1
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
2
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Xu Z, Jiang X, Li Y, Ma X, Tang Y, Li H, Yi K, Li J, Liu Z. Antifungal activity of montmorillonite/peptide aptamer nanocomposite against Colletotrichum gloeosporioides on Stylosanthes. Int J Biol Macromol 2022; 217:282-290. [PMID: 35835303 DOI: 10.1016/j.ijbiomac.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Chemical agents are effective treatment methods for anthracnose induced by pathogenic Colletotrichum gloeosporioides on Stylosanthes. However, excess consumption of chemical agents destroys the environment, synthetic biology was capable of conquering the issue. The antifungal agent is developed by enclosing a bio-synthesized peptide aptamer with layered montmorillonite via electrostatic interaction. Compared with free peptide aptamer, the nanocomposite exhibits higher antifungal activity against Colletotrichum gloeosporioides, further improving the utilization of peptide aptamer. The nanocomposite killed Colletotrichum gloeosporioides by releasing peptide aptamer after they entered the spore. Moreover, montmorillonite enhances the adhesion ability of peptide aptamer via hydrophobic interactions between nanomaterials and leaves, prolonging the extension time of nanocomposite on leaves. Consequently, 0.1 mg of nanocomposite demonstrates a comparable effect to commercial carbendazim (1 %) to prevent anthracnose on leaves of Stylosanthes induced by HK-04 at room temperature. This work demonstrates an alternative to commercial antifungal agents and proposes a versatile approach to preparing environmental-friendly antifungal agents to inhibit fungal infections on crops.
Collapse
Affiliation(s)
- Zhenfei Xu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Xiaoli Jiang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China.
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Insititute, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
5
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Pereira AM, da Costa A, Dias SC, Casal M, Machado R. Production and Purification of Two Bioactive Antimicrobial Peptides Using a Two-Step Approach Involving an Elastin-Like Fusion Tag. Pharmaceuticals (Basel) 2021; 14:956. [PMID: 34681180 PMCID: PMC8541314 DOI: 10.3390/ph14100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is an increasing global threat, demanding new therapeutic biomolecules against multidrug-resistant bacteria. Antimicrobial peptides (AMPs) are promising candidates for a new generation of antibiotics, but their potential application is still in its infancy, mostly due to limitations associated with large-scale production. The use of recombinant DNA technology for the production of AMPs fused with polymer tags presents the advantage of high-yield production and cost-efficient purification processes at high recovery rates. Owing to their unique properties, we explored the use of an elastin-like recombinamer (ELR) as a fusion partner for the production and isolation of two different AMPs (ABP-CM4 and Synoeca-MP), with an interspacing formic acid cleavage site. Recombinant AMP-ELR proteins were overproduced in Escherichia coli and efficiently purified by temperature cycles. The introduction of a formic acid cleavage site allowed the isolation of AMPs, resorting to a two-step methodology involving temperature cycles and a simple size-exclusion purification step. This simple and easy-to-implement purification method was demonstrated to result in high recovery rates of bioactive AMPs. The minimum inhibitory concentration (MIC) of the free AMPs was determined against seven different bacteria of clinical relevance (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Burkholderia cenocepacia strains), in accordance with the EUCAST/CLSI antimicrobial susceptibility testing standards. All the bacterial strains (except for Pseudomonas aeruginosa) were demonstrated to be susceptible to ABP-CM4, including a resistant Burkholderia cenocepacia clinical strain. As for Synoeca-MP, although it did not inhibit the growth of Pseudomonas aeruginosa or Klebsiella pneumoniae, it was demonstrated to be highly active against the remaining bacteria. The present work provides the basis for the development of an efficient and up-scalable biotechnological platform for the production and purification of active AMPs against clinically relevant bacteria.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.M.P.); (A.d.C.); (M.C.)
- IB-S (Institute of Science and Innovation for Bio-Sustainability), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - André da Costa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.M.P.); (A.d.C.); (M.C.)
- IB-S (Institute of Science and Innovation for Bio-Sustainability), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program, UCB-Brasilia, SGAN 916, Modulo B, Bloco C, Brasília 70790-160, Brazil;
- Animal Biology Department, Campus Darcy Ribeiro, Universidade de Brasília, UnB, Brasília 70910-900, Brazil
| | - Margarida Casal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.M.P.); (A.d.C.); (M.C.)
- IB-S (Institute of Science and Innovation for Bio-Sustainability), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.M.P.); (A.d.C.); (M.C.)
- IB-S (Institute of Science and Innovation for Bio-Sustainability), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Recombinant Expression of a Plant-Derived Dimeric Antifungal Peptide (DiSkh-AMP1) Joined by a Flexible Linker in Escherichia coli and Evaluation of Its Biological Activity In Vitro. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Protein-Engineered Polymers Functionalized with Antimicrobial Peptides for the Development of Active Surfaces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.
Collapse
|
9
|
da Costa A, Pereira AM, Sampaio P, Rodríguez-Cabello JC, Gomes AC, Casal M, Machado R. Protein-Based Films Functionalized with a Truncated Antimicrobial Peptide Sequence Display Broad Antimicrobial Activity. ACS Biomater Sci Eng 2021; 7:451-461. [PMID: 33492122 DOI: 10.1021/acsbiomaterials.0c01262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing bacterial resistance to antibiotics is driving strong demand for new antimicrobial biomaterials. This work describes the fabrication of free-standing films exhibiting antimicrobial properties by combining, in the same polypeptide chain, an elastin-like recombinamer comprising 200 repetitions of the pentamer VPAVG (A200) and an 18-amino-acid truncated variant of the antimicrobial peptide BMAP-28, termed BMAP-18. The fusion protein BMAP-18A200 was overexpressed and conveniently purified by a simplified and scalable nonchromatographic process. Free-standing films of BMAP-18A200 demonstrated to be stable without requiring cross-linking agents and displayed high antimicrobial activity against skin pathogens including Gram-negative and Gram-positive bacteria as well as unicellular and filamentous fungi. The antimicrobial activity of the films was mediated by direct contact of cells with the film surface, resulting in compromised structural integrity of microbial cells. Furthermore, the BMAP-18A200 films showed no cytotoxicity on normal human cell lines (skin fibroblasts and keratinocytes). All of these results highlight the potential of these biotechnological multifunctional polymers as new drug-free materials to prevent and treat microbial infections.
Collapse
Affiliation(s)
- André da Costa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana M Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paula Sampaio
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José Carlos Rodríguez-Cabello
- Bioforge (Group for Advanced Materials and Nanobiotechnology), Centro I+D, Universidad de Valladolid, 47011 Valladolid, Spain.,Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-47011 Valladolid, Spain
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Margarida Casal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Silva DM, Liu R, Gonçalves AF, da Costa A, Castro Gomes A, Machado R, Vongsvivut J, J Tobin M, Sencadas V. Design of polymeric core-shell carriers for combination therapies. J Colloid Interface Sci 2020; 587:499-509. [PMID: 33388652 DOI: 10.1016/j.jcis.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Particle engineering for co-delivery of drugs has the potential to combine multiple drugs with different pharmaceutical mechanisms within the same carrier, increasing the therapeutic efficiency while improving patient compliance. This work proposes a novel approach for producing polymer-polymer core-shell microparticles by multi-step processing of emulsion and spray drying. The particle core was obtained by an oil-in-water emulsion of poly(ε-caprolactone) (PCL) loaded with curcumin (CM), followed by the resuspension in poly(vinyl alcohol) (PVA) containing ciprofloxacin (CPx) forming the shell layer by spray-drying. The obtained core-shell particles showed an average size of 3.8 ± 1.2 μm, which is a suitable size for inhalation therapies. The spatial distribution of the drugs was studied using synchrotron-based macro attenuated total reflection Fourier transform infrared (macro ATR-FTIR) microspectroscopy to map the chemical distribution of the components within the particles and supported the presence of CM and CPx in the core and shell layers, respectively. The formation of the core-shell structure was further supported by the differences in the release profile of CM from these particles, when compared to the release profile observed for the single particle structure (PCL-CM). Both empty and drug-loaded carriers (up to 100 μg.mL-1) showed no cytotoxic effects on A549 cells while exhibiting the antibacterial activity of CPx against Gram-positive and Gram-negative bacteria. These polymer core-shell microparticles provide a promising route for the combination and sequential drug release therapies, with the potential to be used in inhalation therapies.
Collapse
Affiliation(s)
- Dina M Silva
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Ruy Liu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anabela F Gonçalves
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - André da Costa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S (Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Andreia Castro Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S (Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S (Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Vitor Sencadas
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
11
|
Acosta S, Ye Z, Aparicio C, Alonso M, Rodríguez-Cabello JC. Dual Self-Assembled Nanostructures from Intrinsically Disordered Protein Polymers with LCST Behavior and Antimicrobial Peptides. Biomacromolecules 2020; 21:4043-4052. [PMID: 32786727 PMCID: PMC7558458 DOI: 10.1021/acs.biomac.0c00865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) have attracted great interest as they constitute one of the most promising alternatives against drug-resistant infections. Their amphipathic nature not only provides them antimicrobial and immunomodulatory properties but also the ability to self-assemble into supramolecular nanostructures. Here, we propose their use as self-assembling domains to drive hierarchical organization of intrinsically disordered protein polymers (IDPPs). Using a modular approach, hybrid protein-engineered polymers were recombinantly produced, thus combining designer AMPs and a thermoresponsive IDPP, an elastin-like recombinamer (ELR). We exploited the ability of these AMPs and ELRs to self-assemble to develop supramolecular nanomaterials by way of a dual-assembly process. First, the AMPs trigger the formation of nanofibers; then, the thermoresponsiveness of the ELRs enables assembly into fibrillar aggregates. The interplay between the assembly of AMPs and ELRs provides an innovative molecular tool in the development of self-assembling nanosystems with potential use for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sergio Acosta
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, 55455 Minnesota, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, 55455 Minnesota, United States
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
12
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
13
|
Hepcidin-Expressing Fish Eggs as A Novel Food Supplement to Modulate Immunity against Pathogenic Infection in Zebrafish (Danio rerio). SUSTAINABILITY 2020. [DOI: 10.3390/su12104057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepcidin antimicrobial peptides are difficult to produce in prokaryotic expression systems due to their complex structure and antimicrobial activity. Although synthetic hepcidin provides an alternative to solve this issue, its high cost limits its practical application in various industries. The present study used zebrafish eggs as bioreactors to produce convict cichlid (Amatitlania nigrofasciata) hepcidin (AN-hepc) using the oocyte-specific zona pellucida (zp3) promoter. The expression plasmid pT2-ZP3-AN-hepc-ZP3-EGFP, using EGFP as a reporter of AN-hepc expression, was designed to establish the transgenic line Tg(ZP3:AN-hepc:ZP3:EGFP) for the expression of AN-hepc. The AN-hepc peptide was produced successfully in fertilized eggs, as evidenced by RT-PCR and Western blotting. The AN-hepc-expressing eggs exhibited antimicrobial activity against a variety of aquatic pathogens and antibiotic-resistant pathogens, suggesting that the AN-hepc expressed in fish eggs was bioactive. The immunomodulatory effects of AN-hepc-expressing fertilized eggs on zebrafish innate immunity were evaluated by determining the expression of indicator genes after feeding with AN-hepc-expressing fertilized eggs for two months. Zebrafish supplementation with AN-hepc-expressing fertilized eggs significantly increased the expression of innate immunity-related genes, including IL-1β, IL-6, IL-15, TNF-α, NF-κb, complement C3b, lysozyme and TLR-4a. The zebrafish administered AN-hepc-expressing eggs exhibited higher cumulative survival than fish supplemented with wild-type and control eggs after infection with Aeromonas hydrophila and Streptococcus iniae. In conclusion, the present results showed that supplementation with AN-hepc-expressing fish eggs enhanced zebrafish innate immunity against pathogenic infections, suggesting that fertilized eggs containing AN-hepc have the potential to be developed as a food supplement for improving health status in aquaculture.
Collapse
|
14
|
Elastins-Based Antimicrobial Particles for Delivery of Bioactive Compounds. Methods Mol Biol 2020. [PMID: 32152969 DOI: 10.1007/978-1-0716-0319-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the development of drug delivery systems, researchers pursue multifunctionality to target more complex problems, while maintaining biocompatibility and high encapsulation efficiency. Herein, we describe the preparation of noncytotoxic particles with intrinsic antimicrobial properties able to entrap bioactive compounds. The particles are composed of a recombinantly produced elastin-like recombinamer functionalized with an antimicrobial peptide, and are spontaneously formed in mild conditions by exploiting the thermoresponsiveness of the elastin-like portion. This chapter provides advice and methods for the preparation of the self-assembled antimicrobial particles, the evaluation of antimicrobial activity and cytotoxicity, and the basis to set up the methodology for the encapsulation of bioactive compounds.
Collapse
|
15
|
Heidari-Japelaghi R, Haddad R, Valizadeh M, Dorani-Uliaie E, Jalali-Javaran M. Elastin-like polypeptide fusions for high-level expression and purification of human IFN-γ in Escherichia coli. Anal Biochem 2019; 585:113401. [DOI: 10.1016/j.ab.2019.113401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 01/18/2023]
|
16
|
Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev 2019; 40:633-653. [PMID: 31471929 DOI: 10.1002/med.21631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Abnormally high brain iron, resulting from the disrupted expression or function of proteins involved in iron metabolism in the brain, is an initial cause of neuronal death in neuroferritinopathy and aceruloplasminemia, and also plays a causative role in at least some of the other neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich's ataxia. As such, iron is believed to be a novel target for pharmacological intervention in these disorders. Reducing iron toward normal levels or hampering the increases in iron associated with age in the brain is a promising therapeutic strategy for all iron-related neurodegenerative disorders. Hepcidin is a crucial regulator of iron homeostasis in the brain. Recent studies have suggested that upregulating brain hepcidin levels can significantly reduce brain iron content through the regulation of iron transport protein expression in the blood-brain barrier and in neurons and astrocytes. In this review, we focus on the discussion of the therapeutic potential of hepcidin in iron-associated neurodegenerative diseases and also provide a systematic overview of recent research progress on how misregulated brain iron metabolism is involved in the development of multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, Jiangsu, China.,Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
17
|
Acosta S, Quintanilla L, Alonso M, Aparicio C, Rodríguez-Cabello JC. Recombinant AMP/Polypeptide Self-Assembled Monolayers with Synergistic Antimicrobial Properties for Bacterial Strains of Medical Relevance. ACS Biomater Sci Eng 2019; 5:4708-4716. [DOI: 10.1021/acsbiomaterials.9b00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sergio Acosta
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Luis Quintanilla
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Matilde Alonso
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware Street Southeast, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
18
|
Ibáñez-Fonseca A, Flora T, Acosta S, Rodríguez-Cabello JC. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 2019; 84:111-126. [PMID: 31288085 DOI: 10.1016/j.matbio.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Elastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Tatjana Flora
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Sergio Acosta
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
19
|
Wu G, Bazer FW. Application of new biotechnologies for improvements in swine nutrition and pork production. J Anim Sci Biotechnol 2019; 10:28. [PMID: 31019685 PMCID: PMC6474057 DOI: 10.1186/s40104-019-0337-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022] Open
Abstract
Meeting the increasing demands for high-quality pork protein requires not only improved diets but also biotechnology-based breeding to generate swine with desired production traits. Biotechnology can be classified as the cloning of animals with identical genetic composition or genetic engineering (via recombinant DNA technology and gene editing) to produce genetically modified animals or microorganisms. Cloning helps to conserve species and breeds, particularly those with excellent biological and economical traits. Recombinant DNA technology combines genetic materials from multiple sources into single cells to generate proteins. Gene (genome) editing involves the deletion, insertion or silencing of genes to produce: (a) genetically modified pigs with important production traits; or (b) microorganisms without an ability to resist antimicrobial substances. Current gene-editing tools include the use of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats-associated nuclease-9 (CRISPR/Cas9) as editors. ZFN, TALEN, or CRISPR/Cas9 components are delivered into target cells through transfection (lipid-based agents, electroporation, nucleofection, or microinjection) or bacteriophages, depending on cell type and plasmid. Compared to the ZFN and TALEN, CRISPR/Cas9 offers greater ease of design and greater flexibility in genetic engineering, but has a higher frequency of off-target effects. To date, genetically modified pigs have been generated to express bovine growth hormone, bacterial phytase, fungal carbohydrases, plant and C. elagan fatty acid desaturases, and uncoupling protein-1; and to lack myostatin, α-1,3-galactosyltransferase, or CD163 (a cellular receptor for the "blue ear disease" virus). Biotechnology holds promise in improving the efficiency of swine production and developing alternatives to antibiotics in the future.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471 USA
| | - Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471 USA
| |
Collapse
|