1
|
Adidam Venkata S, Hakobyan N, Yang H, Sunik A, Khaneja A. Crack Cocaine Use-Related Spinal Cord Infarct. Cureus 2023; 15:e45207. [PMID: 37842380 PMCID: PMC10576216 DOI: 10.7759/cureus.45207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
In this study, we describe an unusual occurrence of spinal cord infarct associated with acute usage of crack cocaine. A 64-year-old male patient was brought to the hospital after being found down, displaying weakness in his lower extremities and positive for cocaine use on a urine toxicology test. The patient was administered intravenous fluids and evaluated for syncope and rhabdomyolysis. Upon initial medical assessment, the patient exhibited sensation loss up to the level of the mid-thigh, paraplegia, urinary retention, and decreased rectal sphincter tone. Neurological examination and neurological imaging were suggestive of acute spinal cord infarct.
Collapse
Affiliation(s)
- Srikanth Adidam Venkata
- Neurology, Downstate Neurology at One Brooklyn Health, Brooklyn, USA
- Neurology, State University of New York Downstate Health Sciences University, Brooklyn, USA
| | - Narek Hakobyan
- Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, USA
| | - Huan Yang
- Neurology, State University of New York Downstate Health Sciences University, Brooklyn, USA
| | - Artem Sunik
- Neurology, Brookdale University Hospital Medical Center, Brooklyn, USA
| | - Amit Khaneja
- Neurology, Brookdale University Hospital Medical Center, Brooklyn, USA
| |
Collapse
|
2
|
Swarup MS, Chandola S, Batra R, Prakash A, Garg A. Radiological approach to non-compressive myelopathies. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Myelopathy, a pathological condition related to the spinal cord can broadly be categorized into compressive and non-compressive aetiologies. Magnetic resonance imaging remains the modality of choice when suspecting non-compressive myelopathy as it helps to localize the affected segment and exclude compression as the cause of myelopathy. This review deals with the imaging approach for non-compressive myelopathies.
Main body
Demyelinating disorders are the most common cause of non-compressive myelopathy and often show confounding features. Other causes include inflammatory, ischemic, metabolic, and neoplastic disorders. Non-compressive myelopathy can broadly be classified into acute and non-acute onset which can further be categorized according to the distribution of the signal abnormalities, including length of cord involvement, specific tract involvement, enhancement pattern, and the region of the spinal cord that is affected.
Conclusions
Imaging plays a critical role in the evaluation of clinically suspected cases of myelopathy and MR imaging (with or without contrast) remains the preferred modality. Compressive causes must be excluded as a cause of myelopathy. Despite a multitude of causes, the most common imaging appearance is a nonspecific T2 hyperintense signal in the spinal cord, and thus, a pragmatic diagnostic approach along with appropriate clinical and biochemical correlation is essential for arriving at an accurate diagnosis.
Collapse
|
3
|
Molinares DM, Gater DR, Daniel S, Pontee NL. Nontraumatic Spinal Cord Injury: Epidemiology, Etiology and Management. J Pers Med 2022; 12:1872. [PMID: 36579590 PMCID: PMC9694799 DOI: 10.3390/jpm12111872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
The spinal cord is a conduit within the central nervous system (CNS) that provides ongoing communication between the brain and the rest of the body, conveying complex sensory and motor information necessary for safety, movement, reflexes, and optimization of autonomic function. After a traumatic spinal cord injury (SCI), supraspinal influences on the peripheral nervous system and autonomic nervous system (ANS) are disrupted, leading to spastic paralysis, sympathetic blunting, and parasympathetic dominance, resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions, and uncontrolled bowel, bladder, and sexual dysfunction. This article outlines the pathophysiology of the less reported nontraumatic SCI (NTSCI), its classification, its influence on sensory/motor function, and introduces the probable comorbidities associated with SCI that will be discussed in more detail in the accompanying manuscripts of this special issue. Finally, management strategies for NTSCI will be provided.
Collapse
Affiliation(s)
- Diana M. Molinares
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 1095 NW 14th Terrace, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 1095 NW 14th Terrace, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott Daniel
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 1095 NW 14th Terrace, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Nicole L. Pontee
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, 1611 1095 NW 14th Terrace, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| |
Collapse
|
4
|
Lee MJ, Aronberg R, Manganaro MS, Ibrahim M, Parmar HA. Diagnostic Approach to Intrinsic Abnormality of Spinal Cord Signal Intensity. Radiographics 2020; 39:1824-1839. [PMID: 31589577 DOI: 10.1148/rg.2019190021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intramedullary cord hyperintensity at T2-weighted MRI is a common imaging feature of disease in the spinal cord, but it is nonspecific. Radiologists play a valuable role in helping narrow the differential diagnosis by integrating patient history and laboratory test results with key imaging characteristics. The authors present an algorithmic approach to evaluating intrinsic abnormality of spinal cord signal intensity (SI), which incorporates clinical evaluation results, time of onset (acute vs nonacute), cord expansion, and pattern of T2 SI abnormality. This diagnostic approach provides a practical framework to aid both trainees and practicing radiologists in workup of myelopathy.©RSNA, 2019.
Collapse
Affiliation(s)
- Michael J Lee
- From the Department of Radiology, Division of Neuroradiology, University of Michigan Health System, 1500 E Medical Center Dr, UH B1-D502, Ann Arbor, MI 48109
| | - Ryan Aronberg
- From the Department of Radiology, Division of Neuroradiology, University of Michigan Health System, 1500 E Medical Center Dr, UH B1-D502, Ann Arbor, MI 48109
| | - Matthew S Manganaro
- From the Department of Radiology, Division of Neuroradiology, University of Michigan Health System, 1500 E Medical Center Dr, UH B1-D502, Ann Arbor, MI 48109
| | - Mohannad Ibrahim
- From the Department of Radiology, Division of Neuroradiology, University of Michigan Health System, 1500 E Medical Center Dr, UH B1-D502, Ann Arbor, MI 48109
| | - Hemant A Parmar
- From the Department of Radiology, Division of Neuroradiology, University of Michigan Health System, 1500 E Medical Center Dr, UH B1-D502, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Valente MCMB, Carnaúba ATL, Pai JD, de Andrade KCL, Menezes PDL. Vestibular evoked myogenic potentials (VEMP) captured in the forearm flexor muscles: a study of its feasibility and reference ranges. Clinics (Sao Paulo) 2020; 75:e2020. [PMID: 33206760 PMCID: PMC7603288 DOI: 10.6061/clinics/2020/e2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To determine the central tendency measures and variability of vestibular evoked myogenic potential (VEMP) with regard to the latency and wave amplitude when potentials are captured from the flexor muscles of the forearm. METHODS Ten adult volunteers with normal hearing underwent examination of their forearm flexor muscles (right and left sides; 20 samples in total) for VEMP acquisition. To this end, 200 tone burst stimuli at a 500 Hz frequency and 95 dBnHL intensity were promediated. RESULTS No statistical differences were observed in VEMP responses acquired from the right and left forearm flexor muscles concerning P34 and N44 latencies (p=0.32 and 0.90, respectively). The mean latency obtained for the P34 wave component was 34.9 ms (±2.6), with a lower limit equal to 29.3 and an upper limit equal to 40.4 ms. The average latency of the N44 wave component was 43.6 ms (±2.1), with a lower limit of 39.1 ms and an upper limit of 48.1 ms. The results were consistent and had low variability, and showed an average asymmetry index of 15.4 (±10.7). These findings indicate that potentials may be investigated in different age groups and in specific clinical populations, such as pathologies that may alter the neuronal transmission of the inferior vestibular pathway, especially when a longer portion is observed. CONCLUSIONS VEMP recording from forearm flexors is both feasible and stable, with latency reference ranges between 29.3 and 40.4 ms for P34, and 39.1 and 48.1 ms for N44.
Collapse
Affiliation(s)
| | - Aline Tenório Lins Carnaúba
- Universidade Estadual de Ciencias da Saude de Alagoas (UNCISAL) e Centro Universitario (CESMAC), Alagoas, SE, BR
| | - Janise Dal Pai
- Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | | | - Pedro de Lemos Menezes
- Universidade Estadual de Ciencias da Saude de Alagoas (UNCISAL) e Centro Universitario (CESMAC), Alagoas, SE, BR
| |
Collapse
|
6
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Dzhashiashvili Y, Monckton CP, Shah HS, Kunjamma RB, Popko B. The UPR-PERK pathway is not a promising therapeutic target for mutant SOD1-induced ALS. Neurobiol Dis 2019; 127:527-544. [PMID: 30923003 DOI: 10.1016/j.nbd.2019.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, characterized by motor neuron death in the brain and spinal cord. Mutations in the Cu/Zn superoxide dismutase (SOD1) gene account for ~20% of all familial ALS forms, corresponding to 1%-2% of all ALS cases. One of the suggested mechanisms by which mutant SOD1 (mtSOD1) exerts its toxic effects involves intracellular accumulation of abnormal mtSOD1 aggregates, which trigger endoplasmic reticulum (ER) stress and activate its adaptive signal transduction pathways, including the unfolded protein response (UPR). PERK, an eIF2α kinase, is central to the UPR and is the most rapidly activated pathway in response to ER stress. Previous reports using mtSOD1 transgenic mice indicated that genetic or pharmacological enhancement of the UPR-PERK pathway may be effective in treating ALS. We investigated the response to PERK haploinsufficiency, and the response to deficiency of its downstream effectors GADD34 and CHOP, in five distinct lines of mtSOD1 mice. We demonstrate that, in contrast to a previously published study, PERK haploinsufficiency has no effect on disease in all mtSOD1 lines examined. We also show that deficiency of GADD34, which enhances the UPR by prolonging the phosphorylation of eIF2α, does not ameliorate disease in these mtSOD1 mouse lines. Finally, we demonstrate that genetic ablation of CHOP transcription factor, which is known to be pro-apoptotic, does not ameliorate disease in mtSOD1 mice. Cumulatively, our studies reveal that neither genetic inhibition of the UPR via ablation of PERK, nor genetic UPR enhancement via ablation of GADD34, is beneficial for mtSOD1-induced motor neuron disease. Therefore, the PERK pathway is not a likely target for therapeutic intervention in mtSOD1-induced ALS.
Collapse
Affiliation(s)
- Yulia Dzhashiashvili
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Chase P Monckton
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Harini S Shah
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Rejani B Kunjamma
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
8
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Affiliation(s)
- Robert H Brown
- From the Department of Neurology, University of Massachusetts Medical School, Worcester (R.H.B.); and the Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London (A.A.-C.)
| | - Ammar Al-Chalabi
- From the Department of Neurology, University of Massachusetts Medical School, Worcester (R.H.B.); and the Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London (A.A.-C.)
| |
Collapse
|
10
|
Edens BM, Yan J, Miller N, Deng HX, Siddique T, Ma YC. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. eLife 2017; 6:e25453. [PMID: 28463112 PMCID: PMC5451210 DOI: 10.7554/elife.25453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022] Open
Abstract
The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.
Collapse
Affiliation(s)
- Brittany M Edens
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, United States
| | - Jianhua Yan
- The Ken & Ruth Davee Department of Neurology, The Les Turner ALS Research and Patient Center, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, United States
| | - Han-Xiang Deng
- The Ken & Ruth Davee Department of Neurology, The Les Turner ALS Research and Patient Center, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Teepu Siddique
- The Ken & Ruth Davee Department of Neurology, The Les Turner ALS Research and Patient Center, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yongchao C Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, United States
| |
Collapse
|
11
|
Islam MN, Takeshita Y, Yanai A, Imagawa A, Jahan MR, Wroblewski G, Nemoto J, Fujinaga R, Shinoda K. Immunohistochemical analysis of huntingtin-associated protein 1 in adult rat spinal cord and its regional relationship with androgen receptor. Neuroscience 2016; 340:201-217. [PMID: 27984179 DOI: 10.1016/j.neuroscience.2016.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yukio Takeshita
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Amami Imagawa
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Greggory Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Joe Nemoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ryutaro Fujinaga
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
12
|
Fernández Suarez M, Surace E, Harris P, Tapajoz F, Sevlever G, Allegri R, Russo GN. C9ORF72 G4C2-repeat expansion and frontotemporal dementia first reported case in Argentina. Neurocase 2016; 22:281-4. [PMID: 27327087 DOI: 10.1080/13554794.2016.1186700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a female patient aged 51 who developed behavioral disorders followed by cognitive impairment over 3 years. Neuropsychological, neuropsychiatric, and radiological features suggested a probable behavioral variant of frontotemporal dementia (bvFTD). A family history of amyotrophic lateral sclerosis and parkinsonism suggested the hexanucleotide repeat expansion G4C2 in C9ORF72 . We set up a two-step genotyping algorithm for the detection of the expansion using fragment-length analysis polymerase chain reaction (PCR) and repeat-primed PCR with fluorescent primers. We confirmed the presence of an expanded G4C2 allele in the patient. This represents the first documented case of bvFTD due to a C9ORF72 expansion in Argentina.
Collapse
Affiliation(s)
- M Fernández Suarez
- a Neurology and Neurosurgery Unit , Swiss Medical, Sanatorio de los Arcos , Buenos Aires , Argentina
| | - Ezequiel Surace
- b Neuropathology and Molecular Biology Department , Instituto de Investigaciones Neurológica "Raúl Carrea" (FLENI) , Buenos Aires , Argentina.,c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Argentina
| | - P Harris
- c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Argentina.,d Cognitive and Neuropsychology Unit , Instituto de Investigaciones Neurológica "Raúl Carrea" (FLENI) , Buenos Aires , Argentina
| | - F Tapajoz
- c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Argentina.,d Cognitive and Neuropsychology Unit , Instituto de Investigaciones Neurológica "Raúl Carrea" (FLENI) , Buenos Aires , Argentina
| | - G Sevlever
- b Neuropathology and Molecular Biology Department , Instituto de Investigaciones Neurológica "Raúl Carrea" (FLENI) , Buenos Aires , Argentina
| | - R Allegri
- c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Argentina.,d Cognitive and Neuropsychology Unit , Instituto de Investigaciones Neurológica "Raúl Carrea" (FLENI) , Buenos Aires , Argentina
| | - G N Russo
- a Neurology and Neurosurgery Unit , Swiss Medical, Sanatorio de los Arcos , Buenos Aires , Argentina
| |
Collapse
|
13
|
Verma R, Lalla R, Patil TB, Babu S. "Person in the barrel" syndrome: Unusual heralding presentation of squamous cell carcinoma of the lung. Ann Indian Acad Neurol 2016; 19:152-5. [PMID: 27011654 PMCID: PMC4782539 DOI: 10.4103/0972-2327.167693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paraneoplastic neurological syndromes (PNS) are rare and relatively unusual in day to day clinical practice. Occasionally, PNS may be the heralding manifestation of the malignancy. Paraneoplastic syndromes are most commonly associated with small cell lung carcinoma and are rarely seen with non small cell lung carcinoma. In this case, we report a non-smoker, middle aged lady, who presented with "person in the barrel" syndrome due to myelo radiculoplexopathy as the first clinical manifestation of squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
- Rajesh Verma
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Rakesh Lalla
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Tushar B Patil
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Suresh Babu
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|