1
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
2
|
Jia Y, Jia R, Dai Z, Zhou J, Ruan J, Chng W, Cai Z, Zhang X. Stress granules in cancer: Adaptive dynamics and therapeutic implications. iScience 2024; 27:110359. [PMID: 39100690 PMCID: PMC11295550 DOI: 10.1016/j.isci.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Stress granules (SGs), membrane-less cellular organelles formed via liquid-liquid phase separation, are central to how cells adapt to various stress conditions, including endoplasmic reticulum stress, nutrient scarcity, and hypoxia. Recent studies have underscored a significant link between SGs and the process of tumorigenesis, highlighting that proteins, associated components, and signaling pathways that facilitate SG formation are often upregulated in cancer. SGs play a key role in enhancing tumor cell proliferation, invasion, and migration, while also inhibiting apoptosis, facilitating immune evasion, and driving metabolic reprogramming through multiple mechanisms. Furthermore, SGs have been identified as crucial elements in the development of resistance against chemotherapy, immunotherapy, and radiotherapy across a variety of cancer types. This review delves into the complex role of SGs in cancer development and resistance, bringing together the latest progress in the field and exploring new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengfeng Dai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - WeeJoo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
3
|
Ioannidis V, Pandey R, Bauer HF, Schön M, Bockmann J, Boeckers TM, Lutz AK. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Mol Psychiatry 2024; 29:704-717. [PMID: 38123724 PMCID: PMC11153165 DOI: 10.1038/s41380-023-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and β-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.
Collapse
Affiliation(s)
- Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Wu M, Wu X, Han J. KIF20A Promotes CRC Progression and the Warburg Effect through the C-Myc/HIF-1α Axis. Protein Pept Lett 2024; 31:107-115. [PMID: 38037834 DOI: 10.2174/0109298665256238231120093150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent form of cancer globally, characterized by a high mortality rate. Therefore, discovering effective therapeutic approaches for CRC treatment is critical. METHODS The levels of KIF20A in CRC clinical samples were determined using Western Blot and immunofluorescence assay. SW480 cells were transfected with siRNA targeting KIF20A, while HT-29 cells were transfected with a KIF20A overexpression vector. Cell viability and apoptosis of CRC cells were assessed using CCK-8 and TUNEL analysis. Migration ability was investigated using Transwell. The levels of pyruvate, lactate and ATP were determined through corresponding assay kits. Western Blot was applied to confirm the level of proteins associated with glycolysis, c- Myc, HIF-1α, PKM2 and LDHA. Subsequently, functional rescue experiments were conducted to investigate further the regulatory relationship between KIF20A, c-Myc, and HIF-1α in colorectal cancer (CRC), employing the c-Myc inhibitor 10058-F4 and c-Myc overexpression plasmids. RESULTS KIF20A was up-regulated in vivo and in vitro in CRC. KIF20A knockdown inhibited cell viability and migration while promoting cell apoptosis in SW480 cells. Conversely, overexpression of KIF20A yielded contrasting effects in HT-29 cells. Moreover, inhibition of KIF20A restrained the pyruvate, lactate production and ATP level, whereas overexpression of KIF20A enhanced the Warburg effect. Western Blot indicated that knockdown KIF20A attenuated the levels of c-Myc, HIF-1α, PKM2 and LDHA. In addition, rescue experiments further verified that KIF20A enhanced the Warburg effect by the KIF20A/c-Myc/HIF-1α axis in CRC. CONCLUSION KIF20A, being a crucial regulator in the progression of CRC, has the potential to be a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Zhengjie No. 30, Shapingba District, ChongQing, 400038, China
| | - Xianqiang Wu
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang District, Chengdu, 611130, China
| | - Jie Han
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Shuanghu Branch Road No. 1, Yubei District, Chongqing, 401120, China
| |
Collapse
|
5
|
Shi S, Guo D, Ye L, Li T, Fei Q, Lin M, Yu X, Jin K, Wu W. Knockdown of TACC3 inhibits tumor cell proliferation and increases chemosensitivity in pancreatic cancer. Cell Death Dis 2023; 14:778. [PMID: 38012214 PMCID: PMC10682013 DOI: 10.1038/s41419-023-06313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Duancheng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qinglin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mengxiong Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Li T, Zeng Z, Fan C, Xiong W. Role of stress granules in tumorigenesis and cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189006. [PMID: 37913942 DOI: 10.1016/j.bbcan.2023.189006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Wang Q, Wu H, Wu Q, Zhong S. Berberine targets KIF20A and CCNE2 to inhibit the progression of nonsmall cell lung cancer via the PI3K/AKT pathway. Drug Dev Res 2023; 84:907-921. [PMID: 37070571 DOI: 10.1002/ddr.22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Nonsmall cell lung cancer (NSCLC) is the main type of lung cancer, accounting for approximately 85%. Berberine (BBR), a commonly used traditional Chinese medicine, has been reported to exhibit a potential antitumor effect in various cancers. In this research, we explored the function of BBR and its underlying mechanisms in the development of NSCLC. METHODS Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), colony formation assays, flow cytometry, and transwell invasion assay were employed to determine cell growth, the apoptotic rate, cell invasion of NSCLC cells, respectively. Western blot was applied for detecting the protein expression of c-Myc, matrix metalloprotease 9 (MMP9), kinesin family member 20A (KIF20A), cyclin E2 (CCNE2), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway-related proteins. Glycolysis was evaluated by detecting glucose consumption, lactate production, and adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio with the matched kits. Real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to analyze the level of KIF20A and CCNE2. Tumor model was established to evaluate the function of BBR on tumor growth in NSCLC in vivo. In addition, immunohistochemistry assay was employed to detect the level of KIF20A, CCNE2, c-Myc, and MMP9 in mice tissues. RESULTS BBR exhibited suppressive effects on the progression of NSCLC, as evidenced by inhibiting cell growth, invasion, glycolysis, and facilitating cell apoptosis in H1299 and A549 cells. KIF20A and CCNE2 were upregulated in NSCLC tissues and cells. Moreover, BBR treatment significantly decreased the expression of KIF20A and CCNE2. KIF20A or CCNE2 downregulation could repress cell proliferation, invasion, glycolysis, and induce cell apoptosis in both H1299 and A549 cells. The inhibition effects of BBR treatment on cell proliferation, invasion, glycolysis, and promotion effect on cell apoptosis were rescued by KIF20A or CCNE2 overexpression in NSCLC cells. The inactivation of PI3K/AKT pathway caused by BBR treatment in H1299 and A549 cells was restored by KIF20A or CCNE2 upregulation. In vivo experiments also demonstrated that BBR treatment could repress tumor growth by regulating KIF20A and CCNE2 and inactivating the PI3K/AKT pathway. CONCLUSION BBR treatment showed the suppressive impact on the progression of NSCLC by targeting KIF20A and CCNE2, thereby inhibiting the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hua Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qingquan Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Sheng Zhong
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
8
|
Li M, Thorne RF, Wang R, Cao L, Cheng F, Sun X, Wu M, Ma J, Liu L. Sestrin2-mediated disassembly of stress granules dampens aerobic glycolysis to overcome glucose starvation. Cell Death Discov 2023; 9:127. [PMID: 37059726 PMCID: PMC10103035 DOI: 10.1038/s41420-023-01411-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Sestrins are a small gene family of pleiotropic factors whose actions promote cell adaptation to a range of stress conditions. In this report we disclose the selective role of Sestrin2 (SESN2) in dampening aerobic glycolysis to adapt to limiting glucose conditions. Removal of glucose from hepatocellular carcinoma (HCC) cells inhibits glycolysis associated with the downregulation of the rate-limiting glycolytic enzyme hexokinase 2 (HK2). Moreover, the accompanying upregulation of SESN2 through an NRF2/ATF4-dependent mechanism plays a direct role in HK2 regulation by destabilizing HK2 mRNA. We show SESN2 competes with insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) for binding with the 3'-UTR region of HK2 mRNA. Interactions between IGF2BP3 and HK2 mRNA result in their coalescence into stress granules via liquid-liquid phase separation (LLPS), a process which serves to stabilize HK2 mRNA. Conversely, the enhanced expression and cytoplasmic localization of SESN2 under glucose deprivation conditions favors the downregulation of HK2 levels via decreases in the half-life of HK2 mRNA. The resulting dampening of glucose uptake and glycolytic flux inhibits cell proliferation and protect cells from glucose starvation-induced apoptotic cell death. Collectively, our findings reveal an intrinsic survival mechanism allowing cancer cells to overcome chronic glucose shortages, also providing new mechanistic insights into SESN2 as an RNA-binding protein with a role in reprogramming of cancer cell metabolism.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Ruijie Wang
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Leixi Cao
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Fangyuan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Mian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
9
|
Jin Z, Peng F, Zhang C, Tao S, Xu D, Zhu Z. Expression, regulating mechanism and therapeutic target of KIF20A in multiple cancer. Heliyon 2023; 9:e13195. [PMID: 36798768 PMCID: PMC9925975 DOI: 10.1016/j.heliyon.2023.e13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.
Collapse
Key Words
- ATP, adenosine triphosphate
- BTC, biliary tract cancer
- CPC, chromosomal passenger complex
- CTL, cytotoxic T lymphocyte
- Cancer
- Cdk1, cyclin-dependent kinase 1
- DLG5, discs large MAGUK scaffold protein 5
- EMT, epithelial-mesenchymal transition
- Expression
- FoxM1, forkhead box protein M1
- GC, gastric cancer
- GEM, gemcitabine
- Gli2, glioma-associated oncogene 2
- HLA, human leukocyte antigen
- HNMT, head-and-neck malignant tumor
- IRF, interferon regulatory factor
- JAK, Janus kinase
- KIF20A
- KIF20A, kinesin family member 20A
- LP, long peptide
- MHC I, major histocompatibility complex I
- MKlp2, mitotic kinesin-like protein 2
- Mad2, mitotic arrest deficient 2
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- Plk1, polo-like kinase 1
- Regulating mechanisms
- Therapeutic target
- circRNA, circular RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China,Corresponding author. Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding author. Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Meng X, Li W, Yuan H, Dong W, Xiao W, Zhang X. KDELR2-KIF20A axis facilitates bladder cancer growth and metastasis by enhancing Golgi-mediated secretion. Biol Proced Online 2022; 24:12. [PMID: 36096734 PMCID: PMC9465899 DOI: 10.1186/s12575-022-00174-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Bladder cancer (BCa) is a fatal form of cancer worldwide associated with a poor prognosis. Identifying novel drivers of growth and metastasis hold therapeutic potential for the disease. Transport homeostasis between the endoplasmic reticulum and Golgi and the secretion of matrix metalloproteinases (MMPs) mediated by Golgi have been reported to be closely associated with tumor progression. However, to date, mechanistic studies remain limited. Results Here, we identified KDELR2 as a potential risk factor with prognostic value in patients with BCa, especially those harbouring the KDELR2 amplification. In addition, we found that KDELR2 is a regulator of BCa cell proliferation and tumorigenicity based on bioinformatic analysis with functional studies. Mechanistically, we revealed that KDELR2 could regulate the expression of KIF20A, thus stimulating the expression of MMP2, MMP9 and MKI67. Functionally, the overexpression of KDELR2 and KIF20A markedly promoted proliferation, migration, and invasion in vitro and enhanced tumor growth in vivo, while knockdown of KDELR2 and KIF20A exerted the opposite effects. And the overexpression of KDELR2 also enhanced lymph node metastasis in vivo. Conclusions Collectively, our findings clarified a hitherto unexplored mechanism of KDELR2-KIF20A axis in increasing Golgi-mediated secretion of MMPs to drive tumor progression in BCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00174-y.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China. .,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China. .,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China. .,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Chen S, Ren H, Zhang X, Chang L, Wang Z, Wu H, Zhang J, Ren J, Zhou L. Research advances of N6-methyladenosine in diagnosis and therapy of pancreatic cancer. J Clin Lab Anal 2022; 36:e24611. [PMID: 35837987 PMCID: PMC9459282 DOI: 10.1002/jcla.24611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the addition of a methyl group on the N6 position of adenosine and is the most prevalent and abundant epigenetic modification in eukaryote mRNA. m6A marks are added to mRNA by the m6A methyltransferase complex ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). Recent evidence has shown that the m6A modification plays a crucial role in the pathogenic mechanism and malignant progression of pancreatic cancer, with roles in cell survival, proliferation, migration, invasion, tumor metastasis, and drug resistance. METHODS Literature was searched in Pubmed and Web of Science for the following keywords: "N6-methyladenosine", "pancreatic cancer", "epigenetic modification", "immunotherapy". RESULTS Among classical m6A regulators, while METTL3, METTL14, WTAP, FTO, YTHDF2, IGF2BP1-3, hnRNPC, and NKAP are upregulated in pancreatic cancer, METTL16 and ALKBH5 are downregulated in pancreatic cancer. m6A modification has been investigated in pancreatic cancer therapy. CONCLUSION Dysregulated m6A and its related factors in pancreatic cancer cells and patients indicate their potential values as novel biomarkers in pancreatic cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Liu Chang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jiafeng Zhang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
12
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
13
|
Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 2021; 9:745394. [PMID: 34604242 PMCID: PMC8485071 DOI: 10.3389/fcell.2021.745394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The assembly of stress granules (SGs) is a well-known cellular strategy for reducing stress-related damage and promoting cell survival. SGs have become important players in human health, in addition to their fundamental role in the stress response. The critical role of SGs in cancer cells in formation, progression, and metastasis makes sense. Recent researchers have found that several SG components play a role in tumorigenesis and cancer metastasis via tumor-associated signaling pathways and other mechanisms. Gene-ontology analysis revealed the role of these protein components in the structure of SGs. Involvement in the translation process, regulation of mRNA stability, and action in both the cytoplasm and nucleus are among the main features of SG proteins. The present scoping review aimed to consider all studies on the effect of SGs on cancer formation, proliferation, and metastasis and performed based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted before July 2021. Publications were screened, and quantitative and qualitative analysis was performed on the extracted data. Go analysis was performed on seventy-one SGs protein components. Remarkably G3BP1, TIA1, TIAR, and YB1 have the largest share among the proteins considered in the studies. Altogether, this scoping review tries to demonstrate and provide a comprehensive summary of the role of SGs in the formation, progression, and metastasis of cancer by reviewing all studies.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Li J, Wang F, Liu Y, Wang H, Ni B. N 6-methyladenosine (m 6A) in pancreatic cancer: Regulatory mechanisms and future direction. Int J Biol Sci 2021; 17:2323-2335. [PMID: 34239358 PMCID: PMC8241726 DOI: 10.7150/ijbs.60115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotes, plays a pivotal role in regulating many cellular and biological processes. Aberrant m6A modification has recently been involved in carcinogenesis in various cancers, including pancreatic cancer. Pancreatic cancer is one of the deadliest cancers. It is a heterogeneous malignant disease characterized by a plethora of diverse genetic and epigenetic events. Increasing evidence suggests that dysregulation of m6A regulatory factors, such as methyltransferases, demethylases, and m6A-binding proteins, profoundly affects the development and progression of pancreatic cancer. In addition, m6A regulators and m6A target transcripts may be promising early diagnostic and prognostic cancer biomarkers, as well as therapeutic targets. In this review, we highlight the biological functions and mechanisms of m6A in pancreatic cancer and discuss the potential of m6A modification in clinical applications.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathophysiology, College of High Altitude, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
- Department of General Surgery, Air Force Hospital of Western Theater Command, Chengdu 610021, PR China
| | - Fangjuan Wang
- Department of Cardiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yongkang Liu
- Department of General Surgery, Air Force Hospital of Western Theater Command, Chengdu 610021, PR China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, PR China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| |
Collapse
|
15
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
16
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Zhang L, Li Y, Wang X, Ping Y, Wang D, Cao Y, Dai Y, Liu W, Tao Z. Five-gene signature associating with Gleason score serve as novel biomarkers for identifying early recurring events and contributing to early diagnosis for Prostate Adenocarcinoma. J Cancer 2021; 12:3626-3647. [PMID: 33995639 PMCID: PMC8120165 DOI: 10.7150/jca.52170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Compared to non-recurrent type, recurrent prostate adenocarcinoma (PCa) is highly fatal, and significantly shortens the survival time of affected patients. Early and accurate laboratory diagnosis is particularly important in identifying patients at high risk of recurrence, necessary for additional systemic intervention. We aimed to develop efficient and accurate diagnostic and prognostic biomarkers for new PCa following radical therapy. Methods: We identified differentially expressed genes (DEGs) and clinicopathological data of PCa patients from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) repositories. We then uncovered the most relevant clinical traits and genes modules associated with PCa prognosis using the Weighted gene correlation network analysis (WGCNA). Univariate Cox regression analysis and multivariate Cox proportional hazards (Cox-PH) models were performed to identify candidate gene signatures related to Disease-Free Interval (DFI). Data for internal and external cohorts were utilized to test and validate the accuracy and clinical utility of the prognostic models. Results: We constructed and validated an accurate and reliable model for predicting the prognosis of PCa using 5 Gleason score-associated gene signatures (ZNF695, CENPA, TROAP, BIRC5 and KIF20A). The ROC and Kaplan-Meier analysis revealed the model was highly accurate in diagnosing and predicting the recurrence and metastases of PCa. The accuracy of the model was validated using the calibration curves based on internal TCGA cohort and external GEO cohort. Using the model, patients could be prognostically stratified in to various groups including TNM classification and Gleason score. Multivariate analysis revealed the model could independently predict the prognosis of PCa patients and its utility was superior to that of clinicopathological characteristics. In addition, we fund the expression of the 5 gene signatures strongly and positively correlated with tumor purity but negatively correlated with infiltration CD8+ T cells to the tumor microenvironment. Conclusions: A 5 gene signatures can accurately be used in the diagnosis and prediction of PCa prognosis. Thus this can guide the treatment and management prostate adenocarcinoma.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yu Li
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Ping
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Danhua Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
18
|
Xu Z, Gao G, Liu F, Han Y, Dai C, Wang S, Wei G, Kuang Y, Wan D, Zhi Q, Xu Y. Molecular Screening for Nigericin Treatment in Pancreatic Cancer by High-Throughput RNA Sequencing. Front Oncol 2020; 10:1282. [PMID: 32850392 PMCID: PMC7411259 DOI: 10.3389/fonc.2020.01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has been proved to exhibit promising anti-cancer effects on a variety of cancers. Our previous study investigated the potential anti-cancer properties in pancreatic cancer (PC), and demonstrated that nigericin could inhibit the cell viabilities in concentration- and time-dependent manners via differentially expressed circular RNAs (circRNAs). However, the knowledge of nigericin associated with long non-coding RNA (lncRNA) and mRNA in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying mechanism from the perspective of lncRNA and mRNA. Methods: The continuously varying molecules (lncRNAs and mRNAs) were comprehensively screened by high-throughput RNA sequencing. Results: Our data showed that 76 lncRNAs and 172 mRNAs were common differentially expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and trans-regulation predictions and protein-protein interaction (PPI) network, were applied to annotate the potential regulatory mechanisms among these coding and non-coding RNAs during the nigericin anti-cancer process. Conclusions: These findings provided new insight into the molecular mechanism of nigericin toward cancer cells, and suggested a possible clinical application in PC.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guobang Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
19
|
Shi LE, Shang X, Nie KC, Xu Q, Chen NB, Zhu ZZ. Identification of potential crucial genes associated with the pathogenesis and prognosis of pancreatic adenocarcinoma. Oncol Lett 2020; 20:60. [PMID: 32793313 PMCID: PMC7418510 DOI: 10.3892/ol.2020.11921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a type of malignant tumor with the highest mortality rate among all neoplasms worldwide, and its exact pathogenesis is still poorly understood. Timely diagnosis and treatment are of great importance in order to decrease the mortality rate of PAAD. Therefore, identifying new biomarkers for diagnosis and prognosis is essential to enable early detection of PAAD and to improve the overall survival (OS) rate. In order to screen and integrate differentially expressed genes (DEGs) between PAAD and normal tissues, a total of seven datasets were downloaded from the Gene Expression Omnibus database and the ‘limma’ and ‘robustrankggreg’ packages in R software were used. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery website, and the protein-protein interaction network analysis was performed using the Search Tool for the Retrieval of Interacting Genes/Proteins database. A gene prognostic signature was constructed using the Cox regression model. A total of 10 genes (CDK1, CCNB1, CDC20, ASPM, UBE2C, TPX2, TOP2A, NUSAP1, KIF20A and DLGAP5) that may be associated with pancreatic adenocarcinoma were identified. According to the differentially expressed genes in The Cancer Genome Atlas, the present study set up four prognostic signatures (matrix metalloproteinase 12, sodium voltage-gated channel α subunit 11, tetraspanin 1 and SH3 domain and tetratricopeptide repeats-containing 2), which effectively predicted OS. The hub genes that were highly associated with the occurrence, development and prognosis of PAAD were identified, which may be helpful to further understand the molecular basis of pancreatic cancer and guide the synthesis of drugs for PPAD.
Collapse
Affiliation(s)
- Lan-Er Shi
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xin Shang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ke-Chao Nie
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qiang Xu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Na-Bei Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhang-Zhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
20
|
KIF20A Predicts Poor Survival of Patients and Promotes Colorectal Cancer Tumor Progression through the JAK/STAT3 Signaling Pathway. DISEASE MARKERS 2020; 2020:2032679. [PMID: 32695240 PMCID: PMC7368235 DOI: 10.1155/2020/2032679] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 06/13/2020] [Indexed: 12/24/2022]
Abstract
Kinesin family member 20A (KIF20A) has been recently reported to be upregulated and associated with increased invasiveness and metastasis in several malignancies. However, the role of KIF20A in colorectal cancer (CRC) is still unclear. This study is aimed at investigating the potential roles of KIF20A in the development of CRC. The results of bioinformatics analysis, immunohistochemical staining, and Western blot analysis showed that KIF20A was overexpressed in CRC tissues compared with adjacent normal tissues. High expression of KIF20A in CRC tissues was associated with depth of invasion, lymphatic node metastasis, distant metastasis, and TNM stage. Moreover, the Kaplan-Meier survival analysis showed that CRC patients with high KIF20A expression had poor prognoses. Cox regression analysis revealed that KIF20A was an independent prognostic factor in patients with CRC. Further studies suggested that knockdown of KIF20A was able to reduce cell proliferation and migration by inhibiting the JAK/STAT3 pathway. Taken together, we propose that KIF20A plays a critical role in the tumorigenesis and tumor progression of colorectal cancer and could represent a potential therapeutic target for CRC.
Collapse
|
21
|
Zhu Z, Jin Z, Zhang H, Zhang M, Sun D. Knockdown of Kif20a inhibits growth of tumors in soft tissue sarcoma in vitro and in vivo. J Cancer 2020; 11:5088-5098. [PMID: 32742456 PMCID: PMC7378921 DOI: 10.7150/jca.44777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Kif20a (Kinesin Family Member 20A), plays a role in cell mitosis, cell migration and intracellular transport. Numerous studies have demonstrated that Kif20a is abnormally highly expressed in a variety of tumors and shows poor prognosis. Soft tissue sarcoma (STS) represents a group of malignant tumors with poor prognosis. The role of Kif20a in STSs has not been systematically studied. In the present study, bioinformatics analysis, in vitro and in vivo experiments were conducted to investigate the function of Kif20a in STSs. In bioinformatics analysis higher KIf20a expression indicated a poor prognosis. Functional enrichment analysis indicated that Kif20a may be related to cell cycle, p53 and other signaling pathways. In vitro experiments showed that after the down-regulation of Kif20a, cell proliferation, migration and invasion were decreased, while apoptosis was increased. In vivo experiments revealed that Kif20a affected the proliferation of tumors in tumor-bearing mice. In summary, our findings revealed that Kif20a performs an important role in STS, indicating that it is a potential prognostic biomarker and potentially representing a therapeutic target for the disease.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Xinmin Street 71#, Changchun City, Jilin Province, China
| | - Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Xinmin Street 126#, Changchun City, Jilin Province, China
| | - Haibo Zhang
- College of Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Mei Zhang
- College of Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Dahui Sun
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Xinmin Street 71#, Changchun City, Jilin Province, China
| |
Collapse
|
22
|
Mancarella C, Scotlandi K. IGF2BP3 From Physiology to Cancer: Novel Discoveries, Unsolved Issues, and Future Perspectives. Front Cell Dev Biol 2020; 7:363. [PMID: 32010687 PMCID: PMC6974587 DOI: 10.3389/fcell.2019.00363] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
RNA network control is a key aspect of proper cellular homeostasis. In this context, RNA-binding proteins (RBPs) play a major role as regulators of the RNA life cycle due to their capability to bind to RNA sequences and precisely direct nuclear export, translation/degradation rates, and the intracellular localization of their target transcripts. Alterations in RBP expression or functions result in aberrant RNA translation and may drive the emergence and progression of several pathological conditions, including cancer. Among the RBPs, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is of particular interest in tumorigenesis and tumor progression. This review highlights the molecular mechanisms underlying the oncogenic functions of IGF2BP3, summarizes the therapeutic potential related to its inhibition and notes the fundamental issues that remain unanswered. To fully exploit IGF2BP3 for tumor diagnosis and therapy, it is crucial to dissect the mechanisms governing IGF2BP3 re-expression and to elucidate the complex interactions between IGF2BP3 and its target mRNAs as normal cells become tumor cells.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
23
|
Xie F, He C, Gao S, Yang Z, Li L, Qiao L, Fang L. KIF20A silence inhibits the migration, invasion and proliferation of non-small cell lung cancer and regulates the JNK pathway. Clin Exp Pharmacol Physiol 2020; 47:135-142. [PMID: 31557334 DOI: 10.1111/1440-1681.13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that kinesin family member 20A (KIF20A) was overexpressed in several types of cancer, and its overexpression correlated with the oncogenesis and prognosis of cancers. However, little is known about the roles of KIF20A in human non-small cell lung cancer (NSCLC). Thus, the aim of the present study was to demonstrate the expression of KIF20A in human NSCLC and reveal its biological functions and the underlying mechanisms. qRT-PCR, western blot and immunohistochemistry were used to assess the expression of NSCLC patient specimens and NSCLC cell lines. The functions of KIF20A in migration and invasion were determined using Transwell assay. Cell proliferation capacity was performed by CKK-8 assay. We demonstrated that KIF20A was overexpressed in NSCLC specimens compared with the adjacent non-tumorous specimens, and high expression of KIF20A was associated with clinical stage and metastasis in NSCLC. Decreased expression of KIF20A inhibited NSCLC cells migration, invasion and proliferation. Most importantly, further experiments demonstrated that decreased the expression of KLF20A significantly downregulated expression of p-JNK and MMP7, which indicated that knockdown of KIF20A alters lung cancer cell phenotype and regulates JNK pathways. These results suggest that KIF20A may act as a putative oncogene and a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Feng Xie
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Chengyan He
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Shen Gao
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Zhaowei Yang
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Lihong Li
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Lu Qiao
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Ling Fang
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| |
Collapse
|
24
|
Zhang L, Sun L, Zhang B, Chen L. Identification of Differentially Expressed Genes (DEGs) Relevant to Prognosis of Ovarian Cancer by Use of Integrated Bioinformatics Analysis and Validation by Immunohistochemistry Assay. Med Sci Monit 2019; 25:9902-9912. [PMID: 31871312 PMCID: PMC6941780 DOI: 10.12659/msm.921661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to investigate the differentially expressed genes (DEGs) relevant to prognosis of ovarian cancer by use of integrated bioinformatics analysis. Material/Methods The DEGs between normal ovariy tissue and ovarian cancer tissue were screened in GSE54388, GSE14407, and GSE18520 datasets and the overlapping DEGs were then indentified. GO and KEEG enrichment were performed to analyze the biological functions and pathways of the DEGs. A protein–protein interaction (PPI) network of the identified DEGs was constructed using the STRING database. Differences in prognosis between low and high expression of the hub DEGs were also evaluated using the Kaplan-Meier Plotter database. Protein expression of 2 hub genes – BUB1B and KIF201A – was assessed by immunohistochemistry assay and evaluated with the patient’s clinical pathology characteristics. Results We identified 361 DEGs, mainly involving oncogene-induced cell senescence, cyclin B1-CDK1 complex, protein kinase A catalytic subunit binding, cell cycle, and p53 signaling pathway. Ten hub genes were identified from among the 361 DEGs. The overall survival (OS) and progression-free survival (PFS) of these 10 hub genes were evaluated in the Kaplan-Meier-plotter database. Three (BUB1B, KIF11, and KIF20A) of the 10 hub genes were found to be correlated with ovarian cancer OS and PFS. BUB1B expression level was correlated with ovarian FIGO stage (p<0.05) and tumor differentiation (p<0.05). For KIF20A, the expression level was correlated with FIGO stage (p<0.05) and intraperitoneal metastasis (p<0.05). Conclusions DEGs can participate in ovarian cancer development and can be used as biomarkers for prognosis. Patients with upregulated BUB1B, KIF11, and KIF20A tend to have worse overall survival and disease-free survival compared with patients who have low expression.
Collapse
Affiliation(s)
- Limin Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Lijun Sun
- Department of Oncology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Bin Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Lihong Chen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
25
|
Akazawa Y, Hosono A, Yoshikawa T, Kaneda H, Nitani C, Hara J, Kinoshita Y, Kohashi K, Manabe A, Fukutani M, Wakabayashi M, Sato A, Shoda K, Shimomura M, Mizuno S, Nakamoto Y, Nakatsura T. Efficacy of the NCCV Cocktail-1 vaccine for refractory pediatric solid tumors: A phase I clinical trial. Cancer Sci 2019; 110:3650-3662. [PMID: 31571332 PMCID: PMC6890444 DOI: 10.1111/cas.14206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Pediatric refractory solid tumors are aggressive malignant diseases, resulting in an extremely poor prognosis. KOC1, FOXM1, and KIF20A are cancer antigens that could be ideal targets for anticancer immunotherapy against pediatric refractory solid tumors with positive expression for these antigens. This nonrandomized, open‐label, phase I clinical trial evaluated the safety and efficacy of the NCCV Cocktail‐1 vaccine, which is a cocktail of cancer peptides derived from KOC1, FOXM1, and KIF20A, in patients with pediatric refractory solid tumors. Twelve patients with refractory pediatric solid tumors underwent NCCV Cocktail‐1 vaccination weekly by intradermal injections. The primary endpoint was the safety of the NCCV Cocktail‐1 vaccination, and the secondary endpoints were the immune response, as measured by interferon‐r enzyme‐linked immunospot assay, and the clinical outcomes including tumor response and progression‐free survival. The NCCV Cocktail‐1 vaccine was well tolerated. The clinical response of this trial showed that 4 patients had stable disease after 8 weeks and 2 patients maintained remission for >11 months. In 4, 8, and 5 patients, the NCCV Cocktail‐1 vaccine induced the sufficient number of peptide‐specific CTLs for KOC1, FOXM1, and KIF20A, respectively. Patients with high peptide‐specific CTL frequencies for KOC1, FOXM1, and KIF20A had better progression‐free survival than those with low frequencies. The findings of this clinical trial showed that the NCCV Cocktail‐1 vaccine could be a novel therapeutic strategy, with adequate effects against pediatric refractory solid tumors. Future large‐scale trials should evaluate the efficacy of the NCCV Cocktail‐1 vaccination.
Collapse
Affiliation(s)
- Yu Akazawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Japan
| | - Ako Hosono
- Division of Pediatric Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hide Kaneda
- Division of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chika Nitani
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Junichi Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yoshiaki Kinoshita
- Department of Pediatric Surgery, Kyushu University Hospital, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University, Sapporo, Japan
| | - Miki Fukutani
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akihiro Sato
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kayoko Shoda
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shoichi Mizuno
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
26
|
Mandal K, Pogoda K, Nandi S, Mathieu S, Kasri A, Klein E, Radvanyi F, Goud B, Janmey PA, Manneville JB. Role of a Kinesin Motor in Cancer Cell Mechanics. NANO LETTERS 2019; 19:7691-7702. [PMID: 31565944 PMCID: PMC7737127 DOI: 10.1021/acs.nanolett.9b02592] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Molecular motors play important roles in force generation, migration, and intracellular trafficking. Changes in specific motor activities are altered in numerous diseases. KIF20A, a motor protein of the kinesin-6 family, is overexpressed in bladder cancer, and KIF20A levels correlate negatively with clinical outcomes. We report here a new role for the KIF20A kinesin motor protein in intracellular mechanics. Using optical tweezers to probe intracellular mechanics and surface AFM to probe cortical mechanics, we first confirm that bladder urothelial cells soften with an increasing cancer grade. We then show that inhibiting KIF20A makes the intracellular environment softer for both high- and low-grade bladder cancer cells. Upon inhibition of KIF20A, cortical stiffness also decreases in lower grade cells, while it surprisingly increases in higher grade malignant cells. Changes in cortical stiffness correlate with the interaction of KIF20A with myosin IIA. Moreover, KIF20A inhibition negatively regulates bladder cancer cell motility irrespective of the underlying substrate stiffness. Our results reveal a central role for a microtubule motor in cell mechanics and migration in the context of bladder cancer.
Collapse
Affiliation(s)
- Kalpana Mandal
- Institute for Medicine and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow 31-342 , Poland
| | - Satabdi Nandi
- School of Veterinary Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Laboratory of Molecular Biology and Immunology , National Institute on Aging , Baltimore , Maryland 21224 , United States
| | - Samuel Mathieu
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| | - Amal Kasri
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
- ICM Brain and Spine Institute , Pitié Salpêtrière Hospital , 47-83 Boulevard de l'Hôpital , Paris 75013 , France
| | - Eric Klein
- Department of Biology , Rutgers University-Camden Waterfront Tech Center , Camden , New Jersey 08103 , United States
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| | - Paul A Janmey
- Institute for Medicine and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Departments of Physiology and Physics & Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| |
Collapse
|
27
|
Aberrant KIF20A Expression Is Associated with Adverse Clinical Outcome and Promotes Tumor Progression in Prostate Cancer. DISEASE MARKERS 2019; 2019:4782730. [PMID: 31565099 PMCID: PMC6745134 DOI: 10.1155/2019/4782730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
Purpose KIF20A is essential in the process of spindle assembly and cytokinesis regulation. The role of KIF20A during tumorigenesis and tumor development has been well studied in several cancers. But the association between the KIF20A clinical role and prostate cancer (PCa) has not been reported yet. In this study, we investigated its potential prognostic effect and its role in progression of prostate cancer. Methods Real-time quantitative polymerase chain reaction and Western blots were used to investigate the KIF20A transcription and translation levels in 7 pairs of fresh PCa tissue and adjacent normal prostate tissue. Immunohistochemistry (IHC) was used to investigate the KIF20A protein level in 114 PCa tissue samples. Bioinformatics analysis was performed to analyze the effect of KIF20A in oncologic prognosis in PCa patients. MTT assay, transwell assay, and colony formation assay in vitro and tumor formation assay in vivo were performed to evaluate the biological behavior of KIF20A in prostate cancer. Results KIF20A was significantly elevated in tumor tissue compared with normal prostate tissue at both the mRNA and the protein level. High expression of KIF20A at the protein level was correlated with adverse clinicopathological features. Bioinformatics analysis showed that the high KIF20A expression group has a poor biochemical recurrence- (BCR-) free survival. Knocking down KIF20A suppressed the proliferation, migration, and invasion of the prostate cancer cell both in vitro and in vivo. Conclusions Our data demonstrated that the high expression of KIF20A was associated with poor clinical outcome and targeting KIF20A could reduce proliferation, migration, and invasion of the prostate cancer cell, indicating that KIF20A might be a potential prognostic and therapeutic target for PCa patients.
Collapse
|
28
|
Liu J, Ma Z, Liu Y, Wu L, Hou Z, Li W. Screening of potential biomarkers in hepatitis C virus-induced hepatocellular carcinoma using bioinformatic analysis. Oncol Lett 2019; 18:2500-2508. [PMID: 31452738 PMCID: PMC6676667 DOI: 10.3892/ol.2019.10578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
Evidence suggests that hepatitis C virus (HCV) infection is among the main causes of hepatocellular carcinoma (HCC). In addition, HCV-induced HCC (HCV-HCC) exhibits adverse clinical outcomes and limited therapeutic treatments are available for this condition. To investigate key biomarkers in the occurrence and development of HCV-HCC, microarray datasets GSE62232, GSE69715 and GSE107170 were downloaded from the Gene Expression Omnibus database for analysis. The differentially expressed genes between HCV-HCC and normal tissue were identified using the GEO2R online tool. The function enrichment analyses including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed using the Database for Annotation, Visualization and Integrated Discovery online tool. A protein-protein interaction network was constructed using the Search Tool for the Retrieval of Interacting Genes database and visualized using Cytoscape. A total of 368 DEGs were identified, and the top 10 hub genes with a high degree of connectivity were selected for further analysis. Subsequently, overall survival and disease-free survival analysis revealed that there was a significant association between altered expression of HMMR, CCNB1 and KIF20A, and poor clinical outcome. In summary, these results indicate that HMMR, CCNB1 and KIF20A are potential targets for diagnosis and therapy of HCV-HCC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Laboratory Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zhanzhong Ma
- Department of Laboratory Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yanming Liu
- Department of Laboratory Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Liangyin Wu
- Department of Laboratory Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zhiwei Hou
- Reproductive Medicine Center, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
29
|
Tang J, Xu J, Zhi Z, Wang X, Wang Y, Zhou Y, Chen R. MiR-876-3p targets KIF20A to block JAK2/STAT3 pathway in glioma. Am J Transl Res 2019; 11:4957-4966. [PMID: 31497212 PMCID: PMC6731397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Aberrant expression of miRNAs has been reported to be involved in the development and progression of glioma. But the function of miR-876-3p in glioma is unknown. We found that miR-876-3p is significantly downregulated in glioma tissues and cell lines. Overexpression of miR-876-3p suppressed glioma cell proliferation, epithelial-mesenchymal transition, migration, and invasion. By prediction combining with luciferase reporter assay, we identified that miR-876-3p could decrease the expression of KIF20A by directly targeting the region of its 3'UTR. Furthermore, we observed that overexpression of miR-876-3p inhibited the expression of KIF20A, thus blocking the protein kinase JAK2/STAT3 pathway. Overexpressed KIF20A reversed miR-876-3p-induced suppression of glioma cell proliferation, migration, and invasion. We also demonstrated the inhibitory effect of miR-876-3p on tumor growth in glioma using an in vivo model. The miR-876-3p/KIF20A-axis mediated JAK2/STAT3 pathway have therapeutic potential in glioma treatment.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Neurology, Yan Cheng City No. 1 People’s HospitalYancheng City, Jiangsu Province, China
| | - Jie Xu
- Department of General Surgery, Huai’an First People’s Hospital and The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an, Jiangsu Province, China
| | - Zhongwen Zhi
- Department of Neurology, The Second People’s Hospital of Huai’an and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu Province, China
| | - Xiang Wang
- Department of Neurology, The Second People’s Hospital of Huai’an and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu Province, China
| | - Yu Wang
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Pukou HospitalNanjing 210031, Jiangsu Province, China
| | - Yong Zhou
- Department of Neurology, The Second People’s Hospital of Huai’an and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Second People’s Hospital of Huai’an and The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, Jiangsu Province, China
| |
Collapse
|
30
|
Hasan MS, Wu X, Zhang L. Uncovering missed indels by leveraging unmapped reads. Sci Rep 2019; 9:11093. [PMID: 31366961 PMCID: PMC6668410 DOI: 10.1038/s41598-019-47405-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023] Open
Abstract
In current practice, Next Generation Sequencing (NGS) applications start with mapping/aligning short reads to the reference genome, with the aim of identifying genetic variants. Although existing alignment tools have shown great accuracy in mapping short reads to the reference genome, a significant number of short reads still remain unmapped and are often excluded from downstream analyses thereby causing nonnegligible information loss in the subsequent variant calling procedure. This paper describes Genesis-indel, a computational pipeline that explores the unmapped reads to identify novel indels that are initially missed in the original procedure. Genesis-indel is applied to the unmapped reads of 30 breast cancer patients from TCGA. Results show that the unmapped reads are conserved between the two subtypes of breast cancer investigated in this study and might contribute to the divergence between the subtypes. Genesis-indel identifies 72,997 novel high-quality indels previously not found, among which 16,141 have not been annotated in the widely used mutation database. Statistical analysis of these indels shows significant enrichment of indels residing in oncogenes and tumour suppressor genes. Functional annotation further reveals that these indels are strongly correlated with pathways of cancer and can have high to moderate impact on protein functions. Additionally, some of the indels overlap with the genes that do not have any indel mutations called from the originally mapped reads but have been shown to contribute to the tumorigenesis in multiple carcinomas, further emphasizing the importance of rescuing indels hidden in the unmapped reads in cancer and disease studies.
Collapse
Affiliation(s)
| | - Xiaowei Wu
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
31
|
Overexpression of PODXL/ITGB1 and BCL7B/ITGB1 accurately predicts unfavorable prognosis compared to the TNM staging system in postoperative pancreatic cancer patients. PLoS One 2019; 14:e0217920. [PMID: 31166991 PMCID: PMC6550449 DOI: 10.1371/journal.pone.0217920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022] Open
Abstract
We previously reported that overexpression of PODXL, BCL7B, and ARHGEF4 in pancreatic cancer tissue is correlated with pancreatic cancer-related survival. The aim of this study was to investigate the use of PODXL, BCL7B, ARHGEF4, and the integrin family member ITGB1 as useful markers for the prognosis of postoperative pancreatic cancer patients in comparison with tumor size and the tumor node metastasis (TNM) staging system. Immunohistochemistry was performed using an anti-ITGB1 antibody on 102 samples of pancreatic cancer tissue surgically resected at the University of Kochi Medical School Hospital and the Matsuyama Shimin Hospital. Univariate Cox proportional hazards regression analysis showed that TNM stage and overexpression of PODXL, BCL7B, and ITGB1 were correlated with postoperative survival. However, tumor size was not significantly associated with postoperative prognosis of pancreatic cancer compared to these features. Multivariate Cox proportional hazards regression analysis showed that the overexpression of both PODXL and ITGB1 and overexpression of both BCL7B and ITGB1 increased the hazard ratio (6.27, 95% confidence interval [CI] 2.58-15.21; and 3.93, 95% CI 1.74-8.91, respectively) compared to that of TNM stage (IIA and IIB vs. III and IV; 3.05, 95% CI 1.25-7.42). These results imply that the combination of PODXL with ITGB1 and the combination of BCL7B with ITGB1 accurately predicted the postoperative outcomes of pancreatic cancer patients, and they were superior compared to the TNM staging system. The combination of PODXL with ITGB1 would be particularly useful, as it was the most highly correlated with postoperative outcomes. Importantly, the present results are useful to determine which adjuvant therapy should be selected.
Collapse
|
32
|
Wu WD, Yu KW, Zhong N, Xiao Y, She ZY. Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division. Eur J Cell Biol 2019; 98:74-80. [DOI: 10.1016/j.ejcb.2018.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
|
33
|
Efficient delivery of small interfering RNAs targeting particular mRNAs into pancreatic cancer cells inhibits invasiveness and metastasis of pancreatic tumors. Oncotarget 2019; 10:2869-2886. [PMID: 31080558 PMCID: PMC6499602 DOI: 10.18632/oncotarget.26880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023] Open
Abstract
We report the use of small interfering RNAs (siRNAs) against ARHGEF4, CCDC88A, LAMTOR2, mTOR, NUP85, and WASF2 and folic acid (FA)-modified polyethylene glycol (PEG)-chitosan oligosaccharide lactate (COL) nanoparticles for targeting, imaging, delivery, gene silencing, and inhibition of invasiveness and metastasis in an orthotopic xenograft model. In vitro assays revealed that these siRNA-FA-PEG-COL nanoparticles were specifically inserted into pancreatic cancer cells compared to immortalized normal pancreatic epithelial cells and knocked down expression of the corresponding targets in pancreatic cancer cells. Cell motility and invasion were significantly inhibited by adding target siRNA-FA-PEG-COL nanoparticles into the culture medium. In vivo mouse experiments confirmed that when intravenously delivered, these siRNA-FA-PEG-COL nanoparticles became incorporated into human pancreatic cancer cells in mouse pancreatic tumors. Little accumulation was seen in the normal pancreas and vital organs. All target siRNA-FA-PEG-COL nanoparticles significantly inhibited retroperitoneal invasion. The siRNA-FA-PEG-COL nanoparticles against LAMTOR2, mTOR, and NUP85, which strongly inhibited retroperitoneal invasion and significantly inhibited peritoneal dissemination compared to the other nanoparticles, improved prognosis of the mice. Our results imply that siRNA-FA-PEG-COL nanoparticles against these six targets could have great potential as biodegradable drug carriers. In particular, siRNA nanoparticles against LAMTOR2, mTOR, and NUP85 may hold significant clinical promise.
Collapse
|
34
|
KIF20A Affects the Prognosis of Bladder Cancer by Promoting the Proliferation and Metastasis of Bladder Cancer Cells. DISEASE MARKERS 2019; 2019:4863182. [PMID: 31093305 PMCID: PMC6481133 DOI: 10.1155/2019/4863182] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 01/16/2023]
Abstract
Objective To investigate the expression of kinesin family member 20A (KIF20A) in bladder cancer, the effect of KIF20A on the proliferation and metastasis of bladder cancer cells, and the effect of KIF20A expression on the prognosis of bladder cancer patients. Methods Bladder cancer tissue and its adjacent tissues were collected from tumour patients. The mRNA and protein expression levels of KIF20A in the tissue samples were detected by qRT-PCR and western blot. Immunohistochemical (IHC) staining was used to identify the expression and distribution of KIF20A proteins in the tissue samples. The relationship between the KIF20A expression and the clinical pathology of bladder cancer was analysed. The effect of the differential expression of KIF20A on the prognosis of patients with bladder cancer was analysed by the TCGA database. The plasmid was transfected into the bladder cell lines T24 and 5637 to construct two stable cell lines with knocked down KIF20A. The effect of KIF20A expression on the proliferation and invasion of T24 and 5637 bladder cells was explored in vitro using the abovementioned stable cell lines. The effect of the KIF20A expression on the proliferation of bladder cancer cells was evaluated by a mouse xenograft model. Results The expression of KIF20A was significantly higher in the bladder cancer tissues than in the adjacent control tissues. The expression of KIF20A was significantly associated with the degree of pathological differentiation of bladder cancer. Patients with a higher expression of KIF20A had a higher tumour grade and a more advanced stage. The mean survival of patients with a high KIF20A expression was significantly lower than the mean survival of patients with a low KIF20A expression. The in vitro experiments demonstrated that the knockdown of KIF20A significantly inhibited T24 and 5637 cell proliferation and invasion. The in vivo experiments showed that the knockdown of KIF20A significantly inhibited the proliferation of the bladder tumours. Conclusion KIF20A promotes the proliferation and metastasis of bladder cancer cells. Bladder cancer patients with a high KIF20A expression have a worse tumour differentiation and a poor prognosis. KIF20A may become an independent factor that affects the prognosis of bladder cancer patients and a therapeutic target for bladder cancer.
Collapse
|
35
|
Song Z, Huang Y, Zhao Y, Ruan H, Yang H, Cao Q, Liu D, Zhang X, Chen K. The Identification of Potential Biomarkers and Biological Pathways in Prostate Cancer. J Cancer 2019; 10:1398-1408. [PMID: 31031850 PMCID: PMC6485223 DOI: 10.7150/jca.29571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: The present study aims to explore the potential mechanisms contributing to prostate cancer (PCa), screen the hub genes, and identify potential biomarkers and correlated pathways of PCa progression. Methods: The PCa gene expression profile GSE3325 was operated to analyze the differentially expressed genes (DEGs). DAVID was used to evaluate Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was constructed to visualize interactions of the hub genes. The prognostic and diagnostic analysis of these hub genes was carried out to evaluate their potential effects on PCa. Results: A total of 847 DEGs were identified (427 upregulated genes and 420 downregulated genes). Meanwhile, top15 hub genes were showed. GO analysis displayed that the DEGs were mainly enriched in cell cycle, DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest and proteinaceous extracellular matrix. KEGG analysis indicated the DEGs were enriched in the p53 signaling pathway and cell cycle pathway. The GO and KEGG enrichment analyses for the DEGs disclosed important biological features of PCa. PPI network showed the interaction of top 15 hub genes. Gene Set Enrichment Analysis (GSEA) revealed that some of the hub genes were associated with biochemical recurrence (BCR) and metastasis of PCa. Some top hub genes were distinctive and new discoveries compared with that of the existing associated researches. Conclusions: Our analysis revealed that the changes of cell cycle and p53 signaling pathway are two major signatures of PCa. CENPA, KIF20A and CDCA8 might promote the tumorigenesis and progression of PCa, especially in BCR and metastasis, which could be novel therapeutic targets and biomarkers for diagnosis, prognosis of PCa.
Collapse
Affiliation(s)
- Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
36
|
Guo ML, Sun MX, Lan JZ, Yan LS, Zhang JJ, Hu XX, Xu S, Mao DH, Yang HS, Liu YW, Chen TX. Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells. Cell Biochem Funct 2019; 37:72-83. [PMID: 30773657 DOI: 10.1002/cbf.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer cell progression and proliferation increase cell density, resulting in changes to the tumour site, including the microenvironment. What is not known is if increased cell density influences the aggressiveness of cancer cells, especially their proliferation, migration, and invasion capabilities. In this study, we found that dense cell culture enhances the aggressiveness of the metastatic cancer cell lines, 4T1 and ZR-75-30, by increasing their proliferation, migration, and invasion capabilities. However, a less metastatic cell line, MCF-7, did not show an increase in aggressiveness, following dense cell culture conditions. We conducted a differential proteomic analysis on 4T1 cells cultured under dense or sparse conditions and identified an increase in expression for proteins involved in migration, including focal adhesion, cytoskeletal reorganization, and transendothelial migration. In contrast, 4T1 cells grown under sparse conditions had higher expression levels for proteins involved in metabolism, including lipid and phospholipid binding, lipid and cholesterol transporter activity, and protein binding. These results suggest that the high-density tumour microenvironment can cause a change in cellular behaviour, leading towards more aggressive cancers. SIGNIFICANCE OF THE STUDY: Metastasis of cancer cells is an obstacle to the clinical treatment of cancer. We found that dense cultures made metastatic cancer cells more potent in terms of proliferation, migration, and invasion. The proteomic and bioinformatic analyses provided some valuable clues for further intensive studies about the effects of cell density on cancer cell aggressiveness, which were associated with events such as pre-mRNA splicing and RNA transport, focal adhesion and cytoskeleton reorganization, ribosome biogenesis, and transendothelial migration, or associated with proteins, such as JAM-1 and S100A11. This investigation gives us new perspectives to investigate the metastasis mechanisms related to the microenvironment of tumour sites.
Collapse
Affiliation(s)
- Man-Lan Guo
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi-Xin Sun
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jin-Zhi Lan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li-Sha Yan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing-Juan Zhang
- Human Functional Laboratory, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiao-Xia Hu
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shu Xu
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Da-Hua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Hai-Song Yang
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ya-Wei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Xiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
37
|
Jiang X, Jiang M, Xu M, Xu J, Li Y. Identification of diagnostic utility and molecular mechanisms of circulating miR-551b-5p in gastric cancer. Pathol Res Pract 2019; 215:900-904. [PMID: 30732916 DOI: 10.1016/j.prp.2019.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers globally leading to 850,000 deaths each year. GC patients are often diagnosed at advanced stages which results in poor prognosis. This study aimed to identify a novel circulating miRNA as the diagnostic biomarker of GC and further explore its regulatory mechanisms in GC. MATERIALS AND METHODS First, the candidate serum miRNA was selected after analysis of microarray data. Then, the levels of candidate miRNA in the serum of GC patients were validated in an independent cohort. The diagnostic utility of miRNA was evaluated by using receiver operating characteristic curve (ROC) analysis. The functional and pathways enrichment analysis of targets of candidate miRNA were explored by online tool DAVID. RESULTS After comprehensive analysis of Gene Expression Omnibus (GEO) dataset, miR-551b-5p was selected as candidate due to its highest differential fold-change. Another independent cohort showed that serum miR-551b-5p could differentiate GC patients from healthy controls (HCs) with area under the curve (AUC) of 0.84 (95%CI: 0.75-0.93). The functional and pathways enrichment analysis revealed that targets of miR-551b-5p mainly located in cytoplasm and significantly associated with regulation of ubiquitin-dependent protein catabolic process, cell division, and mRNA stability. CONCLUSIONS Circulating miR-551b-5p was a novel promising biomarker for the detection of GC and exploration of the molecular mechanisms of miR-551b-5p is useful to search for new therapeutic strategies of GC.
Collapse
Affiliation(s)
- Xiaomeng Jiang
- Digestive Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Menglin Jiang
- Biomedical Sciences Department, University of Tennessee Health Sciences Center, Memphis, TN, 38105, USA
| | - Min Xu
- Digestive Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jing Xu
- Digestive Department, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yi Li
- Digestive Department, The Third Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| |
Collapse
|
38
|
Li ZY, Wang ZX, Li CC. Kinesin family member 20B regulates tongue cancer progression by promoting cell proliferation. Mol Med Rep 2019; 19:2202-2210. [PMID: 30664160 PMCID: PMC6390006 DOI: 10.3892/mmr.2019.9851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Oral cancer refers to the malignant tumors that occur in the oral cavity, of which 80% are squamous cell carcinomas. The incidence of oral cancer accounts for ~5% of the incidence of systemic malignancies, with rapid progression, extensive infiltration and poor prognosis. In the present study, Kinesin family member (KIF)20B, a member of Kinesin-6 family, was identified as a potential biomarker which could promote cancer progression. A total of 82 patients were recruited and KIF20B expression levels were investigated by immunohistochemistry, and were divided into high and low groups based on the median of KIF20B expression levels. The clinicopathological features and survival-associated data of the two groups were analyzed and the results were provided as a table and by a Kaplan-Meier plot, respectively. Additionally, KIF20B was successfully silenced in two tongue cancer cell lines, CAL-27 and TCA-8113. MTT and colony formation assay were performed to determine the changes of cell proliferation in knocked down-KIF20B cell lines. In addition, proliferation-associated proteins Ki67 and PCNA were investigated, by western blotting. In animal experiments, subcutaneous tumor formation was performed with control cells and cells with knocked down KIF20B, to determine the inhibitory effect of KIF20B in vivo. Firstly, it was found that there was significantly high expression levels of KIF20B in tongue cancer patients (P<0.05). Patients with high expression of KIF20B had poorer clinicopathological results including tumor differentiation level, lymph node metastasis and clinical stages. The overall survival and relapse-free survival of high-expression group were also poor. Secondly, after successful establishment of cells with knocked down KIF20B, this resulted in a notable reduction in cell proliferation in vitro. Subsequent western blotting further confirmed that Ki67 and PCNA expression levels had a significant decline. Finally, it was demonstrated that knocking down KIF20B could inhibit tumor volume growth in vivo. In conclusion, the high level of KIF20B in oral squamous cell carcinoma was significantly associated with poor clinicopathological features and survival. KIF20B might promote cancer development through enhancing cell proliferation in vitro, and might be a potential biomarker of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Zhang-Yi Li
- Department of Stomatology, The Fifth Central Hospital of Tianjin, Tianjin Medical University, Tanggu, Tianjin 300450, P.R. China
| | - Zhi-Xing Wang
- Department of Stomatology, The Fifth Central Hospital of Tianjin, Tianjin Medical University, Tanggu, Tianjin 300450, P.R. China
| | - Chang-Chun Li
- Department of Stomatology, The Fifth Central Hospital of Tianjin, Tianjin Medical University, Tanggu, Tianjin 300450, P.R. China
| |
Collapse
|
39
|
Yuan B, Chen Y, Wu Z, Zhang L, Zhuang Y, Zhao X, Niu H, Cheng JCH, Zeng Z. Proteomic Profiling of Human Hepatic Stellate Cell Line LX2 Responses to Irradiation and TGF-β1. J Proteome Res 2018; 18:508-521. [PMID: 30489086 DOI: 10.1021/acs.jproteome.8b00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic stellate cells (HSCs) are the main target of radiation damage and primarily contribute to the development of radiation-induced liver fibrosis. However, the molecular events underlying the radiation-induced activation of HSCs are not fully elucidated. In the present study, human HSC line LX2 was treated with X-ray irradiation and/or TGF-β1, and profibrogenic molecules were evaluated. The iTRAQ LC-MS/MS technology was performed to identify global protein expression profiles in LX2 following exposure to different stimuli. Irradiation or TGF-β1 alone increased expression of α-SMA, collagen 1, CTGF, PAI-1, and fibronectin. Irradiation and TGF-β1 cooperatively induced expression of these profibrotic markers. In total, 102, 137, 155 dysregulated proteins were identified in LX2 cell samples affected by irradiation, TGF-β1, or cotreatment, respectively. Bioinformatic analyses showed that the three differentially expressed protein sets were commonly associated with cell cycle and protein processing in endoplasmic reticulum. The expression of a set of proteins was properly validated: CDC20, PRC1, KIF20A, CCNB1, SHCBP, TACC3 were upregulated upon irradiation or irradiation and TGF-β1 costimulation, whereas SPARC and THBS1 were elevated by TGF-β1 or TGF-β1 plus irradiation treatment. Furthermore, CDC20 inhibition suppressed expression of profibrotic markers in irradiated and TGF-β1-stimulated LX2 cells. Detailed data on potential molecular mechanisms causing the radiation-induced HSC activation presented here would be instrumental in developing radiotherapy strategies that minimize radiation-induced liver fibrosis.
Collapse
Affiliation(s)
- Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China.,Department of Radiation Oncology, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Departments of Oncology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| |
Collapse
|
40
|
Jia M, Gut H, Chao JA. Structural basis of IMP3 RRM12 recognition of RNA. RNA (NEW YORK, N.Y.) 2018; 24:1659-1666. [PMID: 30135093 PMCID: PMC6239170 DOI: 10.1261/rna.065649.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The IMP family of RNA binding proteins, also named as insulin-like growth factor 2 (IGF2) mRNA-binding proteins (IGF2BPs), are highly conserved RNA regulators that are involved in many RNA processing stages, including mRNA stability, localization, and translation. There are three paralogs in the IMP family, IMP1-3, in mammals that all adopt the same domain arrangement with two RNA recognition motifs (RRM) in the N terminus and four KH domains in the C terminus. Here, we report the structure and biochemical characterization of IMP3 RRM12 and its complex with two short RNAs. These structures show that both RRM domains of IMP3 adopt the canonical RRM topology with two α-helices packed on an anti-parallel four stranded β-sheet. The spatial orientation of RRM1 to RRM2 is unique compared with other known tandem RRM structures. In the IMP3 RRM12 complex with RNA, only RRM1 is involved in RNA binding and recognizes a dinucleotide sequence.
Collapse
Affiliation(s)
- Min Jia
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| |
Collapse
|
41
|
Kitagawa T, Taniuchi K, Tsuboi M, Sakaguchi M, Kohsaki T, Okabayashi T, Saibara T. Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer. Mol Oncol 2018; 13:212-227. [PMID: 30358104 PMCID: PMC6360365 DOI: 10.1002/1878-0261.12398] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022] Open
Abstract
Diagnostic biomarkers for the early diagnosis of pancreatic cancer are needed to improve prognosis for this disease. The aim of this study was to investigate differences in the expression of four messenger RNAs (mRNAs: CCDC88A,ARF6, Vav3, and WASF2) and five small nucleolar RNAs (snoRNAs: SNORA14B,SNORA18,SNORA25,SNORA74A, and SNORD22) in serum of patients with pancreatic cancer and control participants for use in the diagnosis of pancreatic cancer. Results were compared with the expression of sialylated Lewis (a) blood group antigen CA19‐9, the standard clinical tumor biomarker. Reverse transcription quantitative real‐time PCR showed that all of the mRNAs and snoRNAs, except CCDC88A, were encapsulated in exosomes and secreted from cultured pancreatic cancer cells, and present in cell culture medium. In a discovery‐stage clinical study involving 27 pancreatic cancer patients and 13 controls, the area under the receiver operating characteristic curve (AUC) of two mRNAs (WASF2 and ARF6) and two snoRNAs (SNORA74A and SNORA25) was > 0.9 for distinguishing pancreatic cancer patients from controls; the AUC of CA19‐9 was 0.897. Comparing serum levels of WASF2,ARF6,SNORA74A,SNORA25, and CA19‐9 revealed that levels of WASF2 were the most highly correlated with the risk of pancreatic cancer. The AUCs of WASF2,ARF6,SNORA74A, and SNORA25 in serum from patients in the early stages of pancreatic cancer (stages 0, I, and IIA) were > 0.9, compared with an AUC of 0.93 for the level of CA19‐9. The results of this study suggest that WASF2,ARF6,SNORA74A, and SNORA25 may be useful tools for the early detection of pancreatic cancer. Monitoring serum levels of WASF2 mRNA may be particularly useful, as it was the most highly correlated with pancreatic cancer risk.
Collapse
Affiliation(s)
- Tatsuya Kitagawa
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Makiko Tsuboi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Masahiko Sakaguchi
- Department of Integrated Center for Advanced Medical Technologies, Kochi Medical School, Kochi University, Nankoku, Japan.,Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Takuhiro Kohsaki
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
42
|
Taniuchi K, Furihata M, Naganuma S, Saibara T. WAVE2 is associated with poor prognosis in pancreatic cancers and promotes cell motility and invasiveness via binding to ACTN4. Cancer Med 2018; 7:5733-5751. [PMID: 30353690 PMCID: PMC6246955 DOI: 10.1002/cam4.1837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022] Open
Abstract
WAVE2 is a member of the WASP/WAVE family of actin cytoskeletal regulatory proteins; unfortunately, little is known about its function in pancreatic cancers. In this study, we report the role of WAVE2 in the motility and invasiveness of pancreatic cancer cells. High WAVE2 expression in human pancreatic cancer tissues was correlated with overall survival. WAVE2 accumulated in the cell protrusions of pancreatic cancer cell lines. Downregulation of WAVE2 by small interfering RNA decreased the cell protrusions and inhibited the motility and invasiveness of pancreatic cancer cells. WAVE2 promoted pancreatic cancer cell motility and invasion by forming a complex with the actin cytoskeletal protein alpha‐actinin 4 (ACTN4). Downregulation of ACTN4 by small interfering RNA also inhibited the motility and invasiveness of the cells through a decrease in cell protrusions. Further investigation showed that WAVE2/ACTN4 signaling selectively stimulated p27 phosphorylation and thereby increased the motility and invasiveness of the cells. These results suggest that WAVE2 and ACTN4 stimulate p27 phosphorylation and provide evidence that WAVE2 promotes the motility and invasiveness of pancreatic cancer cells.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
43
|
Ni M, Liu X, Wu J, Zhang D, Tian J, Wang T, Liu S, Meng Z, Wang K, Duan X, Zhou W, Zhang X. Identification of Candidate Biomarkers Correlated With the Pathogenesis and Prognosis of Non-small Cell Lung Cancer via Integrated Bioinformatics Analysis. Front Genet 2018; 9:469. [PMID: 30369945 PMCID: PMC6194157 DOI: 10.3389/fgene.2018.00469] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background and Objective: Non-small cell lung cancer (NSCLC) accounts for 80-85% of all patients with lung cancer and 5-year relative overall survival (OS) rate is less than 20%, so that identifying novel diagnostic and prognostic biomarkers is urgently demanded. The present study attempted to identify potential key genes associated with the pathogenesis and prognosis of NSCLC. Methods: Four GEO datasets (GSE18842, GSE19804, GSE43458, and GSE62113) were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between NSCLC samples and normal ones were analyzed using limma package, and RobustRankAggreg (RRA) package was used to conduct gene integration. Moreover, Search Tool for the Retrieval of Interacting Genes database (STRING), Cytoscape, and Molecular Complex Detection (MCODE) were utilized to establish protein-protein interaction (PPI) network of these DEGs. Furthermore, functional enrichment and pathway enrichment analyses for DEGs were performed by Funrich and OmicShare. While the expressions and prognostic values of top genes were carried out through Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan Meier-plotter (KM) online dataset. Results: A total of 249 DEGs (113 upregulated and 136 downregulated) were identified after gene integration. Moreover, the PPI network was established with 166 nodes and 1784 protein pairs. Topoisomerase II alpha (TOP2A), a top gene and hub node with higher node degrees in module 1, was significantly enriched in mitotic cell cycle pathway. In addition, Interleukin-6 (IL-6) was enriched in amb2 integrin signaling pathway. The mitotic cell cycle was the most significant pathway in module 1 with the highest P-value. Besides, five hub genes with high degree of connectivity were selected, including TOP2A, CCNB1, CCNA2, UBE2C, and KIF20A, and they were all correlated with worse OS in NSCLC. Conclusion: The results showed that TOP2A, CCNB1, CCNA2, UBE2C, KIF20A, and IL-6 may be potential key genes, while the mitotic cell cycle pathway may be a potential pathway contribute to progression in NSCLC. Further, it could be used as a new biomarker for diagnosis and to direct the synthesis medicine of NSCLC.
Collapse
Affiliation(s)
- Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Ting Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
KIF20A, highly expressed in immature hematopoietic cells, supports the growth of HL60 cell line. Int J Hematol 2018; 108:607-614. [PMID: 30182171 DOI: 10.1007/s12185-018-2527-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
A microtubule-associated motor protein, kinesin-like family member 20A (KIF20A; also called MKlp2) is required for cytokinesis and contributes to intracellular vesicular trafficking. KIF20A plays a critical role in the development of several cancers, but its role in blood cells and hematological malignancies have not been studied. In the present study, we focused on the role of KIF20A in hematopoietic cells and possible involvement in myeloid neoplasms. We found that human leukemia cell lines and normal bone marrow CD34-positive cells stimulated by growth factors, but not mature peripheral blood cells, exhibit high KIF20A expression. We further found that HL60 cells, which originally express a large amount of KIF20A, showed decreased KIF20A expression in parallel with both neutrophil-like and macrophage-like differentiation-induction. KIF20A-knockdown using a lentivirus shRNA transfection system led to partial cell cycle arrest at the G2/M phase and frequent appearance of multinucleated cells. Treatment with a KIF20A-selective inhibitor, paprotrain enhanced the multinuclearity of KIF20A-knockdown cell clones and suppressed growth. The present study contributes to our understanding of the role of KIF20A in blood cells and leukemia cells in particular.
Collapse
|
45
|
Taniuchi K, Furihata M, Naganuma S, Saibara T. ARHGEF4 predicts poor prognosis and promotes cell invasion by influencing ERK1/2 and GSK-3α/β signaling in pancreatic cancer. Int J Oncol 2018; 53:2224-2240. [PMID: 30226582 DOI: 10.3892/ijo.2018.4549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 11/06/2022] Open
Abstract
Rho guanine nucleotide exchange factor 4 (ARHGEF4) is a guanine nucleotide exchange factor that is specific for Rac1 and Cdc42. The aim of the present study was to investigate the role of ARHGEF4 in the motility and invasiveness of pancreatic cancer cells. Evaluation of an immunohistochemical staining of 102 resected pancreatic cancer samples demonstrated that high ARHGEF4 expression was correlated with an independent predictor of worse overall survival in univariate and multivariate analyses. Immunofluorescence analyses and Matrigel invasion assays demonstrated that suppression of ARHGEF4 inhibited the formation of membrane protrusions, and in turn inhibited cell motility and invasion. A phosphoprotein array analysis demonstrated that knockdown of ARHGEF4 decreased phosphorylated extracellular signal-regulated kinase (ERK)1/2 and glycogen synthase kinase-3 (GSK-3)α/β in pancreatic cancer cells, and ERK1/2 and GSK-3α/β were associated with ARHGEF4-related motility and invasiveness through an increase in cell protrusions. These results suggested that ARHGEF4 stimulates ERK1/2 and GSK-3α/β, and provided evidence that ARHGEF4 promotes cell motility and invasiveness. Inhibition of ARHGEF4 may be a novel approach to a targeted molecular therapy, as any such therapy would limit the motility and invasiveness of pancreatic cancer cells.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Departments of Endoscopic Diagnostics and Therapeutics, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Mutsuo Furihata
- Departments of Pathology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Seiji Naganuma
- Departments of Pathology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Departments of Endoscopic Diagnostics and Therapeutics, Kochi University, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
46
|
Zhao X, Zhou LL, Li X, Ni J, Chen P, Ma R, Wu J, Feng J. Overexpression of KIF20A confers malignant phenotype of lung adenocarcinoma by promoting cell proliferation and inhibiting apoptosis. Cancer Med 2018; 7:4678-4689. [PMID: 30105795 PMCID: PMC6143951 DOI: 10.1002/cam4.1710] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022] Open
Abstract
Increasing studies showed that kinesin family member 20A (KIF20A) was overexpessed in several types of cancer, and its overexpression correlated with the oncogenesis and prognosis of cancers. However, little is known about the role of KIF20A in lung adenocarcinoma (LUAD). In this study, we employed the bioinformatics analysis to identify the upregulation of KIF20A in LUAD, then verified the results in human tumor specimens and LUAD cell lines. Compared with normal lung tissues, a ubiquitous upregulation of KIF20A was observed in LUAD tissues by immunohistochemistry (IHC) as well as TCGA analysis. Higher expression of KIF20A was significantly associated with more advanced clinicopathological features and shorter overall survival (OS). Moreover, multivariate Cox regression analysis revealed that KIF20A was an independent prognostic factor for OS. The expression of KIF20A was significantly elevated in LUAD cell lines. After silencing KIF20A, lung cancer cell cycle arrested in G1 phase and apoptosis increased. The same results were observed in vivo. Thus, our study demonstrated that KIF20A might confer malignant phenotype to LUAD by regulating cell proliferation and apoptosis, providing a new potential biomarker for clinical treatment of LUAD.
Collapse
Affiliation(s)
- Xia Zhao
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Insititute of Cancer Research, Nanjing, Jiangsu, China.,Department of Oncology, First People's Hospital of Yancheng, Fourth Affliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Lei-Lei Zhou
- Department of Oncology, The Affliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaoyou Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Insititute of Cancer Research, Nanjing, Jiangsu, China
| | - Jie Ni
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Insititute of Cancer Research, Nanjing, Jiangsu, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Rong Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Insititute of Cancer Research, Nanjing, Jiangsu, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Insititute of Cancer Research, Nanjing, Jiangsu, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Insititute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Zhao P, Lan F, Zhang H, Zeng G, Liu D. Down-regulation of KIF2A inhibits gastric cancer cell invasion via suppressing MT1-MMP. Clin Exp Pharmacol Physiol 2018; 45:1010-1018. [PMID: 29781531 DOI: 10.1111/1440-1681.12974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer accounts for a sizeable proportion of global cancer mortality with high morbidity and poor prognosis. Kinesin superfamily proteins (KIFs) are microtubule-dependent motor proteins that function as oncogenes in cancer cells, it has been discovered in recent years. Kinesin family member 2a (KIF2A), a member of the KIFs, has received attention for its role in carcinogenesis and its prognostic value in several human cancers such as breast cancer, colorectal cancer, and squamous cell carcinoma. However, the role of KIF2A in human gastric cancer remains unknown. In this study we aimed to explore the expression and biological functions of KIF2A in human gastric cancer cells, as well as to reveal its potential action mechanism. First, we found that KIF2A was markedly increased in gastric cancer cells (MKN-28, MKN-45, NCI-N87 and SGC-7901) compared to normal gastric mucosa epithelial cells (GES-1). Then KIF2A was successfully silenced in MKN-45 and SGC-7901 cells to facilitate further research into its function. We discovered that KIF2A silencing can significantly inhibit the growth and invasion of MKN-45 and SGC-7901 cells in a time-independent manner, accompanying a decreased expression of Membrane type 1-matrix metalloproteinase (MT1-MMP). When MT1-MMP was reintroduced into MKN-45 and SGC-7901 cells in the KIF2A-siRNA group, only invasion inhibition effects on MKN-45 and SGC-7901 cells induced by KIF2A silencing can be reversed. In conclusion, our study reveals that down-regulation of KIF2A can inhibit gastric cancer cell invasion by suppressing MT1-MMP.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| | - Fei Lan
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| | - Hui Zhang
- Department of Internal Medicine, Jingyang County Hospital, Shaanxi, Xianyang, China
| | - Guangwei Zeng
- Department of Cardiovascular Medicine, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| | - Dong Liu
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| |
Collapse
|
48
|
Kawai Y, Shibata K, Sakata J, Suzuki S, Utsumi F, Niimi K, Sekiya R, Senga T, Kikkawa F, Kajiyama H. KIF20A expression as a prognostic indicator and its possible involvement in the proliferation of ovarian clear‑cell carcinoma cells. Oncol Rep 2018; 40:195-205. [PMID: 29749467 PMCID: PMC6059742 DOI: 10.3892/or.2018.6401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Kinesin family member 20A (KIF20A), which is involved in cytokinesis and intracellular transportation, has been recently reported to be upregulated in several malignancies and may contribute to chemotherapeutic resistance. We examined the distribution and expression of KIF20A in clear‑cell carcinoma (CCC) of the ovary to elucidate its clinical significance and molecular mechanism. Paraffin sections from ovarian CCC tissues (N=43) were immunostained with KIF20A antibody, and the staining intensities were semi‑quantitatively evaluated. Furthermore, we investigated whether silencing of KIF20A contributes to the proliferation‑inhibitory potential using CCC cells. During the observational period, 18 patients (41.9%) developed recurrence. The median time to recurrence was 11.5 months. Patients in the high KIF20A expression group showed poorer progression‑free survival (PFS) and overall survival (OS) than those in the low expression group (P=0.0443 and P=0.0478, respectively). In multivariable analyses, KIF20A expression was also a significantly independent indicator of PFS and a marginally significant indicator of OS [PFS: HR (high vs. low), 5.488; 95% CI, 1.410‑24.772 (P=0.0136); OS: HR, 2.835; 95% CI, 0.854‑11.035, (P=0.0897)]. In in vitro studies, the ovarian CCC cell proliferation was significantly decreased by KIF20A silencing or in the presence of KIF20A inhibitor in CCC cells. Cell cycle G2/M arrest and a higher apoptosis‑induced fraction were more frequently observed in si‑KIF20A‑transfected CCC cells than in the control cells. Although the present study was preliminary, these data indicate the possible involvement of KIF20A in the proliferation of CCC, suggesting that targeting this molecule may contribute to reversing the malignant potential consequently affecting the oncologic outcome of CCC patients.
Collapse
Affiliation(s)
- Yosuke Kawai
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya 454‑8509, Japan
| | - Jun Sakata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Ryuichiro Sekiya
- Department of Obstetrics and Gynecology, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya 454‑8509, Japan
| | - Takeshi Senga
- Department of Internal Medicine, Yahagigawa Hospital, Aichi 444‑1164, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| |
Collapse
|
49
|
Xiu G, Sui X, Wang Y, Zhang Z. FOXM1 regulates radiosensitivity of lung cancer cell partly by upregulating KIF20A. Eur J Pharmacol 2018; 833:79-85. [PMID: 29704495 DOI: 10.1016/j.ejphar.2018.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022]
Abstract
Forkhead box protein M1 (FOXM1), an important regulator of tumorigenesis in various human tumors, has recently been reported to play a role in the modulation of radiosensitivity in glioma and breast cancer cells. The present study aimed to investigate the effects of FOXM1 on radiotherapy resistance in human lung cancer and to explore the related molecular mechanisms. The results revealed that FOXM1 expression was upregulated in A549 and H1299 cells after IR (Ionizing radiation). FOXM1 inhibition impeded survival fractions, impeded proliferation, and triggered apoptosis after IR. Moreover, the silencing of FOXM1 dampened cell migration, invasion, and EMT (epithelial-mesenchyman transition) in A549 and H1299 cells treated by IR. In addition, KIF20A was also highly expressed in IR-treated A549 cells and downregulated by FOXM1 inhibition. Knockdown of KIF20A inhibited the survival fraction. Reintroduction of KIF20A partly reversed the effects of FOXM1 on the proliferation, apoptosis, and metastasis of A549 cells. Taken together, these results indicated that FOXM1 might enhance radioresistance partly through the induction of KIF20A expression.
Collapse
Affiliation(s)
- Guanghong Xiu
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China.
| | - Xiujie Sui
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China
| | - Yirong Wang
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China
| | - Ze Zhang
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China
| |
Collapse
|
50
|
Lu M, Huang X, Chen Y, Fu Y, Xu C, Xiang W, Li C, Zhang S, Yu C. Aberrant KIF20A expression might independently predict poor overall survival and recurrence-free survival of hepatocellular carcinoma. IUBMB Life 2018; 70:328-335. [PMID: 29500859 DOI: 10.1002/iub.1726] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
Abstract
Kinesin family member 20A (KIF20A) is an essential regulator of cytokinesis. In this study, by performing a retrospective study based on data from the Cancer Genome Atlas (TCGA)-Liver and Hepatocellular Carcinoma (LIHC) cohort, we tried to assess the independent prognostic value of KIF20A in terms of overall survival (OS) and recurrence-free survival (RFS). Results showed that normal liver tissues had very low KIF20A expression compared with normal tissues in other cohorts in TCGA. However, the primary HCC tissues (N = 371) had significantly elevated KIF20A expression than normal liver tissues (N = 50). Immunohistochemistry (IHC) data showed that normal hepatocytes had weak KIF20A staining. In comparison, some HCC tissues had medium and strong KIF20A expression, with nuclear-enhanced staining. By grouping patients with primary HCC (N = 365) into high and low KIF20A expression groups, we found that the high expression group had a substantially higher proportion of high-grade tumors (G3/G4) (34/65, 52.3% vs. 96/295, 32.5%, P = 0.0027), advanced tumors (stage III/IV) (28/61, 45.9% vs. 59/280, 21.1%, P < 0.0001) and death (44/67, 65.7% vs. 86/298, 28.9%, P < 0.0001) compared with the low expression group. Kaplan-Meier curves of OS and RFS indicated that high KIF20A expression was associated with worse survival outcomes. Subgroup analysis confirmed the associations in G1/G2, G3/G4 tumors and in early and advanced stages. Following univariate and multivariate analysis revealed that KIF20A expression was an independent prognostic indicator for poor OS (HR: 1.304, 95%CI: 1.157-1.469, P < 0.001) and RFS (HR: 1.144, 95%CI: 1.028-1.272, P < 0.001). Based on these findings, we infer that KIF20A was aberrantly expressed in HCC tissues and its expression might independently predict poor OS and RFS. © 2018 IUBMB Life, 70(4):328-335, 2018.
Collapse
Affiliation(s)
- Mingqin Lu
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongping Chen
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangyang Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaona Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Xiang
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Li
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengguo Zhang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Yu
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|