1
|
Li Y, Song G, Jiang Y, Zhao H, Zhu Y, Song S, Wang L, Wu X. Single-cell transcriptome analysis of stem cells from human exfoliated deciduous teeth investigating functional heterogeneity in immunomodulation. Sci Rep 2024; 14:31279. [PMID: 39732760 DOI: 10.1038/s41598-024-82734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs. In our study, single-cell RNA sequencing (scRNA-seq) revealed that SHED in a low differentiation state (S7) exhibited the powerful ability to recruit multiple immune cells. In contrast, SHED in a relatively high differentiation state (S1) may hold a solid ability to secret many factors with paracrine signaling capacity. The analysis result shows that SHED has more robust immunomodulatory properties than human bone marrow-derived mesenchymal stem cells (hBMSCs) or human umbilical cord-derived mesenchymal stem cells (hUCMSCs). When co-cultured with PBMCs, SHED can enhance the proliferation of Treg and down-regulate TNF-α in vitro. SHED may have some advantages in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yin Li
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China.
| | - Guangyuan Song
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Yu Jiang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Yizhun Zhu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shanshan Song
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Lulu Wang
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Xueying Wu
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
2
|
Krishna S, Prajapati B, Seth P, Sinha S. Dickopff 1 inhibits cancer stem cell properties and promotes neuronal differentiation of human neuroblastoma cell line SH-SY5Y. IBRO Neurosci Rep 2024; 17:73-82. [PMID: 39021664 PMCID: PMC11253693 DOI: 10.1016/j.ibneur.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Neuroblastomas are pediatric tumors arising from undifferentiated cells of neural crest origin with stem cell-like characteristics. Dysregulation of Wnt/β-catenin signaling has been shown to be linked to the development of various tumors. Activated Wnt signaling results in β-catenin accumulation in the nucleus to support pro-neoplastic traits. DKK1, a secreted glycoprotein, is an inhibitor of Wnt signaling, and the addition of DKKI to the culture medium has been used to suppress the Wnt pathway. This study aimed to analyze the role of Dickopff-1 as a potential differentiating agent for the neuroblastoma cell line SH-SY5Y and neurospheres derived from it. The treatment of SH-5Y5Y derived neurospheres by DKK1 resulted in their disintegration and reduced proliferation markers like Ki67, PCNA. DKK1 treatment to the neurospheres also resulted in the loss of cancer stem cell markers like CD133, KIT and pluripotency markers like SOX2, OCT4, NANOG. DKK1 treatment caused reduction in mRNA expression of β-catenin and TCF genes like TCF4, TCF12. When the SH-SY5Y cancer cells were grown under differentiating conditions, DKKI caused neuronal differentiation by itself, and in synergy with retinoic acid. This was verified by the expression of markers like MAPT, DCX, GAP43, ENO2 and also with changes in neurite length. We concluded that Wnt inhibition, as exemplified by DKK1 treatment, is therefore a possible differentiating condition and also suppresses the proliferative and cancer stemness related properties of SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
| | - Bharat Prajapati
- National Brain Research Centre, Manesar, Gurugram, India
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, Gothenburg, Sweden
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Gurugram, India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurugram, India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Lei C, Wang J, Zhang X, Ge X, Zhao W, Li X, Jiang W, Ma M, Wang Z, Sun S, Kong Q, Li H, Mu L, Wang J. The wnt/pyruvate kinase, muscle axis plays an essential role in the differentiation of mouse neuroblastoma cells. Neurochem Int 2024; 181:105901. [PMID: 39542042 DOI: 10.1016/j.neuint.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Neuronal differentiation and neurite growth are essential processes in nervous system development and are regulated by several factors. Although all-trans retinoic acid (ATRA) has been shown to mediate the differentiation of mouse neuroblastoma cells via the activation of several pathways, including Wnt/β-catenin signaling, the mechanism remains unclear. The pyruvate kinase, muscle (PKM) plays an important role in the glycolysis of neuroblastoma cells and regulates the Wnt signaling pathway in various cancer cells. In this study, we hypothesized that the Wnt/PKM axis regulates the differentiation of neuroblastoma cells (Neuro-2a and N1E-115). To test this hypothesis, we used inhibitors and activators of the Wnt/β-catenin and glycolytic pathways in ATRA-induced differentiated Neuro-2a and N1E-115 cells and established cell lines with silenced or a mutant replacement of Pkm. Western blot and qPCR showed that ATRA treatment activated the Wnt signaling pathway and inhibited PKM-mediated glycolysis. The oxygen consumption rate (indicating oxidative phosphorylation) significantly increased, whereas the extracellular acidification rate (indicating glycolysis) significantly decreased during differentiation; these effects were reversed upon PKM inhibition. The Wnt inhibitor ICG-001 and PKM activator ML-265 inhibited ATRA-induced Neuro-2a and N1E-115 differentiation, whereas RNA interference-mediated Pkm silencing promoted Neuro-2a and N1E-115 differentiation, which was reversed by PKM overexpression. Treatment with the Wnt activator kenpaullone promoted Neuro-2a and N1E-115 differentiation, which was reversed by ML-265 administration. These results indicate that Wnt/β-catenin signaling promotes Neuro-2a and N1E-115 differentiation by inhibiting PKM-mediated glycolysis during ATRA-induced differentiation. These findings may provide a new theoretical basis for the role of glycolysis in nerve differentiation.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jiaqi Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyu Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xuemin Ge
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wei Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xinrong Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wei Jiang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Mingyu Ma
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhenhai Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shanshan Sun
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qingfei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hulun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Jinghua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
4
|
Choudhary S, Singh MK, Kashyap S, Seth R, Singh L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:700. [PMID: 38929279 PMCID: PMC11201634 DOI: 10.3390/children11060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved Wnt signaling has a significant and diverse role in maintaining cell homeostasis and tissue maintenance. It is necessary in the regulation of crucial biological functions such as embryonal development, proliferation, differentiation, cell fate, and stem cell pluripotency. The deregulation of Wnt/β-catenin signaling often leads to various diseases, including cancer and non-cancer diseases. The role of Wnt/β-catenin signaling in adult tumors has been extensively studied in literature. Although the Wnt signaling pathway has been well explored and recognized to play a role in the initiation and progression of cancer, there is still a lack of understanding on how it affects pediatric tumors. This review discusses the recent developments of this signaling pathway in pediatric tumors. We also focus on understanding how different types of variations in Wnt signaling pathway contribute to cancer development and provide an insight of tissue specific mutations that lead to clinical progression of these tumors.
Collapse
Affiliation(s)
- Sahar Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | | | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| |
Collapse
|
5
|
Yaglova NV, Obernikhin SS, Nazimova SV, Tsomartova DA, Timokhina EP, Yaglov VV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA. Postnatal Exposure to the Endocrine Disruptor Dichlorodiphenyltrichloroethane Affects Adrenomedullary Chromaffin Cell Physiology and Alters the Balance of Mechanisms Underlying Cell Renewal. Int J Mol Sci 2024; 25:1494. [PMID: 38338771 PMCID: PMC10855250 DOI: 10.3390/ijms25031494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is a wide-spread systemic pollutant with endocrine disrupting properties. Prenatal exposure to low doses of DDT has been shown to affect adrenal medulla growth and function. The role of postnatal exposure to DDT in developmental disorders remains unclear. The aim of the present investigation is to assess growth parameters and the expression of factors mediating the function and renewal of chromaffin cells in the adult adrenal medulla of male Wistar rats exposed to the endocrine disruptor o,p'-DDT since birth until sexual maturation. The DDT-exposed rats exhibited normal growth of the adrenal medulla but significantly decreased tyrosine hydroxylase production by chromaffin cells during postnatal period. Unlike the control, the exposed rats showed enhanced proliferation and reduced expression of nuclear β-catenin, transcription factor Oct4, and ligand of Sonic hedgehog after termination of the adrenal growth period. No expression of pluripotency marker Sox2 and absence of Ascl 1-positive progenitors were found in the adrenal medulla during postnatal ontogeny of the exposed and the control rats. The present findings indicate that an increase in proliferative activity and inhibition of the formation of reserve for chromaffin cell renewal, two main mechanisms for cell maintenance in adrenal medulla, in the adult DDT-exposed rats may reflect a compensatory reaction aimed at the restoration of catecholamine production levels. The increased proliferation of chromaffin cells in adults suggests excessive growth of the adrenal medulla. Thus, postnatal exposure to DDT alters cell physiology and increases the risk of functional insufficiency and hyperplasia of the adrenal medulla.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| |
Collapse
|
6
|
Odarenko KV, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone Methyl Reduces the Stimulatory Effect of Leptin on the Aggressive Phenotype of Murine Neuro2a Neuroblastoma Cells via the MAPK/ERK1/2 Pathway. Pharmaceuticals (Basel) 2023; 16:1369. [PMID: 37895840 PMCID: PMC10610011 DOI: 10.3390/ph16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| |
Collapse
|
7
|
Burton B, Collins K, Brooks J, Marx K, Renner A, Wilcox K, Moore E, Osowski K, Riley J, Rowe J, Pawlus M. The biotoxin BMAA promotes dysfunction via distinct mechanisms in neuroblastoma and glioblastoma cells. PLoS One 2023; 18:e0278793. [PMID: 36893156 PMCID: PMC9997973 DOI: 10.1371/journal.pone.0278793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic exposure to the Cyanobacteria biotoxin Beta-methylamino-L-alanine (BMAA) has been associated with development of a sporadic form of ALS called Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), as observed within certain Indigenous populations of Guam and Japan. Studies in primate models and cell culture have supported the association of BMAA with ALS/PDC, yet the pathological mechanisms at play remain incompletely characterized, effectively stalling the development of rationally-designed therapeutics or application of preventative measures for this disease. In this study we demonstrate for the first time that sub-excitotoxic doses of BMAA modulate the canonical Wnt signaling pathway to drive cellular defects in human neuroblastoma cells, suggesting a potential mechanism by which BMAA may promote neurological disease. Further, we demonstrate here that the effects of BMAA can be reversed in cell culture by use of pharmacological modulators of the Wnt pathway, revealing the potential value of targeting this pathway therapeutically. Interestingly, our results suggest the existence of a distinct Wnt-independent mechanism activated by BMAA in glioblastoma cells, highlighting the likelihood that neurological disease may result from the cumulative effects of distinct cell-type specific mechanisms of BMAA toxicity.
Collapse
Affiliation(s)
- Bryan Burton
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kate Collins
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Brooks
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Karly Marx
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Abigail Renner
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kaylei Wilcox
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Ellie Moore
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Keith Osowski
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Riley
- Department of Biology, University of Sioux Falls, Sioux Falls, South Dakota, United States of America
| | - Jarron Rowe
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Matthew Pawlus
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| |
Collapse
|
8
|
Ahmad MH, Ghosh B, Rizvi MA, Ali M, Kaur L, Mondal AC. Neural crest cells development and neuroblastoma progression: Role of Wnt signaling. J Cell Physiol 2023; 238:306-328. [PMID: 36502519 DOI: 10.1002/jcp.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Balaram Ghosh
- Department of Clinical Pharmacology, Midnapore Medical College & Hospital, West Bengal, Medinipur, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali
- School of Life Sciences, Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Loveleena Kaur
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine (IIIM), Srinagar, India
| | - Amal Chandra Mondal
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers (Basel) 2022; 14:cancers14112755. [PMID: 35681734 PMCID: PMC9179499 DOI: 10.3390/cancers14112755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma arising from the adrenal differ from ganglionic neuroblastoma both genetically and clinically, with adrenal tumors being associated with a more severe prognosis. The different tumor properties may be linked to specific tumor founder cells in adrenal and sympathetic ganglia. To address this question, we first set up cultures of mouse sympathetic neuroblasts and adrenal chromaffin cells. These cultures were then treated with various proliferation inhibitors to identify lineage-specific responses. We show that neuroblast and chromaffin cell proliferation was affected by WNT, ALK, IGF1, and PRC2/EZH2 signaling inhibitors to a similar extent. However, differential effects were observed in response to bromodomain and extraterminal (BET) protein inhibitors (JQ1, GSK1324726A) and to the CDK-7 inhibitor THZ1, with BET inhibitors preferentially affecting chromaffin cells, and THZ1 preferentially affecting neuroblasts. The differential dependence of chromaffin cells and neuroblasts on BET and CDK signaling may indicate different mechanisms during tumor initiation in sympathetic ganglia and adrenal.
Collapse
|
10
|
Druy AE, Tsaur GA, Shorikov EV, Tytgat GAM, Fechina LG. Suppressed miR-128-3p combined with TERT overexpression predicts dismal outcomes for neuroblastoma. Cancer Biomark 2022; 34:661-671. [PMID: 35634846 DOI: 10.3233/cbm-210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Molecular and clinical diversity of neuroblastomas is notorious. The activating TERT rearrangements have been associated with dismal prognosis. Suppression of miR-128-3p may complement and enhance the adverse effects of TERT overexpression. OBJECTIVE The study aimed at evaluation of prognostic significance of the miR-128-3p/TERT expression in patients with primary neuroblastoma. METHODS RNA samples isolated from fresh-frozen tumor specimens (n= 103) were reverse transcribed for evaluation of miR-128-3p and TERT expression by qPCR. The normalized expression levels were tested for correlations with the event-free survival (EFS). ROC-analysis was used to establish threshold expression levels (TLs) for the possible best prediction of the outcomes. The median follow-up was 57 months. RESULTS Both TERT overexpression and miR-128-3p downregulation were independently associated with superior rates of adverse events (p= 0.027, TL =-2.32 log10 and p= 0.080, TL =-1.33 log10, respectively). The MYCN single-copy patients were stratified into groups based on the character of alterations in expression of the studied transcripts. Five-year EFS in the groups of patients with elevated TERT/normal miR-128-3p expression and normal TERT/reduced miR-128-3p expression were 0.74 ± 0.08 and 0.60 ± 0.16, respectively. The patients with elevated TERT/reduced miR-128-3p expression had the worst outcomes, with 5-year EFS of 0.40 ± 0.16 compared with 0.91 ± 0.06 for the patients with unaltered levels of both transcripts (p< 0.001). Cumulative incidence of relapse/progression for the groups constituted 0.23 ± 0.08, 0.40 ± 0.16, 0.60 ± 0.16 and 0.09 ± 0.06, respectively. Moreover, the loss of miR-128-3p was qualified as independent adverse predictor which outperformed the conventional clinical and genetic risk factors in the multivariate Cox regression model of EFS. CONCLUSIONS Combined expression levels of miR-128-3p and TERT represent a novel prognostic biomarker for neuroblastoma.
Collapse
Affiliation(s)
- A E Druy
- Laboratory of Molecular Oncology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.,Laboratory of the Cellular Therapy of Oncohematological Disorders, Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation
| | - G A Tsaur
- Laboratory of the Cellular Therapy of Oncohematological Disorders, Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation.,Pediatric Oncology and Hematology Center, Regional Children's Hospital, Yekaterinburg, Russian Federation.,Chair of Laboratory Medicine, Ural State Medical University, Yekaterinburg, Russian Federation
| | - E V Shorikov
- PET-Technology Center of Nuclear Medicine, Yekaterinburg, Russian Federation
| | - G A M Tytgat
- Princess Máxima Centre for Pediatric Oncology (PMC), Utrecht, The Netherlands
| | - L G Fechina
- Laboratory of the Cellular Therapy of Oncohematological Disorders, Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation.,Pediatric Oncology and Hematology Center, Regional Children's Hospital, Yekaterinburg, Russian Federation
| |
Collapse
|
11
|
Caglar HO. Bioinformatics analysis of recurrent deletion regions in neuroblastoma. Med Oncol 2022; 39:31. [DOI: 10.1007/s12032-021-01639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
|
12
|
Zimmerman MW, Durbin AD, He S, Oppel F, Shi H, Tao T, Li Z, Berezovskaya A, Liu Y, Zhang J, Young RA, Abraham BJ, Look AT. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. SCIENCE ADVANCES 2021; 7:eabe0834. [PMID: 34669465 PMCID: PMC8528416 DOI: 10.1126/sciadv.abe0834] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that collaborate with MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation. Here, we show that when MYCN-amplified neuroblastoma cells are treated with retinoic acid, histone H3K27 acetylation and methylation become redistributed to decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of MEIS1 and SOX4 expression. These findings indicate that treatment with retinoids can reprogram the enhancer landscape, resulting in down-regulation of MYCN expression, while establishing a new retino-sympathetic CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids in high-risk neuroblastoma and explain the rapid down-regulation of expression of MYCN despite massive levels of amplification of this gene.
Collapse
Affiliation(s)
- Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Felix Oppel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310052, China
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard A Young
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
13
|
Yang R, Li R, Huang Z, Zuo Y, Yue H, Wu H, Gu F, Wang F, He M, Bian Z. Mycn deficiency underlies the development of orofacial clefts in mice and humans. Hum Mol Genet 2021; 31:803-815. [PMID: 34590686 DOI: 10.1093/hmg/ddab288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/09/2023] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common subphenotype of non-syndromic orofacial clefts (NSOFCs) arising from genetic and/or environmental perturbations during embryonic development. We previously identified 2p24.2 as a risk locus associated with NSCL/P in the Chinese Han population, and MYCN is a candidate risk gene in this region. To understand the potential function of MYCN in craniofacial development, we generated Wnt1-Cre;Mycnflox/flox mice that exhibited cleft palate, microglossia, and micrognathia, resembling the Pierre Robin sequence (PRS) in humans. Further analyses indicated that the cleft palate was secondary to the delayed elevation of palatal shelves caused by micrognathia. The micrognathia resulted from impaired chondrogenic differentiation in Merkel's cartilage, which limited tongue development, leading to microglossia. In terms of mechanism, Mycn deficiency in cranial neural crest cells (CNCCs) downregulated Sox9 expression by inhibiting Wnt5a in a CNCC-derived chondrogenic lineage in Merkel's cartilage. To investigate whether MYCN deficiency contributed to NSCL/P, we performed direct sequencing targeting all exons and exon-intron boundaries of MYCN in 104 multiplex families with mendelian NSCL/P and identified a novel pathogenic variant in MYCN. Taken together, our data indicate that ablation of Mycn in mouse CNCCs could resemble PRS by suppressing the Wnt5a-Sox9 signaling pathway in Merkel's cartilage and that mutations in MYCN may be novel potential causes of NSCL/P.
Collapse
Affiliation(s)
- Ruihuan Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Ruyi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Zhuo Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Yining Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Haitang Yue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Hailin Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Fan Gu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Fei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| |
Collapse
|
14
|
Identification of the Novel Methylated Genes' Signature to Predict Prognosis in INRG High-Risk Neuroblastomas. JOURNAL OF ONCOLOGY 2021; 2021:1615201. [PMID: 34557229 PMCID: PMC8455188 DOI: 10.1155/2021/1615201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastomas are the most frequent extracranial pediatric solid tumors. The prognosis of children with high-risk neuroblastomas has remained poor in the past decade. A powerful signature is required to identify factors associated with prognosis and improved treatment selection. Here, we identified a strong methylation signature that favored the earlier diagnosis of neuroblastoma in patients. METHODS Gene methylation (GM) data of neuroblastoma patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were analyzed using a multivariate Cox regression analysis (MCRA) and univariate Cox proportional hazards regression analysis (UCPHRA). RESULTS The methylated genes' signature consisting of eight genes (NBEA, DDX28, TMED8, LOC151174, EFNB2, GHRHR, MIMT1, and SLC29A3) was selected. The signature divided patients into low- and high-risk categories, with statistically significant survival rates (median survival time: 25.08 vs. >128.80 months, log-rank test, P < 0.001) in the training group, and the validation of the signature's risk stratification ability was carried out in the test group (log-rank test, P < 0.01, median survival time: 30.48 vs. >120.36 months). The methylated genes' signature was found to be an independent predictive factor for neuroblastoma by MCRA. Functional enrichment analysis suggested that these methylated genes were related to butanoate metabolism, beta-alanine metabolism, and glutamate metabolism, all playing different significant roles in the process of energy metabolism in neuroblastomas. CONCLUSIONS The set of eight methylated genes could be used as a new predictive and prognostic signature for patients with INRG high-risk neuroblastomas, thus assisting in treatment, drug development, and predicting survival.
Collapse
|
15
|
Valek L, Tegeder I. Nucleoredoxin Knockdown in SH-SY5Y Cells Promotes Cell Renewal. Antioxidants (Basel) 2021; 10:antiox10030449. [PMID: 33805811 PMCID: PMC7999887 DOI: 10.3390/antiox10030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Nucleoredoxin (NXN) is a redox regulator of Disheveled and thereby of WNT signaling. Deficiency in mice leads to cranial dysmorphisms and defects of heart, brain, and bone, suggesting defects of cell fate determination. We used shRNA-mediated knockdown of NXN in SH-SY5Y neuroblastoma cells to study its impact on neuronal cells. We expected that shNXN cells would easily succumb to redox stress, but there were no differences in viability on stimulation with hydrogen peroxide. Instead, the proliferation of naïve shNXN cells was increased with a higher rate of mitotic cells in cell cycle analyses. In addition, basal respiratory rates were higher, whereas the relative change in oxygen consumption upon mitochondrial stressors was similar to control cells. shNXN cells had an increased expression of redox-sensitive heat shock proteins, Hsc70/HSPA8 and HSP90, and autophagy markers suggested an increase in autophagosome formation upon stimulation with bafilomycin and higher flux under low dose rapamycin. A high rate of self-renewal, autophagy, and upregulation of redox-sensitive chaperones appears to be an attractive anti-aging combination if it were to occur in neurons in vivo for which SH-SY5Y cells are a model.
Collapse
|
16
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 2020; 24:899-914. [PMID: 33021426 PMCID: PMC7554151 DOI: 10.1080/14728222.2020.1790528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the prime cancer of infancy, and accounts for 9% of pediatric cancer deaths. While children diagnosed with clinically stable NB experience a complete cure, those with high-risk disease (HR-NB) do not recover, despite intensive therapeutic strategies. Development of novel and effective targeted therapies is needed to counter disease progression, and to benefit long-term survival of children with HR-NB. AREAS COVERED Recent studies (2017-2020) pertinent to NB evolution are selectively reviewed to recognize novel and effective therapeutic targets. The prospective and promising therapeutic targets/strategies for HR-NB are categorized into (a) targeting oncogene-like and/or reinforcing tumor suppressor (TS)-like lncRNAs; (b) targeting oncogene-like microRNAs (miRs) and/or mimicking TS-miRs; (c) targets for immunotherapy; (d) targeting epithelial-to-mesenchymal transition and cancer stem cells; (e) novel and beneficial combination approaches; and (f) repurposing drugs and other strategies in development. EXPERT OPINION It is highly unlikely that agents targeting a single candidate or signaling will be beneficial for an HR-NB cure. We must develop efficient drug deliverables for functional targets, which could be integrated and advance clinical therapy. Fittingly, the looming evidence indicated an aggressive evolution of promising novel and integrative targets, development of efficient drugs, and improvised strategies for HR-NB treatment.
Collapse
Affiliation(s)
| | - Terence Herman
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Stephenson Cancer Center, Oklahoma City, USA
| | | |
Collapse
|
18
|
Rotherham M, Nahar T, Goodman T, Telling N, Gates M, El Haj A. Magnetic Mechanoactivation of Wnt Signaling Augments Dopaminergic Differentiation of Neuronal Cells. ACTA ACUST UNITED AC 2020; 3:e1900091. [PMID: 32648650 DOI: 10.1002/adbi.201900091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Indexed: 01/09/2023]
Abstract
Wnt signaling is a key developmental pathway that regulates dopaminergic progenitor cell proliferation and differentiation during neuronal development. This makes Wnt signaling an important therapeutic target for neurodegenerative conditions such as Parkinson's disease. Wnt signaling can be modulated using peptides such as UM206, which bind to the Wnt receptor Frizzled. Previous work has demonstrated remote activation of the Wnt pathway through Frizzled using peptide-functionalized magnetic nanoparticles (MNPs) with magnetic field stimulation. Using this technology, Wnt signaling is remotely activated in the neuronal cell line SH-SY5Y, and the phenotypic response to stimulation is assessed. Results indicate β-catenin translocalization and activation of TCF/LEF responsive transcription in response to MNP and magnetic fields, which result in dopaminergic marker expression when synergistically combined with differentiation factors retinoic acid and the phorbol ester phorbol 12-myristate 13-acetate. This approach is translated into ex vivo postnatal rat brain slices modeling the developing nigrostriatal pathway. Dopaminergic marker expression is maintained in MNP-labeled SH-SY5Y cells after injection and magnetic stimulation. These results demonstrate the translational value of remote control of signal transduction for controlling neuronal precursor cell behavior and highlight the potential applications for controlled cell differentiation as part of cell therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Rotherham
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Tasmin Nahar
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Timothy Goodman
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Neil Telling
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Monte Gates
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Alicia El Haj
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK.,Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| |
Collapse
|
19
|
Bellamy J, Szemes M, Melegh Z, Dallosso A, Kollareddy M, Catchpoole D, Malik K. Increased Efficacy of Histone Methyltransferase G9a Inhibitors Against MYCN-Amplified Neuroblastoma. Front Oncol 2020; 10:818. [PMID: 32537432 PMCID: PMC7269128 DOI: 10.3389/fonc.2020.00818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Targeted inhibition of proteins modulating epigenetic changes is an increasingly important priority in cancer therapeutics, and many small molecule inhibitors are currently being developed. In the case of neuroblastoma (NB), a pediatric solid tumor with a paucity of intragenic mutations, epigenetic deregulation may be especially important. In this study we validate the histone methyltransferase G9a/EHMT2 as being associated with indicators of poor prognosis in NB. Immunological analysis of G9a protein shows it to be more highly expressed in NB cell-lines with MYCN amplification, which is a primary determinant of dismal outcome in NB patients. Furthermore, G9a protein in primary tumors is expressed at higher levels in poorly differentiated/undifferentiated NB, and correlates with high EZH2 expression, a known co-operative oncoprotein in NB. Our functional analyses demonstrate that siRNA-mediated G9a depletion inhibits cell growth in all NB cell lines, but, strikingly, only triggers apoptosis in NB cells with MYCN amplification, suggesting a synthetic lethal relationship between G9a and MYCN. This pattern of sensitivity is also evident when using small molecule inhibitors of G9a, UNC0638, and UNC0642. The increased efficacy of G9a inhibition in the presence of MYCN-overexpression is also demonstrated in the SHEP-21N isogenic model with tet-regulatable MYCN. Finally, using RNA sequencing, we identify several potential tumor suppressor genes that are reactivated by G9a inhibition in NB, including the CLU, FLCN, AMHR2, and AKR1C1-3. Together, our study underlines the under-appreciated role of G9a in NB, especially in MYCN-amplified tumors.
Collapse
Affiliation(s)
- Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Zsombor Melegh
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Anthony Dallosso
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
A Wnt-BMP4 Signaling Axis Induces MSX and NOTCH Proteins and Promotes Growth Suppression and Differentiation in Neuroblastoma. Cells 2020; 9:cells9030783. [PMID: 32210188 PMCID: PMC7140810 DOI: 10.3390/cells9030783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/09/2023] Open
Abstract
The Wnt and bone morphogenetic protein (BMP) signaling pathways are known to be crucial in the development of neural crest lineages, including the sympathetic nervous system. Surprisingly, their role in paediatric neuroblastoma, the prototypic tumor arising from this lineage, remains relatively uncharacterised. We previously demonstrated that Wnt/b-catenin signaling can have cell-type-specific effects on neuroblastoma phenotypes, including growth inhibition and differentiation, and that BMP4 mRNA and protein were induced by Wnt3a/Rspo2. In this study, we characterised the phenotypic effects of BMP4 on neuroblastoma cells, demonstrating convergent induction of MSX homeobox transcription factors by Wnt and BMP4 signaling and BMP4-induced growth suppression and differentiation. An immunohistochemical analysis of BMP4 expression in primary neuroblastomas confirms a striking absence of BMP4 in poorly differentiated tumors, in contrast to a high expression in ganglion cells. These results are consistent with a tumor suppressive role for BMP4 in neuroblastoma. RNA sequencing following BMP4 treatment revealed induction of Notch signaling, verified by increases of Notch3 and Hes1 proteins. Together, our data demonstrate, for the first time, Wnt-BMP-Notch signaling crosstalk associated with growth suppression of neuroblastoma.
Collapse
|
21
|
Martinez M, Torres VI, Vio CP, Inestrosa NC. Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns. Mol Neurobiol 2019; 57:1389-1404. [DOI: 10.1007/s12035-019-01785-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
|
22
|
Becker J, Wilting J. WNT Signaling in Neuroblastoma. Cancers (Basel) 2019; 11:cancers11071013. [PMID: 31331081 PMCID: PMC6679057 DOI: 10.3390/cancers11071013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The term WNT (wingless-type MMTV integration site family) signaling comprises a complex molecular pathway consisting of ligands, receptors, coreceptors, signal transducers and transcriptional modulators with crucial functions during embryonic development, including all aspects of proliferation, morphogenesis and differentiation. Its involvement in cancer biology is well documented. Even though WNT signaling has been divided into mainly three distinct branches in the past, increasing evidence shows that some molecular hubs can act in various branches by exchanging interaction partners. Here we discuss developmental and clinical aspects of WNT signaling in neuroblastoma (NB), an embryonic tumor with an extremely broad clinical spectrum, ranging from spontaneous differentiation to fatal outcome. We discuss implications of WNT molecules in NB onset, progression, and relapse due to chemoresistance. In the light of the still too high number of NB deaths, new pathways must be considered.
Collapse
Affiliation(s)
- Juergen Becker
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.
| | - Joerg Wilting
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
23
|
Rodriguez-Ramirez C, Nör JE. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to Chemotherapy. Crit Rev Oncog 2019; 23:173-187. [PMID: 30311573 DOI: 10.1615/critrevoncog.2018027353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck cancers are deadly diseases that are diagnosed annually in approximately half a million individuals worldwide. Growing evidence supporting a role for cancer stem cells (CSCs) in the pathobiology of head and neck cancers has led to increasing interest in identifying therapeutics to target these cells. Apart from the canonical tumor-suppressor functions of p53, emerging research supports a significant role for this protein in physiological stem cell and CSC maintenance and reprogramming. Therefore, p53 has become a promising target to sensitize head and neck CSCs to chemotherapy. In this review, we highlight the role of p53 in stem cell maintenance and discuss potential implications of targeting p53 to treat patients with head and neck cancers.
Collapse
Affiliation(s)
- Christie Rodriguez-Ramirez
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
24
|
Bastías-Candia S, Martínez M, Zolezzi JM, Inestrosa NC. Wnt Signaling Upregulates Teneurin-3 Expression via Canonical and Non-canonical Wnt Pathway Crosstalk. Front Neurosci 2019; 13:505. [PMID: 31156379 PMCID: PMC6534050 DOI: 10.3389/fnins.2019.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
Teneurins (Tens) are a highly conserved family of proteins necessary for cell-cell adhesion. Tens can be cleaved, and some of their proteolytic products, such as the teneurin c-terminal associated-peptide (TCAP) and the intracellular domain (ICD), have been demonstrated to be biologically active. Although Tens are considered critical for central nervous system development, they have also been demonstrated to play important roles in adult tissues, suggesting a potential link between their deregulation and various pathological processes, including neurodegeneration and cancer. However, knowledge regarding how Ten expression is modulated is almost absent. Relevantly, the functions of Tens resemble several of the effects of canonical and non-canonical Wnt pathway activation, including the effects of the Wnt pathways on neuronal development and function as well as their pivotal roles during carcinogenesis. Accordingly, in this initial study, we decided to evaluate whether Wnt signaling can modulate the expression of Tens. Remarkably, in the present work, we used a specific inhibitor of porcupine, the key enzyme for Wnt ligand secretion, to not only demonstrate the involvement of Wnt signaling in regulating Ten-3 expression for the first time but also reveal that Wnt3a, a canonical Wnt ligand, increases the expression of Ten-3 through a mechanism dependent on the secretion and activity of the non-canonical ligand Wnt5a. Although our work raises several new questions, our findings seem to demonstrate the upregulation of Ten-3 by Wnt signaling and also suggest that Ten-3 modulation is possible because of crosstalk between the canonical and non-canonical Wnt pathways.
Collapse
Affiliation(s)
- Sussy Bastías-Candia
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Excellence of Biomedicine of Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Milka Martínez
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Excellence of Biomedicine of Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Excellence of Biomedicine of Magallanes, Universidad de Magallanes, Punta Arenas, Chile.,School of Psychiatry, Centre for Healthy Brain Ageing, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Szemes M, Greenhough A, Malik K. Wnt Signaling Is a Major Determinant of Neuroblastoma Cell Lineages. Front Mol Neurosci 2019; 12:90. [PMID: 31040767 PMCID: PMC6476918 DOI: 10.3389/fnmol.2019.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/09/2023] Open
Abstract
The neural crest (NC), which has been referred to as the fourth germ layer, comprises a multipotent cell population which will specify diverse cells and tissues, including craniofacial cartilage and bones, melanocytes, the adrenal medulla and the peripheral nervous system. These cell fates are known to be determined by gene regulatory networks (GRNs) acting at various stages of NC development, such as induction, specification, and migration. Although transcription factor hierarchies and some of their interplay with morphogenetic signaling pathways have been characterized, the full complexity of activities required for regulated development remains uncharted. Deregulation of these pathways may contribute to tumorigenesis, as in the case of neuroblastoma, a frequently lethal embryonic cancer thought to arise from the sympathoadrenal lineage of the NC. In this “Hypothesis and Theory” article, we utilize the next generation sequencing data from neuroblastoma cells and tumors to evaluate the possible influences of Wnt signaling on NC GRNs and on neuroblastoma cell lineages. We propose that Wnt signaling is a major determinant of regulatory networks that underlie mesenchymal/neural crest cell (NCC)-like cell identities through PRRX1 and YAP/TAZ transcription factors. Furthermore, Wnt may also co-operate with Hedgehog signaling in driving proneural differentiation programmes along the adrenergic (ADRN) lineage. Elucidation of Signaling Regulatory Networks can augment and complement GRNs in characterizing cell identities, which may in turn contribute to the design of improved therapeutics tailored to primary and relapsing neuroblastoma.
Collapse
Affiliation(s)
- Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Alexander Greenhough
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Transcriptome profiling of caspase-2 deficient EμMyc and Th-MYCN mouse tumors identifies distinct putative roles for caspase-2 in neuronal differentiation and immune signaling. Cell Death Dis 2019; 10:56. [PMID: 30670683 PMCID: PMC6343006 DOI: 10.1038/s41419-018-1296-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Caspase-2 is a highly conserved cysteine protease with roles in apoptosis and tumor suppression. Our recent findings have also demonstrated that the tumor suppression function of caspase-2 is context specific. In particular, while caspase-2 deficiency augments lymphoma development in the EμMyc mouse model, it leads to delayed neuroblastoma development in Th-MYCN mice. However, it is unclear how caspase-2 mediates these differential outcomes. Here we utilized RNA sequencing to define the transcriptomic changes caused by caspase-2 (Casp2−/−) deficiency in tumors from EμMyc and Th-MYCN mice. We describe key changes in both lymphoma and neuroblastoma-associated genes and identified differential expression of the EGF-like domain-containing gene, Megf6, in the two tumor types that may contribute to tumor outcome following loss of Casp2. We identified a panel of genes with altered expression in Th-MYCN/Casp2−/− tumors that are strongly associated with neuroblastoma outcome, with roles in melanogenesis, Wnt and Hippo pathway signaling, that also contribute to neuronal differentiation. In contrast, we found that key changes in gene expression in the EμMyc/Casp2−/− tumors, are associated with increased immune signaling and T-cell infiltration previously associated with more aggressive lymphoma progression. In addition, Rap1 signaling pathway was uniquely enriched in Casp2 deficient EμMyc tumors. Our findings suggest that Casp2 deficiency augments immune signaling pathways that may be in turn, enhance lymphomagenesis. Overall, our study has identified new genes and pathways that contribute to the caspase-2 tumor suppressor function and highlight distinct roles for caspase-2 in different tissues.
Collapse
|
27
|
Westerlund I, Shi Y, Holmberg J. EPAS1/HIF2α correlates with features of low-risk neuroblastoma and with adrenal chromaffin cell differentiation during sympathoadrenal development. Biochem Biophys Res Commun 2018; 508:1233-1239. [PMID: 30563765 DOI: 10.1016/j.bbrc.2018.12.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023]
Abstract
The hypoxia inducible transcription factor EPAS1/HIF2α has been described as an oncogene and a potential therapeutic target in neuroblastoma. Our analysis of several neuroblastoma tumour expression datasets does not support an oncogenic role, instead EPAS1 expression is associated with better patient outcome and characteristics of low-risk tumours. Treatment with HIF2α inhibitors did not block in vitro neuroblastoma cell proliferation nor xenograft growth. In addition, we analysed single cell sequencing data sets from the developing mouse sympathoadrenal lineage, wherein expression of Epas1 was a strong predictor of differentiated adrenal chromaffin cells and negatively correlated with progenitor characteristics. This was reflected in neuroblastoma tumours wherein genes co-expressed with Epas1 during sympathoadrenal development strongly predicts favourable patient outcome and features of low-risk tumours. Thus, our analysis suggest that with the current available data EPAS1/HIF2α should not be classified as a neuroblastoma oncogene and is less likely to represent a suitable drug target in this disease.
Collapse
Affiliation(s)
- Isabelle Westerlund
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yao Shi
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
28
|
Nobiletin Enhances Chemosensitivity to Adriamycin through Modulation of the Akt/GSK3β/β⁻Catenin/MYCN/MRP1 Signaling Pathway in A549 Human Non-Small-Cell Lung Cancer Cells. Nutrients 2018; 10:nu10121829. [PMID: 30486290 PMCID: PMC6316077 DOI: 10.3390/nu10121829] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023] Open
Abstract
Drug resistance is a major problem in the treatment of non-small-cell lung cancer (NSCLC). In this study, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to identify the differentially expressed genes in Adriamycin (ADR)-resistant NSCLC A549/ADR cells compared with parental A549 cells. Among the tested phytochemicals, nobiletin (NBT) is able to overcome the ADR resistance of A549/ADR cells. NBT treatment decreased the expression of a neuroblastoma-derived MYC (MYCN) and multidrug resistance-associated protein 1 (MRP1) as well as downregulating Akt, GSK3β, and β-catenin. Consistent with these results, NBT treatment resulted in the accumulation of intracellular ADR. A combination index (CI) assay confirmed the synergistic effect of combined treatment with NBT and ADR in reducing the viability of A549/ADR cells (CI = 0.152). Combined treatment with NBT and ADR enhanced apoptosis in A549/ADR cells, as evidenced by increased caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, and sub-G1 population compared to treatment with ADR alone. In vivo experiments using a mouse xenograft model revealed that combination therapy with NBT and ADR significantly reduced tumor volume by 84.15%. These data suggest that NBT can sensitize ADR-induced cytotoxicity against A549/ADR cells by inhibiting MRP1 expression, indicating that NBT could serve as an effective adjuvant agent for ADR-based chemotherapy in lung cancer.
Collapse
|
29
|
Duffy DJ, Konietzny A, Krstic A, Mehta JP, Halasz M, Kolch W. Identification of a MYCN and Wnt-related VANGL2-ITLN1 fusion gene in neuroblastoma. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|