and ryegrass (EK-R). After 30d of ryegrass growth, EK at 1.0 V·cm-1 with polarity reversal (PR-EK) was supplied for another 30 d. The electric current was recorded during remediation. The pH, electrical conductivity, total petroleum hydrocarbon content (TPH), 16S rDNA, functional genes of AlkB, Nah, and Phe, DGGE, and dehydrogenase activity in soil were measured. The physical-chemical indexes of the plant included the length, dry mass, and chlorophyll contents of the ryegrass. Results showed that EK-R removed 18.53 ± 0.53% of TPH, which was higher than that of other treatments (13.34-14.31%). Meanwhile, the values of 16S rDNA, AlkB, Nah, Phe, and dehydrogenase activity in the bulk soil of EK-R all increased. Further clustering analysis with numbers of genes and DGGE demonstrated that EK-R was similar to the ryegrass rhizosphere soils in both EK-R and CK-R, while the EK treatment of EK-NR was similar to that of CK-NR without EK and ryegrass. These results indicate that the PR-EK treatment used in this experiment successfully enlarged the existing scale of the rhizosphere microorganisms, improved microbial activity and enhanced degradation of TPH.
Collapse
Affiliation(s)
- Hua Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhirui Niu
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
29
|
Ancona V, Barra Caracciolo A, Campanale C, De Caprariis B, Grenni P, Uricchio VF, Borello D. Gasification treatment of poplar biomass produced in a contaminated area restored using plant assisted bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:137-141. [PMID: 30897479 DOI: 10.1016/j.jenvman.2019.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Remediation of polluted soils using phytoremediation techniques is an effective strategy. However, the use of the biomass from these soils for energy purposes may raise efficiency and pollution emission problems and there is currently little research on this issue. In this work, the main results of a fluidized-bed gasification treatment conducted on poplar biomass pruning residues from a multi-contaminated area are presented. The samples were collected from an experimental site in which a plant-assisted bioremediation (PABR) technology has been applied since 2013 to reduce the soil heavy metal (HM) and polychlorinated biphenyl (PCB) contents. The main goal of this study was to identify the specific treatment necessary, in addition to conventional tar reforming, for trapping possible residues of HMs and PCBs in ashes during the gasification process. In our study, we demonstrate that gasification of contaminated biomass coming from PABR (where contaminant residues are concentrated mainly in the roots and are insignificant in the shoots) produces syngas whose characteristics are similar to those obtained using non-contaminated biomass. The results showed that contaminant concentrations in the prunings were negligible; the total amount of PCBs was 1.63 ng/g, while HMs ranged from 0.01 to 0.70 mg/kg, except for Cu and Zn (∼20 mg/kg). Furthermore, the presence in the biomass of Ca and traces of other metals showed a possible catalytic effect with an improvement in the tar conversion in the gasifier leading to a reduction of 5-10% in tar content. The overall results suggest that a specific treatment for pollutant capture is necessary only when the roots, the part of the plants where these contaminants are concentrated, are sampled and used for the gasification process. Although energy from biomass produced on a contaminated site is currently considered waste and involves disposal costs, this paper shows that the poplar biomass grown on a multi-contaminated soil can be used for energy purposes without any impact on the environment.
Collapse
Affiliation(s)
- Valeria Ancona
- Water Research Institute-Italian National Research Council, Bari, BA, Italy.
| | | | - Claudia Campanale
- Water Research Institute-Italian National Research Council, Bari, BA, Italy
| | | | - Paola Grenni
- Water Research Institute-Italian National Research Council, Monterotondo, RM, Italy
| | | | - Domenico Borello
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, RM, Italy
| |
Collapse
|
30
|
Lu J, Lu H. Enhanced Cd transport in the soil-plant-atmosphere continuum (SPAC) system by tobacco (Nicotiana tabacum L.). CHEMOSPHERE 2019; 225:395-405. [PMID: 30884301 DOI: 10.1016/j.chemosphere.2019.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/16/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The optimal treatment designs of the heavy metal pollution sites and the calculation of the recovery capacity are important in recent studies. In this paper, we aimed to model the accumulation of heavy metals under different artificially Cd added concentrations, and analyzed the various tobacco solute adsorption and fluid flow properties. The finite difference method was used to simulate the heavy metals flux and root absorption in the soil, and the model simulation was compared with the measured values to quantify the uncertainty of the metal transport and modeling parameters. Treatments with different Cd levels were compared, e.g., control tillage (CT), low Cd tillage (LT, 2.0 mg/kg), high Cd tillage (HT, 20.0 mg/kg), ultra-high Cd tillage (UHT, 80.0 mg/kg). The predicted soil water content (SWC) was consistent with observed data. Predicted cumulative root water uptake (mm) ranked as follows: CT (196)>LT (178)>HT (134)>UHT (117). Potential transpiration rates (T r p) under HT and UHT were lower than that of other treatment, because of their lower leaf Area Index (LAI). The predicted root Cd uptake showed a strong correlation within the actual Cd uptake. The predicted root absorption of Cdmax was UHT (180.17)> HT (106.52)> LT (53.20) >CT (0.610). However, deviation of models was added by the Cd effluent trend and the performance of root exudates. This finding would be useful for further investigation into bio-remediation in the agricultural area, not only for Cd ion but for a range of other heavy metal contaminants.
Collapse
Affiliation(s)
- Jingzhao Lu
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; School of Renewable Energy, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
31
|
|
32
|
Chen XX, Wu Y, Huang XP, Lü H, Zhao HM, Mo CH, Li H, Cai QY, Wong MH. Variations in microbial community and di-(2-ethylhexyl) phthalate (DEHP) dissipation in different rhizospheric compartments between low- and high-DEHP accumulating cultivars of rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:567-576. [PMID: 30077154 DOI: 10.1016/j.ecoenv.2018.07.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine disrupting chemical with relatively high concentrations in agricultural soils of China. Here, a rhizobox experiment was conducted to investigate the variations in microbial community and DEHP dissipation among different soil rhizospheric compartments between low (Fengyousimiao) and high (Peizataifeng) DEHP-accumulating cultivars of rice (Oryza sativa L.) grown in DEHP spiked soil (0, 20, 100 mg/kg). The dissipation rates of DEHP in rhizospheric soils of Peizataifeng were generally significantly higher than those of Fengyousimiao, with the highest removal rate in 0-2 mm rhizosphere. The results of Illumina-HiSeq high-throughput sequencing revealed that both bacterial and fungal diversity and community structure were significantly different in rhizospheric soils of the two cultivars. DEHP dissipation rates in 0-2 mm rhizosphere of Peizataifeng were positively correlated with bacterial and fungal diversity. The relative abundance of DEHP-degrading bacterial genera Acinetobacter, Pseudomonas and Bacillus of Peizataifeng was generally higher than those in the same rhizospheric compartment of Fengyousimiao in DEHP treatments, resulting in different rhizospheric DEHP dissipation. Cultivation of Peizataifeng in agricultural soil is promising to facilitate DEHP dissipation and ensure safety of agricultural products.
Collapse
Affiliation(s)
- Xue-Xue Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xian-Pei Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- Integrative Microbiology Research Centre, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
33
|
Terzaghi E, Morselli M, Zanardini E, Morosini C, Raspa G, Di Guardo A. Improving the SoilPlusVeg model to evaluate rhizoremediation and PCB fate in contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1138-1145. [PMID: 30029323 DOI: 10.1016/j.envpol.2018.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 05/18/2023]
Abstract
Tools to predict environmental fate processes during remediation of persistent organic pollutants (POPs) in soil are desperately needed since they can elucidate the overall behavior of the chemical and help to improve the remediation process. A dynamic multimedia fate model (SoilPlusVeg) was further developed and improved to account for rhizoremediation processes. The resulting model was used to predict Polychlorinated Biphenyl (PCB) fate in a highly contaminated agricultural field (1089 ng/g d.w.) treated with tall fescue (Festuca arundinacea), a promising plant species for the remediation of contaminated soils. The model simulations allowed to calculate the rhizoremediation time (about 90 years), given the available rhizoremediation half-lives and the levels and fingerprints of the PCB congeners, to reach the legal threshold, to show the relevance of the loss processes from soil (in order of importance: degradation, infiltration, volatilization, etc.) and their dependence on meteorological and environmental dynamics (temperature, rainfall, DOC concentrations). The simulations showed that the effective persistence of PCBs in soil is deeply influenced by the seasonal variability. The model also allowed to evaluate the role of DOC as a possible enhancer of PCB degradation as a microorganism "spoon feeder" of PCBs in the soil solution. Additionally, we preliminary predicted how the contribution of PCB metabolites could modify the PCB fingerprint and their final total concentrations. This shows that the SoilPlusVeg model could be used in selecting the best choices for a sustainable rhizoremediation of a POP contaminated site.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Melissa Morselli
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Elisabetta Zanardini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Cristiana Morosini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Giuseppe Raspa
- Department of Chemical Materials Environmental Engineering (DICMA), Sapienza University of Rome, Via Eudossiana 18, Rome, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
34
|
Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol 2018; 9:1006. [PMID: 29922245 PMCID: PMC5996133 DOI: 10.3389/fmicb.2018.01006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Department of Crop Protection, Agencia Estatal Consejo Superior de Investigaciones Científicas, Institute for Sustainable Agriculture, Córdoba, Spain
| | - Isabel Abrantes
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | | | - Annamaria Bevivino
- Department for Sustainability of Production and Territorial Systems, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council, Bari, Italy
| | - Paola Grenni
- Water Research Institute (CNR-IRSA), National Research Council, Rome, Italy
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Diogo N. Proença
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE) and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Terzaghi E, Zanardini E, Morosini C, Raspa G, Borin S, Mapelli F, Vergani L, Di Guardo A. Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:544-560. [PMID: 28865272 DOI: 10.1016/j.scitotenv.2017.08.189] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely produced and used in many countries until the increasing concern about their environmental risk lead to their ban in the 1980s. Although their emissions decreased, PCBs are nowadays still present in the environment and can be reemitted from reservoir compartments such as contaminated soils. In the last two decades, there has been a growing interest in bioremediation technologies that use plants and microorganisms (i.e. rhizoremediation) to degrade organic chemicals in contaminated sites. Different studies have been conducted to investigate the potential of plant-microbe interactions in the remediation of organic chemical contaminated soils. They range from short-term and laboratory/greenhouse experiments to long-term and field trials and, when correctly set up, they could provide useful data such as PCB rhizoremediation half-lives in soil. Such type of data are important input parameters for multimedia fate models that aim to estimate the time requested to achieve regulatory thresholds in a PCB contaminated site, allowing to draw up its remediation plan. This review focuses on the main factors influencing PCB fate, persistence and bioavailability in soil including PCB mixture congener composition, soil organic carbon forms, microorganism activity, plant species and soil conditions. Furthermore, it provides an estimate of rhizoremediation half-lives of the ten PCB families starting from the results of literature rhizoremediation experiments. Finally, guidance to perform appropriate experiments to obtain comparable, accurate and useful data for fate estimation is proposed.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Elisabetta Zanardini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Cristiana Morosini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| | - Giuseppe Raspa
- Department of Chemical Materials Environmental Engineering (DICMA), Sapienza University of Rome, Via Eudossiana 18, Rome, Italy.
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan, Italy.
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan, Italy.
| | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
36
|
Abstract
Plant tissue culture (PTC) is a set of techniques for culturing cells, tissues, or organs in an aseptic medium with a defined chemical composition, in a controlled environment. Tissue culture, when combined with molecular biology techniques, becomes a powerful tool for the study of metabolic pathways, elucidation of cellular processes, genetic improvement and, through genetic engineering, the generation of cell lines resistant to biotic and abiotic stress, obtaining improved plants of agronomic interest, or studying the complex cellular genome. In this chapter, we analyze in general the use of plant tissue culture, in particular protoplasts and calli, in the implementation of CRISPR/Cas9 technology.
Collapse
|
37
|
Aghaalikhani A, Savuto E, Di Carlo A, Borello D. Poplar from phytoremediation as a renewable energy source: gasification properties and pollution analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egypro.2017.12.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
|