1
|
Orešković D, Madero Pohlen A, Cvitković I, Alen JF, Álvarez-Sala de la Cuadra A, Bazarra Castro GJ, Bušić Ž, Kaštelančić A, Konstantinović I, Rotim A, Lakić M, Ledenko V, Martínez Macho C, Raguž M, Žarak M, Chudy D, Marinović T. Glycemia and Coagulation in Patients with Glioblastomas. World Neurosurg 2024; 189:e999-e1005. [PMID: 39004176 DOI: 10.1016/j.wneu.2024.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Glioblastomas are among the most malignant tumors which, despite aggressive treatment, currently have an abysmal prognosis. These lesions are known to cause local and systemic perturbations in the coagulation system, leading to neoangiogenesis and a high risk of venous thromboembolism. Indeed, there have been multiple proposals of the coagulation system being a possible target for future treatment of these patients. However, nonselective anticoagulant therapy has proven suboptimal and leads to a significant increase of intracranial hemorrhage. Thus, recognizing factors that lead to hypercoagulation is considered paramount. Hyperglycemia is a well-known prothrombotic factor, a fact that has received little attention in neuro-oncology. We previously hypothesized that patients with brain tumors could be highly susceptible to iatrogenic glycemia dysregulation. Here, we analyzed the connection between glycated hemoglobin (HbA1c) and the routine coagulation markers (D-dimers, prothrombin time and activated partial thromboplastin time [aPTT]) in patients with de novo intracranial glioblastomas. METHODS Included in this study were 74 patients who were operated on in 2 hospitals: Clinical Hospital Dubrava, Zagreb, Croatia; University Hospital Center Split, Split, Croatia; and University Hospital de la Princesa, Madrid, Spain. RESULTS We found a significant inverse correlation between HbA1c and aPTT (ρ = -0.379; P = 0.0009). We also found a significant inverse correlation between Ki67 immunoreactivity and aPTT (ρ = -0.211; P = 0.0082). No connection was found between HbA1c and D-dimers or prothrombin time. CONCLUSIONS Our results suggest that patients with hyperglycemia, with a more proliferative glioblastoma, could in fact have their coagulation profile significantly disrupted, primarily through the intrinsic coagulation pathway. Such findings could have great clinical importance. Further research in this area could help to elucidate the vicious connection between glioblastomas and coagulation and to combat this deadly disease.
Collapse
Affiliation(s)
- Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia.
| | | | - Ivna Cvitković
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - Jose F Alen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | | | | | - Željko Bušić
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | | | - Ivan Konstantinović
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - Ante Rotim
- Department of Neurosurgery, University Hospital Center "Sestre Milosrdnice", Zagreb, Croatia; Faculty of Education and Rehabilitation Sciences, University of Zagreb, Zagreb, Croatia
| | - Marin Lakić
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia; Department of Neurosurgery, General Hospital "Dubrovnik", Dubrovnik, Croatia
| | - Vlatko Ledenko
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | | | - Marina Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Marko Žarak
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia; Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tonko Marinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia; Medicine of Sports and Exercise, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Fager AM, Ellsworth P, Key NS, Monroe DM, Hoffman M. Emicizumab promotes factor Xa generation on endothelial cells. J Thromb Haemost 2024; 22:1605-1615. [PMID: 38460838 DOI: 10.1016/j.jtha.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients. However, the use of an activated prothrombin complex concentrate [FEIBA (Takeda)] to treat breakthrough bleeding in patients on emicizumab has been associated with thrombotic complications including a unique microangiopathy. OBJECTIVES We hypothesized that the thrombotic complications observed with the combination of emicizumab and FEIBA might be due to excessive expression of procoagulant activity on the surface of endothelial cells. METHODS We examined the ability of emicizumab to promote FX activation on endothelial cells using 2 cell culture models. RESULTS We found that endothelial cells readily support emicizumab-mediated activation of FX by FIXa. The level of FXa generation depends on the concentration of available FIXa. The addition of FEIBA to emicizumab increased FXa generation in a dose-dependent manner on endothelial cells in both models. The rate of FXa generation was further enhanced by endothelial cell activation. However, unlike emicizumab, we found limited FXa generation in the presence of FVIII(a), which followed a significant lag time and was not dependent on FIXa concentration under these conditions. CONCLUSION Emicizumab promotes FXa generation on the surface of endothelial cells, which is markedly enhanced in the presence of FEIBA. These findings demonstrate a potential mechanism for the thrombotic complications seen with the combined use of emicizumab and FEIBA.
Collapse
Affiliation(s)
- Ammon M Fager
- Hematology/Oncology Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Patrick Ellsworth
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel S Key
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dougald M Monroe
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maureane Hoffman
- Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Nellis ME, Remy KE, Lacroix J, Cholette JM, Bembea MM, Russell RT, Steiner ME, Goobie SM, Vogel AM, Crighton G, Valentine SL, Delaney M, Parker RI. Research Priorities for Plasma and Platelet Transfusion Strategies in Critically Ill Children: From the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. Pediatr Crit Care Med 2022; 23:e63-e73. [PMID: 34989706 PMCID: PMC8769351 DOI: 10.1097/pcc.0000000000002859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To present a list of high-priority research initiatives for the study of plasma and platelet transfusions in critically ill children from the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. DESIGN Systematic review and consensus conference of international, multidisciplinary experts in platelet and plasma transfusion management of critically ill children. SETTING Not applicable. PATIENTS Critically ill pediatric patients at risk of bleeding and receiving plasma and/or platelet transfusions. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A panel of 13 experts developed research priorities for the study of plasma and platelet transfusions in critically ill children which were reviewed and ratified by the 29 Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding experts. The specific priorities focused on the following subpopulations: severe trauma, traumatic brain injury, intracranial hemorrhage, cardiopulmonary bypass surgery, extracorporeal membrane oxygenation, oncologic diagnosis or stem cell transplantation, acute liver failure and/or liver transplantation, noncardiac surgery, invasive procedures outside of the operating room, and sepsis and/or disseminated intravascular coagulation. In addition, tests to guide plasma and platelet transfusion, as well as component selection and processing, were addressed. We developed four general overarching themes and 14 specific research priorities using modified Research and Development/University of California, Los Angeles methodology. CONCLUSIONS Studies are needed to focus on the efficacy/harm, dosing, timing, and outcomes of critically ill children who receive plasma and/or platelet transfusions. The completion of these studies will facilitate the development of evidence-based recommendations.
Collapse
Affiliation(s)
- Marianne E Nellis
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, NY Presbyterian Hospital - Weill Cornell Medicine, New York, NY
| | - Kenneth E Remy
- Division of Pediatric Critical Care Medicine and Pulmonary/Critical Care Medicine, Departments of Pediatrics and Internal Medicine, Washington University of St. Louis, St. Louis, MO
| | - Jacques Lacroix
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Jill M Cholette
- Division of Pediatric Critical Care Medicine, University of Rochester Golisano Children's Hospital, Rochester, NY
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert T Russell
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL
| | - Marie E Steiner
- Divisions of Critical Care and Hematology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Susan M Goobie
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Adam M Vogel
- Division of Pediatric Surgery Texas Children's Hospital, Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Gemma Crighton
- Department of Haematology, Royal Children's Hospital, Melbourne, Australia
| | - Stacey L Valentine
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA
| | - Meghan Delaney
- Division of Pathology and Laboratory Medicine, Children's National Hospital; Department of Pathology and Pediatrics, The George Washington University Health Sciences, Washington, DC
| | - Robert I Parker
- Department of Pediatric Hematology/Oncology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, NY
| |
Collapse
|
4
|
Lai GY, Chu Kwan W, Piorkowska K, Wagner MW, Jamshidi P, Ertl-Wagner B, Looi T, Waspe AC, Drake JM. Prediction of persistent ventricular dilation by initial ventriculomegaly and clot volume in a porcine model. J Neurosurg Pediatr 2021:1-8. [PMID: 34798598 DOI: 10.3171/2021.9.peds2190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE While intraventricular hemorrhage (IVH) is associated with posthemorrhagic ventricular dilation (PHVD), not all infants affected by high-grade IVH develop PHVD. The authors aimed to determine clot-associated predictors of PHVD in a porcine model by varying the amount and rate of direct intraventricular injection of whole autologous blood. METHODS Seven 1-week-old piglets underwent craniectomy and injection of autologous blood into the right lateral ventricle. They survived for a maximum of 28 days. MRI was performed prior to injection, immediately postoperatively, and every 7 days thereafter. T1-weighted, T2-weighted, and susceptibility-weighted imaging (SWI) sequences were used to segment ventricular and clot volumes. Spearman correlations were used to determine the relationship between blood and clot volumes and ventricular volumes over time. RESULTS The maximum ventricular volume was up to 12 times that of baseline. One animal developed acute hydrocephalus on day 4. All other animals survived until planned endpoints. The interaction between volume of blood injected and duration of injection was significantly associated with clot volume on the postoperative scan (p = 0.003) but not the amount of blood injected alone (p = 0.38). Initial postoperative and day 7 clot volumes, but not volume of blood injected, were correlated with maximum (p = 0.007 and 0.014) and terminal (p = 0.014 and 0.036) ventricular volumes. Initial postoperative ventricular volume was correlated with maximum and terminal ventricular volume (p = 0.007 and p = 0.014). CONCLUSIONS Initial postoperative, maximum, and terminal ventricular dilations were associated with the amount of clot formed, rather than the amount of blood injected. This supports the hypothesis that PHVD is determined by clot burden rather than the presence of blood products and allows further testing of early clot lysis to minimize PHVD risk.
Collapse
Affiliation(s)
- Grace Y Lai
- 1Department of Neurological Surgery, McGaw Medical Center of Northwestern University, Chicago, Illinois.,2Center for Image-Guided Innovation and Therapeutic Intervention and
| | - William Chu Kwan
- 2Center for Image-Guided Innovation and Therapeutic Intervention and.,3Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Matthias W Wagner
- 4Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Pouya Jamshidi
- 5Department of Pathology, McGaw Medical Center of Northwestern University, Chicago, Illinois
| | - Birgit Ertl-Wagner
- 3Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,4Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Thomas Looi
- 2Center for Image-Guided Innovation and Therapeutic Intervention and.,3Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam C Waspe
- 2Center for Image-Guided Innovation and Therapeutic Intervention and.,3Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- 2Center for Image-Guided Innovation and Therapeutic Intervention and.,3Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Zhang Y, Chen Q, Dai Z, Dai Y, Xia F, Zhang X. Nanocomposite adhesive hydrogels: from design to application. J Mater Chem B 2021; 9:585-593. [DOI: 10.1039/d0tb02000a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogels may exhibit strong adhesion upon embedding nanoparticles into them forming strong/weak bonds (via the multiple physical or chemical interactions).
Collapse
Affiliation(s)
- Yuchen Zhang
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Qing Chen
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Zhengwei Dai
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Fan Xia
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
6
|
Rocha-Pereira C, Silva V, Costa VM, Silva R, Garcia J, Gonçalves-Monteiro S, Duarte-Araújo M, Santos-Silva A, Coimbra S, Dinis-Oliveira RJ, Lopes C, Silva P, Long S, Sousa E, de Lourdes Bastos M, Remião F. Histological and toxicological evaluation, in rat, of a P-glycoprotein inducer and activator: 1-(propan-2-ylamino)-4-propoxy-9 H-thioxanthen-9-one (TX5). EXCLI JOURNAL 2019; 18:697-722. [PMID: 31611753 PMCID: PMC6785774 DOI: 10.17179/excli2019-1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter involved in the efflux of numerous compounds that influences the pharmacokinetics of xenobiotics. It reduces intestinal absorption and exposure of target cells to toxicity. Thioxanthones are compounds able to induce and/or activate P-gp in vitro. Particularly, 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) behaves as a P-gp inducer and activator in vitro. The aims of this study were: i) to perform a histological characterization, by testing a single high dose of TX5 [30 mg/kg, body weight (b.w.), gavage], administered to Wistar Han rats, 24 hours after administration; and ii) to perform both a complete histological characterization and a preliminary safety evaluation, in distinct target organs, 24 hours after administration of a single lower dose of TX5 (10 mg/kg, b.w., gavage) to Wistar Han rats. The results showed a relevant histological toxicity for the higher dose of TX5 administered (30 mg/kg, b.w.), manifested by extensive hepatic necrosis and splenic toxicity (parenchyma with hyperemia, increased volume of both white and red pulp, increased follicles marginal zone). Moreover, in the kidneys, a slight hyperemia and tubular edema were observed in TX5-treated animals, as well as an inflammation of the small intestine. On the contrary, for the lower tested dose (10 mg/kg, b.w.), we did not observe any relevant histological toxicity in the evaluated organs. Additionally, no significant differences were found in the ATP levels between TX5-exposed and control animals in any of the evaluated organs, with the exception of the intestine, where ATP levels were significantly higher in TX5-treated rats. Similarly, TX5 caused a significant increase in the ratio GSH/GSSG only in the lungs. TX5 (10 mg/kg, b.w.) did not induce any change in any of the hematological and biochemical circulating evaluated parameters. However, TX5 was able to significantly reduce the activated partial thromboplastin time, without affecting the prothrombin time. The urine biochemical analysis revealed a TX5-mediated increase in both creatinine and sodium. Taken together, our results show that TX5, at a dose of 10 mg/kg, does not induce considerable toxicity in the biological matrices studied. Given this adequate safety profile, TX5 becomes a particularly interesting compound for ex vivo and in vivo studies, regarding the potential for induction and activation of P-gp at the intestinal barrier.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Juliana Garcia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.,Departamento de Saúde Pública e Ciências Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Lopes
- Molecular Oncology and Viral Pathology Group, Centro de Investigação do IPO-Porto
| | - Paula Silva
- Departamento de Microscopia, Laboratório de Histologia e Embriologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Solida Long
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|