1
|
Paredes F, Williams HC, Liu X, Holden C, Bogan B, Wang Y, Crotty KM, Yeligar SM, Elorza AA, Lin Z, Rezvan A, San Martin A. The mitochondrial protease ClpP is a druggable target that controls VSMC phenotype by a SIRT1-dependent mechanism. Redox Biol 2024; 73:103203. [PMID: 38823208 PMCID: PMC11169483 DOI: 10.1016/j.redox.2024.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Xuesong Liu
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Claire Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Yu Wang
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Zhiyong Lin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Amir Rezvan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
2
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
3
|
Anderson PM, Trucco MM, Tarapore RS, Zahler S, Thomas S, Gortz J, Mian O, Stoignew M, Prabhu V, Morrow S, Allen JE. Phase II Study of ONC201 in Neuroendocrine Tumors including Pheochromocytoma-Paraganglioma and Desmoplastic Small Round Cell Tumor. Clin Cancer Res 2022; 28:1773-1782. [PMID: 35022321 PMCID: PMC9306280 DOI: 10.1158/1078-0432.ccr-21-4030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Tumor dopamine-like DRD2 receptor expression is higher in pheochromocytoma-paraganglioma (PC-PG) compared with other cancers. ONC201 is a bitopic DRD2 antagonist with preclinical ONC201 activity in desmoplastic small round cell tumor (DSRCT). PATIENTS AND METHODS Patients (N = 30) with neuroendocrine tumors were treated on this investigator-initiated trial (NCT03034200). ONC201 dose and schedule were 625 mg orally weekly in cohorts A (PC-PG) + B (other neuroendocrine tumors) and 625 mg orally on 2 consecutive days each week in cohort C, which included 5 responding patients. The primary endpoint was radiographic response measured using RECIST. Secondary endpoints included progression-free survival, overall survival, and safety. RESULTS In arm A (n = 10; all PC-PG), 50% (5/10) exhibited a partial response (PR) and 2 additional patients had stable disease (SD) >3 months. Median duration of therapy for arm A patients was 9 months (range: 1.5-33 months) with 5 patients treated >1 year. In arm B (n = 12), there were 1 PR (DSRCT) and 2 SD (DSRCT; neuroblastoma) >3 months. Median duration of therapy in arm A was 18 months (range: 1-33 months) and arm B was 3 months (range: 1.5-33 months). Arm C PC-PG (N = 8) showed 1 PR and 7 SD at 3 months, with median duration of therapy >10 months. There was no decline in Karnofsky performance status at week 12 for 28 of 30 patients and no dose modification due to treatment-related adverse events. CONCLUSIONS Oral ONC201 was well tolerated in patients with metastatic neuroendocrine tumors and associated with clinical benefit, including tumor responses, particularly in some patients with DSRCT and the majority of patients with PC-PG. See related commentary by Owen and Trikalinos, p. 1748.
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.,Corresponding Author: Peter M. Anderson, Oncology, Cleveland Clinic, R3 Pediatric Hematology/Oncology/BMT, Cleveland, OH 44195. Phone: 216-308-2706; Fax: 216-444-3577; E-mail:
| | - Matteo M. Trucco
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Rohinton S. Tarapore
- Oncoceutics Inc., Philadelphia, Pennsylvania.,Chimerix Inc., Durham, North Carolina
| | - Stacey Zahler
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Stefanie Thomas
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Janette Gortz
- Department of Hematology/Oncology/BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Omar Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Varun Prabhu
- Oncoceutics Inc., Philadelphia, Pennsylvania.,Chimerix Inc., Durham, North Carolina
| | | | - Joshua E. Allen
- Oncoceutics Inc., Philadelphia, Pennsylvania.,Chimerix Inc., Durham, North Carolina
| |
Collapse
|
4
|
Fan Y, Wang J, Fang Z, Pierce SR, West L, Staley A, Tucker K, Yin Y, Sun W, Kong W, Prabhu V, Allen JE, Zhou C, Bae-Jump VL. Anti-Tumor and Anti-Invasive Effects of ONC201 on Ovarian Cancer Cells and a Transgenic Mouse Model of Serous Ovarian Cancer. Front Oncol 2022; 12:789450. [PMID: 35372029 PMCID: PMC8970020 DOI: 10.3389/fonc.2022.789450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
ONC201 is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as activation of mitochondrial caseinolytic protease P (ClpP). The present study was to explore the anti-tumor potential effect of ONC201 in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer under obese (high fat diet) and lean (low fat diet) conditions. ONC201 significantly suppressed cell proliferation, induced arrest in G1 phase, and increased cellular stress and apoptosis, accompanied by dual inhibition of the AKT/mTOR/S6 and MAPK pathways in OC cells. ONC201 also resulted in inhibition of adhesion and invasion via epithelial–mesenchymal transition and reduction of VEGF expression. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed the ONC201-induced oxidative stress response, and prevented ONC201-reduced VEGF and cell invasion by regulating epithelial–mesenchymal transition protein expression. Knockdown of ClpP in ovarian cancer cells reduced ONC201 mediated the anti-tumor activity and cellular stress. Diet-induced obesity accelerated ovarian tumor growth in the KpB mouse model. ONC201 significantly suppressed tumor growth, and decreased serum VEGF production in obese and lean mice, leading to a decrease in tumoral expression of Ki-67, VEGF and phosphorylation of p42/44 and S6 and an increase in ClpP and DRD5, as assessed by immunohistochemistry. These results suggest that ONC201 may be a promising therapeutic agent to be explored in future clinical trials in high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ziwei Fang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stuart R. Pierce
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsay West
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison Staley
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katherine Tucker
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Victoria L. Bae-Jump, ; Chunxiao Zhou,
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Victoria L. Bae-Jump, ; Chunxiao Zhou,
| |
Collapse
|
5
|
Arrillaga-Romany I, Odia Y, Prabhu VV, Tarapore RS, Merdinger K, Stogniew M, Oster W, Allen JE, Mehta M, Batchelor TT, Wen PY. Biological activity of weekly ONC201 in adult recurrent glioblastoma patients. Neuro Oncol 2021; 22:94-102. [PMID: 31702782 DOI: 10.1093/neuonc/noz164] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ONC201 is a dopamine receptor D2 (DRD2) antagonist that penetrates the blood-brain barrier. ONC201 efficacy has been shown in glioblastoma animal models and is inversely correlated with dopamine receptor DRD5 expression. ONC201 is well tolerated in adult recurrent glioblastoma patients with dosing every 3 weeks and has achieved an objective radiographic response in a patient harboring the H3 K27M mutation. METHODS In a window-of-opportunity arm, 6 adult subjects initiated ONC201 prior to re-resection of recurrent glioblastoma with intratumoral concentrations as the primary endpoint. An additional 20 adults with recurrent glioblastoma received single agent weekly oral ONC201 at 625 mg, with progression-free survival at 6 months (PFS6) by Response Assessment in Neuro-Oncology (RANO) criteria as the primary endpoint. RESULTS The window-of-opportunity arm achieved its primary endpoint with intratumoral ONC201 concentrations at ~24 hours following the second weekly dose ranging from 600 nM to 9.3 µM. Intratumoral pharmacodynamics assessed by activating transcriptional factor 4, death receptor 5, and apoptosis induction relative to archival samples were observed with the strongest intensity and uniformity among patients with low DRD5 tumor expression. The primary endpoint of PFS6 by RANO was not achieved at 5% in this molecularly unselected cohort; however, 1 of 3 patients enrolled with the H3 K27M mutation had a complete regression of enhancing multifocal lesions that remained durable for >1.5 years. No treatment modifications or discontinuations due to toxicity were observed, including in those who underwent re-resection. CONCLUSIONS Weekly ONC201 is well tolerated, and meaningful intratumoral concentrations were achieved. ONC201 may be biologically active in a subset of adult patients with recurrent glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tracy T Batchelor
- Brigham and Women's Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
6
|
Mello CA, Campos FAB, Santos TG, Silva MLG, Torrezan GT, Costa FD, Formiga MN, Nicolau U, Nascimento AG, Silva C, Curado MP, Nakagawa SA, Lopes A, Aguiar S. Desmoplastic Small Round Cell Tumor: A Review of Main Molecular Abnormalities and Emerging Therapy. Cancers (Basel) 2021; 13:cancers13030498. [PMID: 33525546 PMCID: PMC7865637 DOI: 10.3390/cancers13030498] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Desmoplastic small round cell tumor is a rare neoplasm with extremely aggressive behavior. Despite the multimodal treatment for newly diagnosed patients with chemotherapy, cytoreductive surgery and radiation, the cure rate is still low. For relapsed or progressive disease, there is limited data regarding second and third-line therapies. Novel agents have shown only modest activity. Recent molecular changes have been identified in this disease and this opens opportunities to be explored in future clinical trials. Abstract Desmoplastic small round cell tumor (DSRCT) is an extremely rare, aggressive sarcoma affecting adolescents and young adults with male predominance. Generally, it originates from the serosal surface of the abdominal cavity. The hallmark characteristic of DSRCT is the EWSR1–WT1 gene fusion. This translocation up-regulates the expression of PDGFRα, VEGF and other proteins related to tumor and vascular cell proliferation. Current management of DSRCT includes a combination of chemotherapy, radiation and aggressive cytoreductive surgery plus intra-peritoneal hyperthermic chemotherapy (HIPEC). Despite advances in multimodal therapy, outcomes remain poor since the majority of patients present disease recurrence and die within three years. The dismal survival makes DSRCT an orphan disease with an urgent need for new drugs. The treatment of advanced and recurrent disease with tyrosine kinase inhibitors, such as pazopanib, sunitinib, and mTOR inhibitors was evaluated by small trials. Recent studies using comprehensive molecular profiling of DSRCT identified potential therapeutic targets. In this review, we aim to describe the current studies conducted to better understand DSRCT biology and to explore the new therapeutic strategies under investigation in preclinical models and in early phase clinical trials.
Collapse
Affiliation(s)
- Celso Abdon Mello
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
- Correspondence: ; Tel.: +55-11-2189-2779
| | - Fernando Augusto Batista Campos
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Tiago Goss Santos
- Laboratory of Tumor Biology and Biomarkers, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil;
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
| | | | - Giovana Tardin Torrezan
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Felipe D’Almeida Costa
- Department of Pathology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.D.C.); (A.G.N.)
| | - Maria Nirvana Formiga
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Ulisses Nicolau
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | | | - Cassia Silva
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Maria Paula Curado
- Department of Epidemiology, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil;
| | - Suely Akiko Nakagawa
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Ademar Lopes
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Samuel Aguiar
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| |
Collapse
|
7
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
8
|
Desmoplastic Small Round Cell Tumor of the Kidney: Report of a Case, Literature Review, and Comprehensive Discussion of the Distinctive Morphologic, Immunohistochemical, and Molecular Features in the Differential Diagnosis of Small Round Cell Tumors Affecting the Kidney. Adv Anat Pathol 2020; 27:408-421. [PMID: 32804706 DOI: 10.1097/pap.0000000000000279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare, highly aggressive neoplasm typically presenting with widespread involvement of the abdominopelvic peritoneum of adolescent males, usually without organ-based primary. Although it is believed to originate from the serous (mainly peritoneal) membranes, intracranial, sinonasal, intraosseous, and other soft tissue sites are also documented. A chromosomal translocation t(11:22)(p13;q12) signature that fuses EWSR1 and WT1 genes results in the production of a chimeric protein with transcriptional regulatory activity that drives oncogenesis. Integration of clinical, morphologic, immunohistochemical, and genetic data is necessary to arrive at the correct diagnosis, especially when the tumor arises in an atypical site. A 15-year-old male presented with hematuria and was found to have a large renal tumor associated with adrenal, liver, lung, and bone metastases. Histopathologic and immunophenotypic features were distinctive for DSRCT. This diagnosis was confirmed by means of fluorescence in situ hybridization and cytogenetic analysis, which documented the pathognomonic t(11;22) translocation, and by reverse transcription polymerase chain reaction on snap-frozen tissue, which revealed the EWSR1/WT1-specific chimeric transcript. Despite high-dose chemotherapy and radiation therapy targeted to a single T11 vertebral metastasis, the disease progressed, and the patient died 4 years after the diagnosis. A search of electronic databases for DSRCT yielded 16 cases of well-documented renal primaries out of around 1570 cases from all sites gathered from the global literature. Desmoplastic small round blue cell tumor and other primary renal tumors considered in the differential diagnosis with DSRCT are discussed.
Collapse
|
9
|
Abstract
RATIONALE Desmoplastic small round cell tumor (DSRCT) is a rare distinct tumor with a high-grade malignancy. PATIENT CONCERNS A 51-year-old male visited a local hospital in April 2016 complaining of shortness of breath, chest tightness and pain, and exhibited significant swelling in both sides of the chest. DIAGNOSES CT demonstrated thoracic symmetry and no abnormalities were observed in the soft tissues of the ribs and the chest wall. A general observation of CT-guided puncture biopsy revealed 2 stripes of gray and grayish-white puncture tissues of 0.5 and 1 cm in length, respectively, and 0.1 cm in diameter. These results preliminarily suggested a (mediastinum) malignant small round cell tumor. INTERVENTION Given the progression of the disease, the chemotherapy regimen, consisting of ifosfamide and etoposide, was altered during the course and radiotherapy (total of 70 Gy of mediastinal Y field radiation) was conducted. OUTCOMES The patient and his family declined further treatment. Through follow-up, the total survival period was determined as 17 months. LESSONS DSRCT is a rare interstitial malignant tumor. Effective cytoreduction combined with comprehensive therapies could achieve partial remission or prolong the survival of patients.
Collapse
Affiliation(s)
- Dacheng Jin
- The first department of thoracic Surgery, Gansu Provincial Hospital
| | - Meng Chen
- The first department of thoracic Surgery, Gansu Provincial Hospital
| | - Bing Wang
- The first department of thoracic Surgery, Gansu Provincial Hospital
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, PR China
| | - Yunjiu Gou
- The first department of thoracic Surgery, Gansu Provincial Hospital
| |
Collapse
|
10
|
Ingley KM, Cohen-Gogo S, Gupta AA. Systemic therapy in pediatric-type soft-tissue sarcoma. ACTA ACUST UNITED AC 2020; 27:6-16. [PMID: 32174753 DOI: 10.3747/co.27.5481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Soft-tissue sarcoma (sts) is rare and represents approximately 7% of cancers in children and in adolescents less than 20 years of age. Rhabdomyosarcoma (rms) is most prevalent in children less than 10 years of age and peaks again during adolescence (16-19 years of age). Multi-agent chemotherapy constitutes the mainstay of treatment for rms. In other non-rhabdomyosarcoma soft-tissue tumours, such as synovial sarcoma, evidence for routine use of chemotherapy is less robust, and alternative treatment options, including targeted agents and immunotherapy, are being explored. In this review, we focus on chemotherapy for pediatric-type rms and discuss the advances and challenges in systemic treatment for select non-rhabdomyosarcoma soft-tissue tumours in children and adolescents. We support an increasingly cooperative approach for treating pediatric and adult sts.
Collapse
Affiliation(s)
- K M Ingley
- Department of Pediatric Oncology, Royal Children's Hospital, Melbourne, Australia.,Adolescent and Young Adult Cancer Service, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - S Cohen-Gogo
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON
| | - A A Gupta
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON.,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON.,Division of Medical Oncology and Hematology, Sinai Health System, Toronto, ON
| |
Collapse
|
11
|
Goto M, Owaki K, Hirata A, Yanai T, Sakai H. Tumour necrosis factor‐related apoptosis‐inducing ligand induces apoptosis in canine hemangiosarcoma cells in vitro. Vet Comp Oncol 2019; 17:285-297. [DOI: 10.1111/vco.12471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Minami Goto
- Laboratory of Veterinary PathologyGifu University Gifu Japan
| | - Keishi Owaki
- Laboratory of Veterinary PathologyGifu University Gifu Japan
| | - Akihiro Hirata
- Laboratory of Veterinary PathologyGifu University Gifu Japan
- Division of Animal Experiment, Life Science Research CenterGifu University Gifu Japan
| | - Tokuma Yanai
- Laboratory of Veterinary PathologyGifu University Gifu Japan
| | - Hiroki Sakai
- Laboratory of Veterinary PathologyGifu University Gifu Japan
- Center for Highly Advanced Integration of Nano and Life SciencesGifu University Gifu Japan
| |
Collapse
|