1
|
Zuo X, Li H, Xie S, Shi M, Guan Y, Liu H, Yan R, Zheng A, Li X, Liu J, Gan Y, Shi H, Chen K, Jia S, Chen G, Liao M, Wang Z, Han Y, Liao B. A prognostic model of 8-T/B cell receptor-related signatures for hepatocellular carcinoma. Discov Oncol 2025; 16:105. [PMID: 39890709 PMCID: PMC11785873 DOI: 10.1007/s12672-025-01856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The T cell receptor (TCR) and B cell receptor (BCR) are the receptors on the surface of T or B cell, which are crucial for recognizing tumor antigens. It is profound to establish a practical TCR/BCR-related gene signature prognostic model for the further diagnosis and treatment among HCC patients. METHODS In this study, we categorized gene expression data of HCC patients from The Cancer Genome Altas and identified TCR related genes by the Least Absolute Shrinkage and Selection Operator and multivariate Cox regression analysis. Both the CIBERSORT algorithm and the TB tools were used to analyze the features and heterogeneity of the tumor microenvironment. RESULTS Finally, an 8-gene prognostic model was successfully established and achieved the validation in both the International Cancer Genome Consortium and Nanfang Hospital cohorts. Patients were divided into high-risk and low-risk groups based on the median of the risk scores. We observed that tumor differentiation was worse while the fibrinogen concentration was higher in the high-risk group of patients. Both the number of unique TCR and BCR clonotypes and the expanded clones were higher in the low-risk group than in the high-risk group. CONCLUSIONS Together, our study screened a TCR/BCR-related signature prognostic model, which might turn into a beneficial and practical tool to solve the perplexities of the treatment, prognosis prediction and management for HCC patients.
Collapse
Affiliation(s)
- Xuan Zuo
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Hui Li
- HRYZ Biotech Co., Shenzhen, China
| | - Shi Xie
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengfen Shi
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yujuan Guan
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Huiyuan Liu
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Rong Yan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Anqi Zheng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xueying Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiabang Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yifan Gan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Shi
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Keng Chen
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Shijie Jia
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Guanmei Chen
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Min Liao
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Zhanhui Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Baolin Liao
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
2
|
Gu L, Zhu Y, Nandi SP, Lee M, Watari K, Bareng B, Ohira M, Liu Y, Sakane S, Carlessi R, Sauceda C, Dhar D, Ganguly S, Hosseini M, Teneche MG, Adams PD, Gonzalez DJ, Kisseleva T, Tirnitz-Parker JEE, Simon MC, Alexandrov LB, Karin M. FBP1 controls liver cancer evolution from senescent MASH hepatocytes. Nature 2025; 637:461-469. [PMID: 39743585 DOI: 10.1038/s41586-024-08317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH)1. While increasing HCC risk2, MASH triggers p53-dependent hepatocyte senescence3, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear. Here we identified the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) as a p53 target that is elevated in senescent-like MASH hepatocytes but suppressed through promoter hypermethylation and proteasomal degradation in most human HCCs. FBP1 first declines in metabolically stressed premalignant disease-associated hepatocytes and HCC progenitor cells4,5, paralleling the protumorigenic activation of AKT and NRF2. By accelerating FBP1 and p53 degradation, AKT and NRF2 enhance the proliferation and metabolic activity of previously senescent HCC progenitors. The senescence-reversing and proliferation-supportive NRF2-FBP1-AKT-p53 metabolic switch, operative in mice and humans, also enhances the accumulation of DNA-damage-induced somatic mutations needed for MASH-to-HCC progression.
Collapse
Affiliation(s)
- Li Gu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Maiya Lee
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Breanna Bareng
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Masafumi Ohira
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Yuxiao Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | | | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Consuelo Sauceda
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | | | | | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
3
|
Li J, Wang Y, Dong C, Luo L. Advancements in leukemia management: Bridging diagnosis, prognosis and nanotechnology (Review). Int J Oncol 2024; 65:112. [PMID: 39364739 PMCID: PMC11542963 DOI: 10.3892/ijo.2024.5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Leukemia is a cancer that starts in blood stem cells in the bone marrow. Today, the proper diagnosis and prognosis of leukemia are essential in mitigating the morbidity and mortality associated with this malignancy. The advent of novel biomarkers, particularly those related to minimal residual disease, has paved the way for personalized therapeutic strategies and enables the quantitative assessment of patient responses to treatment regimens. Novel diagnostic and targeted drug delivery may be helpful for the improved management of leukemia. Genetic clinical parameters, such as chromosomal abnormalities, are crucial in diagnosing and guiding treatment decisions. These genetic markers also provide valuable prognostic information, helping to predict patient outcomes and tailor personalized treatment plans. In the present review, the studies on the diagnostic and prognostic parameters of leukemia were analyzed. The prognosis of leukemia was investigated in most of the studies, and the remaining were performed on diagnosis. The clinical and laboratory prognostic parameters were the most common, followed by diagnostic hematological parameters, diagnostic blood parameter studies, and diagnostic immunological parameters. Clinical and laboratory prognostic and hematologic parameters were the most extensively studied. The methods used to diagnose and prognose the leukemia cases in these studies were predominantly clinical hematology. Numerous surface proteins and receptors, including CD45, CD27, CD29, CD38, CD27, CD123, CD56 and CD25, react similarly in various kinds of leukemia, which are ideal for targeted drug delivery. Drug delivery to leukemia cells encounters several significant obstacles, including heterogeneity, that hinder the effectiveness of treatment. Nanocarriers play a critical role in targeted drug delivery for leukemia by enhancing the precision of treatments directed at surface proteins and receptors. Additionally, they can be functionalized with targeting drugs and antibodies to target specific tissues and cells.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yingxue Wang
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Chunli Dong
- Department of Critical Care Medicine, Jilin People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
4
|
Venkateswaran N, Garcia R, Lafita-Navarro MC, Hao YH, Perez-Castro L, Nogueira PAS, Solmonson A, Mender I, Kilgore JA, Fang S, Brown IN, Li L, Parks E, Lopes Dos Santos I, Bhaskar M, Kim J, Jia Y, Lemoff A, Grishin NV, Kinch L, Xu L, Williams NS, Shay JW, DeBerardinis RJ, Zhu H, Conacci-Sorrell M. Tryptophan fuels MYC-dependent liver tumorigenesis through indole 3-pyruvate synthesis. Nat Commun 2024; 15:4266. [PMID: 38769298 PMCID: PMC11106337 DOI: 10.1038/s41467-024-47868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.
Collapse
Affiliation(s)
- Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pedro A S Nogueira
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shun Fang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Isabella N Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Li Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emily Parks
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor Lopes Dos Santos
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mahima Bhaskar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuemeng Jia
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Pucci P, Lee LC, Han M, Matthews JD, Jahangiri L, Schlederer M, Manners E, Sorby-Adams A, Kaggie J, Trigg RM, Steel C, Hare L, James ER, Prokoph N, Ducray SP, Merkel O, Rifatbegovic F, Luo J, Taschner-Mandl S, Kenner L, Burke GAA, Turner SD. Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma. Nat Commun 2024; 15:3422. [PMID: 38653965 PMCID: PMC11039739 DOI: 10.1038/s41467-024-47771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.
Collapse
Affiliation(s)
- Perla Pucci
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Liam C Lee
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Merck & Co, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Miaojun Han
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- OncoSec, San Diego, CA, 92121, USA
| | - Jamie D Matthews
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Leila Jahangiri
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Nottingham Trent University, School of Science & Technology, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michaela Schlederer
- Department of Pathology, Division of Experimental and Translational Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Eleanor Manners
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Chelsea and Westminster Hospital, NHS Foundation Trust, London, SW10 9NH, UK
| | - Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ricky M Trigg
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Functional Genomics, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Christopher Steel
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Lucy Hare
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Emily R James
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Nina Prokoph
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Stephen P Ducray
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
| | - Firkret Rifatbegovic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Suzanne D Turner
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK.
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK.
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
6
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. Integrated analysis of tumour-derived exosome-related immune genes to predict progression and immune status of hepatocellular carcinoma. Clin Immunol 2023; 256:109774. [PMID: 37774907 DOI: 10.1016/j.clim.2023.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Tumour-derived exosomes (TDEs) play an important role in tumourigenesis and progression by regulating components in the tumour microenvironment (TME), however, the role of TDE-related immune genes in hepatocellular carcinoma is not fully known. We systematically analysed TDE genes from ExoCarta and immune genes from Immport,Machine learning ultimately identified eight TDE-related prognostic immune genes and used them as the basis for constructing a risk model, which was constructed to better predict patients with hepatocellular carcinoma (HCC) compared with published prognostic models. There were significant differences between the high and low risk groups in terms of biological functioning. Low-risk group were more sensitive to immunotherapy, the sensitivity to oxaliplatin and cisplatin differed between the high- and low-risk groups, and knockout of the core gene RAC1 limited the malignant biological behaviour of hepatocellular carcinoma cells. In conclusion, TIRGs are effective in predicting the prognosis of patients with hepatocellular carcinoma and provide a new perspective on immunotherapy and chemotherapy for patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
7
|
Wang Y, Feng Z, Zhang Y, Zhang Y. Establishment and verification of a prognostic risk score model based on immune genes for hepatocellular carcinoma in an Asian population. Transl Cancer Res 2023; 12:2806-2822. [PMID: 37969383 PMCID: PMC10643976 DOI: 10.21037/tcr-23-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with the highest incidence in East Asia, and hepatitis B virus (HBV) infection is the most common cause of HCC in Asian population. The immune system is closely related to the development of HCC and plays an important role in the treatment of this disease. In this study, we analyzed the data of HCC from The Cancer Genome Atlas (TCGA) database and constructed a risk-score prognostic model based on immune genes of an Asian HCC population, aiming to provide new perspectives for clinical treatment and management of HCC in Asian population. Methods Data concerning clinical attributes and transcriptomic profiles of individuals in the Asian population diagnosed with HCC were retrieved from the TCGA database. Concurrently, immune-related genes were sourced from the Immport database for incorporation into our analysis. A total of 265 immune-related genes displaying differential expression were identified through wilcoxTest analysis in R. Further refinement using univariate and multivariate Cox regression analysis led to the identification of 15 genes that exhibited strong associations with prognosis. MICB/PSMD14/TRAF3/SP1/NDRG1/HDAC1/HRAS/NRAS/SEMA5B/GMFB/ACVR2B/BRD8/MMP12/KITLG/DCK, and a prognostic risk score model was constructed based on the above genes. Results The findings demonstrated notable differences in survival rates between the low-risk and high-risk groups, as depicted by the Kaplan-Meier (K-M) survival curves (P<0.001). Furthermore, the model's predictive capability was evidenced by receiver operating characteristic (ROC) curves, with area under the curve (AUC) =0.901. Finally, the relationship of the model with each clinical trait and immune cells was assessed by correlation analysis. Conclusions The prognostic risk score model constructed by immune genes based on the Asian HCC population has certain predictive capacity.
Collapse
Affiliation(s)
- Yanjie Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingtian Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Zheng K, Hao F, Medrano-Garcia S, Chen C, Guo F, Morán-Blanco L, Rodríguez-Perales S, Torres-Ruiz R, Peligros MI, Vaquero J, Bañares R, Gómez Del Moral M, Regueiro JR, Martínez-Naves E, Mohamed MR, Gallego-Durán R, Maya D, Ampuero J, Romero-Gómez M, Gilbert-Ramos A, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J, Coll M, Graupera I, Ginès P, Ciudin A, Rivera-Esteban J, Pericàs JM, Frutos MD, Ramos Molina B, Herranz JM, Ávila MA, Nevzorova YA, Fernández-Malavé E, Cubero FJ. Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis. Cell Death Dis 2023; 14:514. [PMID: 37563155 PMCID: PMC10415403 DOI: 10.1038/s41419-023-06029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Anesthesiology, Nanjing Pukou District Hospital of Chinese Medicine Central Laboratory affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengjie Hao
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sandra Medrano-Garcia
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, China
- Department of General Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Guo
- Department of Obstetrics and Gynaecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Laura Morán-Blanco
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - María Isabel Peligros
- Servicio de Anatomía Patológica Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Gómez Del Moral
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Cell Biology, Complutense University School of Medicine, Madrid, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Rocío Gallego-Durán
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Douglas Maya
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Javier Ampuero
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Manuel Romero-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Albert Gilbert-Ramos
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mar Coll
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Pere Ginès
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Andreea Ciudin
- Endocrinology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Jesús Rivera-Esteban
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Juan M Pericàs
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Bruno Ramos Molina
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Obesidad y Metabolismo, Instituto de Investigación Biomédica de Murcia (IMIB-Arrixaca), Murcia, Spain
| | - José María Herranz
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Hepatology Programme, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Matías A Ávila
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Hepatology Programme, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
9
|
Tang X, Xue D, Zhang T, Nilsson-Payant BE, Carrau L, Duan X, Gordillo M, Tan AY, Qiu Y, Xiang J, Schwartz RE, tenOever BR, Evans T, Chen S. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nat Cell Biol 2023; 25:381-389. [PMID: 36918693 PMCID: PMC10014579 DOI: 10.1038/s41556-023-01095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, New York University, New York, NY, USA
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, The Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Ma Q, Hui Y, Huang BR, Yang BF, Li JX, Fan TT, Gao XC, Ma DY, Chen WF, Pei ZX. Ferroptosis and cuproptosis prognostic signature for prediction of prognosis, immunotherapy and drug sensitivity in hepatocellular carcinoma: development and validation based on TCGA and ICGC databases. Transl Cancer Res 2023; 12:46-64. [PMID: 36760376 PMCID: PMC9906058 DOI: 10.21037/tcr-22-2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy. Ferroptosis and cuproptosis promote HCC spread and proliferation. While fewer studies have combined ferroptosis and cuproptosis to construct prognostic signature of HCC. This work attempts to establish a novel scoring system for predicting HCC prognosis, immunotherapy, and medication sensitivity based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods FerrDb and previous literature were used to identify FRGs. CRGs came from original research. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases included the HCC transcriptional profile and clinical information [survival time, survival status, age, gender, Tumor Node Metastasis (TNM) stage, etc.]. Correlation, Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses were used to narrow down prognostic genes and develop an HCC risk model. Using "caret", R separated TCGA-HCC samples into a training risk set and an internal test risk set. As external validation, we used ICGC samples. We employed Kaplan-Meier analysis and receiver operating characteristic (ROC) curve to evaluate the model's clinical efficacy. CIBERSORT and TIMER measured immunocytic infiltration in high- and low-risk populations. Results TXNRD1 [hazard ratio (HR) =1.477, P<0.001], FTL (HR =1.373, P=0.001), GPX4 (HR =1.650, P=0.004), PRDX1 (HR =1.576, P=0.002), VDAC2 (HR =1.728, P=0.008), OTUB1 (HR =1.826, P=0.002), NRAS (HR =1.596, P=0.005), SLC38A1 (HR =1.290, P=0.002), and SLC1A5 (HR =1.306, P<0.001) were distinguished to build predictive model. In both the model cohort (P<0.001) and the validation cohort (P<0.05), low-risk patients had superior overall survival (OS). The areas under the curve (AUCs) of the ROC curves in the training cohort (1-, 3-, and 5-year AUCs: 0.751, 0.727, and 0.743), internal validation cohort (1-, 3-, and 5-year AUCs: 0.826, 0.624, and 0.589), and ICGC cohort (1-, 3-, and 5-year AUCs: 0.699, 0.702, and 0.568) were calculated. Infiltration of immune cells and immunological checkpoints were also connected with our signature. Treatments with BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, Obatoclax. Mesylate, and Sunitinib may profit high-risk patients. Conclusions We analyzed FRGs and CRGs profiles in HCC and established a unique risk model for treatment and prognosis. Our data highlight FRGs and CRGs in clinical practice and suggest ferroptosis and cuproptosis may be therapeutic targets for HCC patients. To validate the model's clinical efficacy, more HCC cases and prospective clinical assessments are needed.
Collapse
Affiliation(s)
- Qi Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Hui
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bang-Rong Huang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Feng Yang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jing-Xian Li
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Ting Fan
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiang-Chun Gao
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Da-You Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Fu Chen
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng-Xue Pei
- Department of Integrative Medicine, Gansu Cancer Hospital, Lanzhou, China
| |
Collapse
|
11
|
Tang R, Shuldiner EG, Kelly M, Murray CW, Hebert JD, Andrejka L, Tsai MK, Hughes NW, Parker MI, Cai H, Li YC, Wahl GM, Dunbrack RL, Jackson PK, Petrov DA, Winslow MM. Multiplexed screens identify RAS paralogues HRAS and NRAS as suppressors of KRAS-driven lung cancer growth. Nat Cell Biol 2023; 25:159-169. [PMID: 36635501 PMCID: PMC10521195 DOI: 10.1038/s41556-022-01049-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2022] [Indexed: 01/13/2023]
Abstract
Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marcus Kelly
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas W Hughes
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mitchell I Parker
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yao-Cheng Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Roland L Dunbrack
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter K Jackson
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- The Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
He Y, Wu Y, Song M, Yang Y, Yu Y, Xu S. Establishment and validation of a ferroptosis-related prognostic signature for hepatocellular carcinoma. Front Oncol 2023; 13:1149370. [PMID: 37143953 PMCID: PMC10151679 DOI: 10.3389/fonc.2023.1149370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with high heterogeneity. The prognosis of HCC is quite poor and the prognostic prediction also has challenges. Ferroptosis is recently recognized as a kind of iron-dependent cell death, which is involved in tumor progression. However, further study is needed to validate the influence of drivers of ferroptosis (DOFs) on the prognosis of HCC. Methods The FerrDb database and the Cancer Genome Atlas (TCGA) database were applied to retrieve DOFs and information of HCC patients respectively. HCC patients were randomly divided into training and testing cohorts with a 7:3 ratio. Univariate Cox regression, LASSO and multivariate Cox regression analyses were carried out to identify the optimal prognosis model and calculate the risk score. Then, univariate and multivariate Cox regression analyses were performed to assess the independence of the signature. At last, gene functional, tumor mutation and immune-related analyses were conducted to explore the underlying mechanism. Internal and external databases were used to confirm the results. Finally, the tumor tissue and normal tissue from HCC patients were applied to validate the gene expression in the model. Results Five genes were identified to develop as a prognostic signature in the training cohort relying on the comprehensive analysis. Univariate and multivariate Cox regression analyses confirmed that the risk score was able to be an independent factor for the prognosis of HCC patients. Low-risk patients showed better overall survival than high-risk patients. Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Furthermore, internal and external cohorts were consistent with our results. There was a higher proportion of nTreg cell, Th1 cell, macrophage, exhausted cell and CD8+T cell in the high-risk group. The Tumor Immune Dysfunction and Exclusion (TIDE) score suggested that high-risk patients could respond better to immunotherapy. Besides, the experimental results showed that some genes were differentially expressed between tumor and normal tissues. Conclusion In summary, the five ferroptosis gene signature showed potential in prognosis of patients with HCC and could also be regarded as a value biomarker for immunotherapy response in these patients.
Collapse
Affiliation(s)
- Yixian He
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yunyang Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Mengqi Song
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yanlong Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
- *Correspondence: Yizhi Yu, ; Sheng Xu,
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
- *Correspondence: Yizhi Yu, ; Sheng Xu,
| |
Collapse
|
13
|
Chen YY, Zhang SM, Zhao HX, Zhang JY, Lian LR, Liu DL, Chu SF. Identification and validation of immune and prognosis-related genes in hepatocellular carcinoma: A review. Medicine (Baltimore) 2022; 101:e31814. [PMID: 36401409 PMCID: PMC9678506 DOI: 10.1097/md.0000000000031814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Bioinformatics methods were used to identify the key genes associated with the immune microenvironment of hepatocellular carcinoma (HCC) to construct an immune risk prognostic model (IRPM) and to study the correlation between IRPM's risk groups and immune characteristics of patients with HCC. METHODS HCC transcriptome sequencing information was searched for immune-related genes (IRGs) that were regularly expressed in cancer tissues. The IRGs, which were strongly linked to overall survival were screened; the prognostic characteristics model was constructed using Cox regression analysis. IRPM's independent prognostic value was explored; Kaplan-Meier survival and receiver-operating characteristic curves were used to determine the model prediction ability in the led-to queue. RESULTS Patients in the high-risk group (HRG) showed significantly poor outcomes. Gene Set Enrichment Analysis revealed factors involved in both the HRG and low risk group. Immune-related hub genes (IRHGs) and drug sensitivity expression levels revealed that all IRHGs were correlated with drug sensitivity for certain chemotherapy drugs. CONCLUSION The study results may serve as a reference for improving prognosis, early screening, and immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Yu-Yang Chen
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong, People’s Republic of China
- * Correspondence: Yu-Yang Chen, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, People’s Republic of China, Fuhua Road 1, Shenzhen, People’s Republic of China (e-mail: )
| | - Shi-Mao Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Heng-Xia Zhao
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Jing-Yue Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Li-Rong Lian
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - De-Liang Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Shu-Fang Chu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
14
|
He S, Qiao J, Wang L, Yu L. A novel immune-related gene signature predicts the prognosis of hepatocellular carcinoma. Front Oncol 2022; 12:955192. [PMID: 36185203 PMCID: PMC9520462 DOI: 10.3389/fonc.2022.955192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Immune-related genes play a key role in regulating the cancer immune microenvironment, influencing the overall survival of patients with hepatocellular carcinoma (HCC). Along with the rapid development of immunotherapy, identifying immune-related genes with prognostic value in HCC has attracted increasing attention. Here, we aimed to develop a prognostic signature based on immune-related genes. By investigating the transcriptome landscape of 374 HCC and 160 non-HCC samples in silico, a total of 2251 differentially expressed genes were identified. Among which, 183 differentially expressed immune-related genes were subjected to a univariate Cox proportional hazard model to screen for genes with possible prognostic significance. A 10-gene prognostic signature, including HLA-G, S100A9, S100A10, DCK, CCL14, NRAS, EPO, IL1RN, GHR and RHOA, was generated employing a multivariate Cox proportional hazard model. Kaplan–Meier and Receiver Operator Characteristic (ROC) curves were used to evaluate the prognostic utility of the 10-gene signature. Moreover, the underlying mechanisms of these genes were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. According to the Tumor Immune Estimation Resource (TIMER) database, our prognostic signature was significantly associated with tumor-infiltrating B cells, CD4 T cells, dendritic cells, macrophages and neutrophils. Our study provides a novel prognostic signature based on immune-related genes associated with clinical outco mes of HCC.
Collapse
|
15
|
Zou J, Qin W. Comprehensive analysis of the cancer driver genes constructs a seven-gene signature for prediction of survival and tumor immunity in hepatocellular carcinoma. Front Genet 2022; 13:937948. [PMID: 36017503 PMCID: PMC9395598 DOI: 10.3389/fgene.2022.937948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and heterogeneous tumor with poor prognosis. Cancer driver genes (CDGs) play an important role in the carcinogenesis and progression of HCC. In this study, we comprehensively investigated the expression, mutation, and prognostic significance of 568 CDGs in HCC. A prognostic risk model was constructed based on seven CDGs (CDKN2C, HRAS, IRAK1, LOX, MYCN, NRAS, and PABPC1) and verified to be an independent prognostic factor in both TCGA and ICGC cohorts. The low-score group, which showed better prognosis, had a high proportion of CD8+ T cells and elevated expression of interferon-related signaling pathways. Additionally, we constructed a nomogram to extend the clinical applicability of the prognostic model, which exhibits excellent predictive accuracy for survival. Our study showed the important role of CDGs in HCC and provides a novel prognostic indicator for HCC.
Collapse
Affiliation(s)
- Jun Zou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wan Qin,
| |
Collapse
|
16
|
Wang W, Pan F, Lin X, Yuan J, Tao C, Wang R. Ferroptosis-Related Hub Genes in Hepatocellular Carcinoma: Prognostic Signature, Immune-Related, and Drug Resistance Analysis. Front Genet 2022; 13:907331. [PMID: 35938001 PMCID: PMC9355705 DOI: 10.3389/fgene.2022.907331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most prevalent type of primary liver cancer with a high fatality rate and dismal prognosis because of frequent recurrence and lack of efficient therapies. Ferroptosis is a recently recognized iron-dependent cell death distinct from necroptosis and apoptosis. The relationship between ferroptosis-related hub gene expression and prognosis in HCC remains to be further elucidated. Methods: Ferroptosis-related genes from the FerrDb database and the mRNA sequencing data and clinical information of HCC patients were obtained from The Cancer Genome Atlas (TCGA) database. The least absolute shrinkage and selection operator (LASSO) Cox regression was applied to identify a prognostic signature consisting of five ferroptosis-related hub genes in the TCGA cohort. The International Cancer Genome Consortium (ICGC) database was utilized to validate the reliability of the signature. Functional enrichment and immune-related analysis, including single-sample gene set enrichment analysis (ssGSEA), immune checkpoints, TIP-related genes, tumor stemness, and m6A-related genes, were performed to analyze the underlying mechanism. Additionally, the correlations between ferroptosis and drug resistance were evaluated using the NCI-60 database. Results: A 5–hub-gene signature associated with ferroptosis was constructed by multivariate Cox regression analysis to stratify patients into two risk groups. Patients with high risk had worse prognosis than those with low risk. Multivariate Cox regression analysis uncovered that the risk score was an independent prognostic indicator. We also proved the signature’s predictive capacity using the Kaplan–Meier method and receiver operating characteristic (ROC) curve analysis. Functional analysis showed that nuclear division and the cell cycle were enriched. Immune-related analysis revealed that the signature was enriched in immune-related pathways. Moreover, the risk signature was significantly associated with immune cell infiltration, immune checkpoints, TIP-related genes, tumor stem cells, as well as m6A-related genes. Furthermore, these genes were crucial regulators of drug resistance. Conclusion: We identified and validated a novel hub gene signature that is closely associated with ferroptosis as a new and efficient biomarker with favorable potential for predicting the prognosis of HCC patients. In addition, it also offers new insights into the molecular mechanisms of HCC and provides an effective approach for the treatment of HCC. Further studies are necessary to validate the results of our study.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Pan
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Jiakai Yuan
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Chunyu Tao
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
- *Correspondence: Rui Wang,
| |
Collapse
|
17
|
Cai Q, Duan J, Ding L. Prognostic model of immune-related genes for patients with hepatocellular carcinoma. Front Surg 2022; 9:819491. [PMID: 35937592 PMCID: PMC9349350 DOI: 10.3389/fsurg.2022.819491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immune-related genes (IRGs) are closely connected to the occurrence and development of tumors. Their influence on the prognosis of patients with HCC, however, remains unclear. Methods From the TCGA database, we integrated 365 liver cancer tissues and 50 normal tissues to identify differential immune genes related to prognosis. Multivariate COX analysis was used to establish a new prognostic index on account of IRGs, whereby risk score = (Expression level of HSPA4*0.022) + (Expression level of PSMD14*0.042) + (Expression level of RBP2*0.019) + (Expression level of MAPT*0.197) + (Expression level of TRAF3*0.146) + (Expression level of NDRG1*(0.006) + (Expression level of NRAS*0.027) + (Expression level of IL17D*0.075). Results The risk score was clearly correlated with an unfavorable survival rate and with clinical characteristics. By integrating the immune-related risk score model with clinical features, a nomogram was constructed to predict the survival rate of HCC patients (1-, 3- and 5-year AUC of 0.721, 0.747 and 0.781, respectively). Conclusion We have established a valuable prognostic risk score for HCC patients that may be a better predictor of survival than the present method. With the risk score's strong predictive value for immune cells and functions, it may provide clinical guidance for the diagnosis and prognosis of different immunophenotypes, and provide multiple therapeutic targets for the treatment of HCC patients based on subtype-specific immune molecules.
Collapse
Affiliation(s)
- Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Correspondence: Qun Cai
| | - Jinnan Duan
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| | - Liang Ding
- Department of Infectious Diseases, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
18
|
Cheng YH, Ko YC, Ku HJ, Huang CC, Yao YC, Liao YT, Chen YT, Huang SF, Huang LR. Novel Paired Cell Lines for the Study of Lipid Metabolism and Cancer Stemness of Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:821224. [PMID: 35721518 PMCID: PMC9204282 DOI: 10.3389/fcell.2022.821224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
There are few well-characterized syngeneic murine models for hepatocellular carcinoma (HCC), which limits immunological studies and the development of immunotherapies for HCC. We previously established an oncogene-induced spontaneous HCC mouse model based on transposon-mediated oncogene (AKT and NRASV12) insertion into the genome of hepatocytes to induce tumorigenesis. Two tumor clones with different levels of lipid droplets (LDs) showed similar in vitro growth but distinctive in vivo phenotypes, including divergent proliferative capability and varying induction of myeloid-derived suppressor cells (MDSCs). The two clones showed distinct gene expression related to lipid metabolism, glycolysis, and cancer stemness. Endogenous fatty acid (FA) synthesis and exogenous monounsaturated fatty acid (MUFA) consumption promoted both tumor proliferation and cancer stemness, and upregulated c-Myc in the HCC cell lines. Moreover, the LDhi HCC cell line expressed a higher level of type II IL-4 receptor, which promoted tumor proliferation through binding IL-4 or IL-13. The chromosomal DNA of two tumor clones, NHRI-8-B4 (LDhi) and NHRI-1-E4 (LDlo) showed five identical AKT insertion sites in chromosomes 9, 10, 13, 16 and 18 and two NRAS integration sites in chromosomes 2 and 3. Herein, we describe two novel HCC cell lines with distinct features of lipid metabolism related to cancer stemness and differential interplay with the immune system, and present this syngeneic HCC mouse model as a practical tool for the study of cancer stemness and discovery of new therapies targeting liver cancers.
Collapse
Affiliation(s)
- Yun-Hsin Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Chieh Ko
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiang-Ju Ku
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chun Huang
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ching Yao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Tzu Liao
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Ke S, Wang C, Su Z, Lin S, Wu G. Integrated Analysis Reveals Critical Ferroptosis Regulators and FTL Contribute to Cancer Progression in Hepatocellular Carcinoma. Front Genet 2022; 13:897683. [PMID: 35651950 PMCID: PMC9149379 DOI: 10.3389/fgene.2022.897683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Background: The carcinogenesis and prognosis of hepatocellular carcinoma (HCC) involve complex molecular mechanisms, and ferroptosis is related to the development and therapeutic efficacy of HCC, but the specific mechanism and prognostic role of ferroptosis-related genes in HCC have not been elucidated. Methods: Differentially expressed gene analysis, Cox regression, and unsupervised consensus clustering were applied to identify crucial ferroptosis regulators and establish ferroptosis-related subtypes in HCC. Random forest analysis and survival analysis were adopted to confirm FTL as the hub prognostic and diagnostic ferroptosis regulator in HCC. Results: The ferroptosis-related subtypes based on the crucial prognostic ferroptosis regulators showed that patients in fescluster A had a higher survival probability (p < 0.001) and better clinical characteristics than patients in fescluster B in the TCGA-LIHC cohort. Patients with a high tumor mutation burden (TMB) in fescluster B presented a significantly poorer prognosis. FTL was the core ferroptosis regulator, and its low expression revealed a significant survival advantage compared with its high expression (p = 0.03). The expression and predictive value of FTL were both closely related to the clinical features (p < 0.05). Expression of FTL accurately distinguished HCC from normal tissues in the TCGA-LIHC cohort, ICGC cohort, and GSE14520 dataset. In addition, higher infiltrating fractions of immune cells, such as activated CD8+ T cells and Gamma delta T cells, mainly enriched immune-related signaling pathways, including the IL2-STAT3 signaling pathway and interferon-gamma response signaling pathway, and higher expression of immune checkpoints, including PDCD1, CTLA4, TIGIT, and CD83, were presented in patients with high FTL expression (p < 0.05). Patients with high FTL were more sensitive to some targeted drugs, such as cisplatin, dasatinib, and sorafenib, than those with low FTL (p < 0.05). A nomogram based on FTL accurately predicted the prognosis of HCC. Further knockdown of FTL was determined to significantly inhibit cell proliferation and migration in HCC. Conclusion: Our study validated ferroptosis-related subtypes and FTL with effective prognostic value in HCC and was beneficial for identifying candidates suitable for targeted drug therapy and immunotherapy, thereby offering further insight into individual treatment strategies to improve disease outcomes in HCC patients.
Collapse
Affiliation(s)
- Shaoying Ke
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Congren Wang
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zijian Su
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Shaoze Lin
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Gongle Wu
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
20
|
Buddham R, Chauhan S, Narad P, Mathur P. Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach. J Microbiol Biotechnol 2022; 32:365-377. [PMID: 35001007 PMCID: PMC9628786 DOI: 10.4014/jmb.2108.08007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.
Collapse
Affiliation(s)
- Richa Buddham
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Sweety Chauhan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Priyanka Narad
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Puniti Mathur
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India,Corresponding author Phone: +91-120-4392204 E-mail:
| |
Collapse
|
21
|
Ouyang M, Liu G, Xiong C, Rao J. microRNA-181a-5p impedes the proliferation, migration, and invasion of retinoblastoma cells by targeting the NRAS proto-oncogene. Clinics (Sao Paulo) 2022; 77:100026. [PMID: 35339759 PMCID: PMC8961171 DOI: 10.1016/j.clinsp.2022.100026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Accumulating research have reported that microRNAs (miRNAs) play important roles in Retinoblastoma (RB). Nonetheless, the function and underlying mechanism of miR-181a-5p in RB remain ambiguous. METHODS The relative expression levels of miR-181a-5p and NRAS mRNA were detected by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR). RB cell proliferation was measured using the Cell Counting Kit-8 (CCK-8) and 5'-Bromo-2'-deoxyuridine (BrdU) assays. Transwell assays and flow cytometry were performed to detect the migration, invasion, and apoptosis of RB cells. The interaction between miR-181a-5p and NRAS was explored using luciferase experiments, western blotting, and qRT-PCR. RESULTS miR-181a-5p expression was found to be decreased in RB tissues and cell lines, and its expression was correlated with unfavorable pathological features of the patients. In vitro experiments revealed that miR-181a-5p reduced RB cell proliferation, migration, and invasion while enhancing apoptosis. Further research confirmed that NRAS is a direct target of miR-181a-5p. miR-181a-5p inhibited NRAS expression at both the mRNA and protein levels. Co-transfection of pcDNA-NRAS or NRAS small interfering RNA (siRNA) reversed the effects of miR-181a-5p mimics or miR-181a-5p inhibitors on RB cells. CONCLUSION miR-181a-5p was significantly downregulated during the development of RB, and it suppressed the malignant behaviors of RB cells by targeting NRAS.
Collapse
Affiliation(s)
- Ming Ouyang
- Shenzhen Eye Hospital, Jinan University, China.
| | - Guiqin Liu
- Shenzhen Eye Hospital, Jinan University, China
| | - Cheng Xiong
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, School of Optometry, Shenzhen University, China
| | - Jing Rao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, School of Optometry, Shenzhen University, China
| |
Collapse
|
22
|
Zhu G, Liu W, Tang Z, Qu W, Fang Y, Jiang X, Song S, Wang H, Tao C, Zhou P, Huang R, Gao J, Sun H, Ding Z, Peng Y, Dai Z, Zhou J, Fan J, Shi Y. Serial circulating tumor DNA to predict early recurrence in patients with hepatocellular carcinoma: a prospective study. Mol Oncol 2022; 16:549-561. [PMID: 34543520 PMCID: PMC8763657 DOI: 10.1002/1878-0261.13105] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/25/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
We studied the value of circulating tumor DNA (ctDNA) in predicting early postoperative tumor recurrence and monitoring tumor burden in patients with hepatocellular carcinoma (HCC). Plasma-free DNA, germline DNA, and tissue DNA were isolated from 41 patients with HCC. Serial ctDNAs were analyzed by next-generation sequencing before and after operation. Whole-exome sequencing was used to detect the DNA of HCC and adjacent tissues. In total, 47 gene mutations were identified in the ctDNA of the 41 patients analyzed before surgery. ctDNA was detected in 63.4% and 46% of the patient plasma pre- and postoperation, respectively. The preoperative ctDNA positivity rate was significantly lower in the nonrecurrence group than in the recurrence group. With a median follow-up of 17.7 months, nine patients (22%) experienced tumor recurrence. ctDNA positivity at two time-points was associated with significantly shorter recurrence-free survival (RFS). Tumors with NRAS, NEF2L2, and MET mutations had significantly shorter times to recurrence than those without mutations and showed high recurrence prediction performance by machine learning. Multivariate analyses showed that the median variant allele frequency (VAF) of mutations in preoperative ctDNA was a strong independent predictor of RFS. ctDNA is a real-time monitoring indicator that can accurately reflect tumor burden. The median VAF of baseline ctDNA is a strong independent predictor of RFS in individuals with HCC.
Collapse
|
23
|
NRAS expression is associated with prognosis and tumor immune microenvironment in lung adenocarcinoma. J Cancer Res Clin Oncol 2021; 148:565-575. [PMID: 34746975 DOI: 10.1007/s00432-021-03842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE NRAS plays a pivotal role in progression of various kinds of somatic malignancies; however, the correlation between NRAS and lung adenocarcinoma is less known. We aim to analyze the prognostic value of NRAS expression in lung adenocarcinoma, and explore the relationship between NRAS and tumor immune microenvironment. METHODS We obtained the transcriptome profiles and clinical data of LUAD from The Cancer Genome Atlas database and three Genome Expression Omnibus datasets. Specimens from 325 patients with completely resected lung adenocarcinoma were collected for immunohistochemical assays of NRAS, PD-L1, PD-1 and TIM-3. Then, we performed gene set enrichment analysis to investigate cancer-related and immune-related signaling pathways. TIMER algorithms were performed to evaluate tumor immune infiltrating cells and immune-related biomarkers. RESULTS Compared with adjacent non-tumor tissue, NRAS expression was significantly upregulated in LUAD tissue. NRAS expression was significantly correlated with more advanced stage and positive lymph nodes. Kaplan-Meier curves and Cox analysis suggested that high NRAS expression led to a poor prognosis, and could be an independent prognostic factor in LUAD patients. Besides, NRAS expression was positively correlated with CD8+ T cells, macrophages, and neutrophils, and negatively correlated with B cells and CD4+ T cells. The expression level of NRAS was positively correlated with PD-L1, PD-1, and TIM-3 both at RNA and protein level. CONCLUSIONS To conclude, we found NRAS is a novel prognostic biomarker in LUAD. Besides, the expression level of NRAS may influence the prognosis of LUAD via various kinds of cancer-related pathways and remodeling TIM.
Collapse
|
24
|
Li M, Wang K, Zhang Y, Fan M, Li A, Zhou J, Yang T, Shi P, Li D, Zhang G, Chen M, Ren H. Ferroptosis-Related Genes in Bronchoalveolar Lavage Fluid Serves as Prognostic Biomarkers for Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:693959. [PMID: 34671612 PMCID: PMC8520927 DOI: 10.3389/fmed.2021.693959] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with unknown etiology and unfavorable prognosis. Ferroptosis is a form of regulated cell death with an iron-dependent way that is involved in the development of various diseases. Whereas the prognostic value of ferroptosis-related genes (FRGs) in IPF remains uncertain and needs to be further elucidated. Methods: The FerrDb database and the previous studies were screened to explore the FRGs. The data of patients with IPF were obtained from the GSE70866 dataset. Wilcoxon's test and univariate Cox regression analysis were applied to identify the FRGs that are differentially expressed between normal and patients with IPF and associated with prognosis. Next, a multigene signature was constructed by the least absolute shrinkage and selection operator (LASSO)-penalized Cox model in the training cohort and evaluated by using calibration and receiver operating characteristic (ROC) curves. Then, 30% of the dataset samples were randomly selected for internal validation. Finally, the potential function and pathways that might be affected by the risk score-related differently expressed genes (DEGs) were further explored. Results: A total of 183 FRGs were identified by the FerrDb database and the previous studies, and 19 of them were differentially expressed in bronchoalveolar lavage fluid (BALF) between IPF and healthy controls and associated with prognosis (p < 0.05). There were five FRGs (aconitase 1 [ACO1], neuroblastoma RAS viral (v-ras) oncogene homolog [NRAS], Ectonucleotide pyrophosphatase/phosphodiesterase 2 [ENPP2], Mucin 1 [MUC1], and ZFP36 ring finger protein [ZFP36]) identified as risk signatures and stratified patients with IPF into the two risk groups. The overall survival rate in patients with high risk was significantly lower than that in patients with low risk (p < 0.001). The calibration and ROC curve analysis confirmed the predictive capacity of this signature, and the results were further verified in the validation group. Risk score-related DEGs were found enriched in ECM-receptor interaction and focal adhesion pathways. Conclusion: The five FRGs in BALF can be used for prognostic prediction in IPF, which may contribute to improving the management strategies of IPF.
Collapse
Affiliation(s)
- Meng Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.,Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yanpeng Zhang
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.,Department of Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Meng Fan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Anqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Jiejun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Dan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.,Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
25
|
Zhang Z, Papa Akuetteh PD, Lin L, Wu Y, Li Y, Huang W, Ni H, Lv H, Zhang Q. Development and validation of a ferroptosis-related model for three digestive tract tumors based on a pan-cancer analysis. Epigenomics 2021; 13:1497-1514. [PMID: 34581636 DOI: 10.2217/epi-2021-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: To develop a ferroptosis gene-based survival-predictor model for predicting the prognosis of patients with digestive tract tumors, a pan-caner analysis was performed. Materials & methods: Based on unsupervised clustering and the expression levels of ferroptosis genes, patients with cancer were divided into two clusters. The least absolute shrinkage and selection operator method Cox regression analysis was used to establish the survival-predictor model. Results: Based on the pan-cancer analysis, a 20 gene-based survival-predictor model for predicting survival rates was developed, which was validated in patients with hepatocellular carcinoma. Conclusion: The survival-predictor model accurately predicted the prognosis of patients with digestive tract tumors.
Collapse
Affiliation(s)
- Zhongjing Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Percy David Papa Akuetteh
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Leilei Lin
- First school of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yiyang Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yimeng Li
- Key Laboratory of Diagnosis & Treatment of Severe Hepato-Pancreatic Diseases, The First Affiliated Hospital, Wenzhou Medical University, 325015, Zhejiang Province, China
| | - Weiguo Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Haizhen Ni
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Heping Lv
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| | - Qiyu Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang Province, China
| |
Collapse
|
26
|
Gaza A, Fritz V, Malek L, Wormser L, Treiber N, Danner J, Kremer AE, Thasler WE, Siebler J, Meister G, Neurath MF, Hellerbrand C, Bosserhoff AK, Dietrich P. Identification of novel targets of miR-622 in hepatocellular carcinoma reveals common regulation of cooperating genes and outlines the oncogenic role of zinc finger CCHC-type containing 11. Neoplasia 2021; 23:502-514. [PMID: 33901943 PMCID: PMC8099721 DOI: 10.1016/j.neo.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
The poor prognosis of advanced hepatocellular carcinoma (HCC) is driven by diverse features including dysregulated microRNAs inducing drug resistance and stemness. Lin-28 homolog A (LIN28A) and its partner zinc finger CCHC-type containing 11 (ZCCHC11) cooperate in binding, oligouridylation and subsequent degradation of tumorsuppressive let-7 precursor microRNAs. Functionally, activation of LIN28A was recently shown to promote stemness and chemoresistance in HCC. However, the expression and regulation of LIN28A in HCC had been unclear. Moreover, the expression, regulation and function of ZCCHC11 in liver cancer remained elusive. In contrast to "one-microRNA-one-target" interactions, we identified common binding sites for miR-622 in both LIN28A and ZCCHC11, suggesting miR-622 to function as a superior pathway regulator. Applying comprehensive microRNA database screening, human hepatocytes and HCC cell lines, patient-derived tissue samples as well as "The Cancer Genome Atlas" (TCGA) patient cohorts, we demonstrated that loss of tumorsuppressive miR-622 mediates derepression and overexpression of LIN28A in HCC. Moreover, the cooperator of LIN28A, ZCCHC11, was newly identified as a prognostic and therapeutic target of miR-622 in liver cancer. Together, identification of novel miR-622 target genes revealed common regulation of cooperating genes and outlines the previously unknown oncogenic role of ZCCHC11 in liver cancer.
Collapse
Affiliation(s)
- Anne Gaza
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Valerie Fritz
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lara Malek
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Wormser
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Johannes Danner
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Andreas E Kremer
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital of Munich, Germany
| | - Jürgen Siebler
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Markus F Neurath
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Song W, Zheng C, Liu M, Xu Y, Qian Y, Zhang Z, Su H, Li X, Wu H, Gong P, Li Y, Fan H. TRERNA1 upregulation mediated by HBx promotes sorafenib resistance and cell proliferation in HCC via targeting NRAS by sponging miR-22-3p. Mol Ther 2021; 29:2601-2616. [PMID: 33839325 DOI: 10.1016/j.ymthe.2021.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies and has an unfavorable prognosis. The hepatitis B virus-encoded X (HBx) protein is closely associated with hepatocarcinogenesis. Sorafenib is a unique targeted oral kinase inhibitor for advanced HCC. Long noncoding RNAs (lncRNAs) mediate HCC progression and therapeutic resistance by acting as competing endogenous RNAs (ceRNAs). However, the ceRNA regulatory mechanisms underlying sorafenib resistance in HBx-associated HCC remain largely unknown. In this study, we found that translation regulatory lncRNA 1 (TRERNA1) upregulation by HBx not only promoted HCC cell proliferation by regulating the cell cycle in vitro and in vivo but also correlated positively with poor prognosis in HCC. Importantly, TRERNA1 enhanced sorafenib resistance in HCC cells. RNA sequencing (RNA-seq) analysis indicated that NRAS proto-oncogene (NRAS) is a potential target of TRERNA1 that mediates aspects of hepatocellular carcinogenesis. TRERNA1 acts as a ceRNA to regulate NRAS expression by sponging microRNA (miR)-22-3p. In summary, we show that increased TRERNA1 expression induced by HBx reduces HCC cell sensitivity to sorafenib by activating the RAS/Raf/MEK/ERK signaling pathway. We reveal a novel regulatory mode by which the TRERNA1/miR-22-3p/NRAS axis mediates HCC progression and indicates that TRERNA1 might constitute a powerful tumor biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Wei Song
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China; School of Life Science, Southeast University, Nanjing 210018, China; Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Min Liu
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Ying Xu
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hongmeng Su
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Xinxiu Li
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Huazhang Wu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Pihai Gong
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Yiping Li
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
28
|
Combined De-Repression of Chemoresistance Associated Mitogen-Activated Protein Kinase 14 and Activating Transcription Factor 2 by Loss of microRNA-622 in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13051183. [PMID: 33803354 PMCID: PMC7967205 DOI: 10.3390/cancers13051183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major hallmark driving the progression and poor prognosis of hepatocellular carcinoma (HCC). Limited chemoresponse of HCC was demonstrated to be mediated by mitogen-activated protein kinase 14 (MAPK14) and activating transcription factor 2 (ATF2). Recently, we have demonstrated loss of control of RAS-RAF-ERK-signaling as a consequence of miR-622 downregulation in HCC. However, the majority of target genes of this potent tumorsuppressive microRNA had remained elusive. The MAPK14-ATF2-axis represents a collateral pathway ensuring persisting ERK-activation in the presence of sorafenib-mediated RAF-inhibition. In contrast to the function of the MAPK14-ATF2-axis, both the expression and regulation of MAPK14 and ATF2 in human HCC remained to be clarified. We found combined overexpression of MAPK14 and ATF2 in human HCC cells, tissues and in sorafenib resistant cell lines. High expression of MAPK14 and ATF2 was associated with reduced overall survival in HCC patients. Deciphering the molecular mechanism promoting combined upregulation of MAPK14 and ATF2 in HCC, we revealed that miR-622 directly targets both genes, resulting in combined de-repression of the MAPK14-ATF2-axis. Together, miR-622 represents a superior regulator of both RAS-RAF-ERK as well as MAPK14-ATF2-signaling pathways in liver cancer.
Collapse
|
29
|
Chen M, Zhao M, Hou Y, Zhu B. Expression of lncRNA CCAT2 in children with neuroblastoma and its effect on cancer cell growth. Mol Cell Biochem 2021; 476:1871-1879. [PMID: 33475889 DOI: 10.1007/s11010-020-04042-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine the expression of long-chain non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) in children with neuroblastoma and its effect on cancer cell growth. A polymerase chain reaction assay was carried out to quantify lncRNA CCAT2 miRNA in neuroblastoma cells, corresponding paracancerous cells, SH-SY5Y and SK-N-SH cells, and human umbilical vein endothelial cells (HUVEC), and two groups of children with different lncRNA CCAT2 expression were compared in clinical pathological parameters and prognosis. CCAT2-NC and si-CCAT2 were transfected into SH-SY5Y cells, separately. Then a 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was carried out to analyze the cell proliferation, migration, and invasion ability, a flow cytometry to detect cell apoptosis, and a Western blotting (WB) assay to quantify p53 and Bcl-2 proteins. lncRNA CCAT2 expression in cancer tissues of children with neuroblastoma was notably higher than that in corresponding paracancerous tissues (P < 0.05), and children with different tissue differentiation, tumor staging, and lymph node metastasis (LNM) showed notably different lncRNA CCAT2 expression (P < 0.05). In addition, children with neuroblastoma in the high lncRNA CCAT2 expression group showed lower 3-year survival rate than those in the low expression group (P < 0.05). Multivariate analysis revealed that tissue differentiation, tumor-node-metastasis staging, LNM, and lncRNA CCAT2 expression were all independent risk factors affecting the prognosis of children with neuroblastoma (all P < 0.05). Compared with HUVEC cells, SH-SY5Y and SK-N-SH cells showed notably up-regulated lncRNA CCAT2, and the expression of it in SH-SY5Y was higher than that in SK-N-SH cells (P < 0.05). Compared with the CCAT2-NC group, the si-CCAT2 group presented notably down-regulated CCAT2 (P < 0.05). Moreover, according to the MTT assay, the si-CCAT2 group showed notably weakened cell viability and proliferation than the CCAT2-NC group (both P < 0.05), and SH-SY5Y cells in the former group were less active than those in the latter group in terms of migration and invasion. The cell apoptosis rate of SH-SY5Y cells in the si-CCAT2 was higher than that in the CCAT2-NC. The results suggested that knock down of lncRNA CCAT2 could improve the apoptosis activity of neuroblastoma cells in children. According to the WB assay, the si-CCAT2 group showed notably higher p53 expression and notably lower Bcl-2 protein expression than the CCAT2-NC group (both P < 0.05). LncRNA CCAT2 can inhibit the proliferation of neuroblastoma cells and promote their apoptosis, which provides a basis for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Ming Chen
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Meng Zhao
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yan Hou
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| |
Collapse
|
30
|
Zhao E, Chen S, Dang Y. Development and External Validation of a Novel Immune Checkpoint-Related Gene Signature for Prediction of Overall Survival in Hepatocellular Carcinoma. Front Mol Biosci 2021; 7:620765. [PMID: 33553243 PMCID: PMC7859359 DOI: 10.3389/fmolb.2020.620765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: The purpose of this study was to develop and validate a novel immune checkpoint-related gene signature for prediction of overall survival (OS) in hepatocellular carcinoma (HCC). Methods: mRNA expression profiles and clinical follow-up information were obtained in the International Cancer Genome Consortium database. An external dataset from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma database was used to validate the results. The univariate and multivariate Cox regression analyses were performed based on the differentially expressed genes. We generated a four-mRNA signature to predict patient survival. Furthermore, the reliability and validity were validated in TCGA cohort. An integrated bioinformatics approach was performed to evaluate its diagnostic and prognostic value. Results: A four-gene (epidermal growth factor, mutated in colorectal cancer, mitogen-activated protein kinase kinase 2, and NRAS proto-oncogene, GTPase) signature was built to classify patients into two risk groups using a risk score with different OS in two cohorts (all P < 0.0001). Multivariate regression analysis demonstrated the signature was an independent predictor of HCC. Furthermore, the signature presented an excellent diagnostic power in differentiating HCC and adjacent tissues. Immune cell infiltration analysis revealed that the signature was associated with a number of immune cell subtypes. Conclusion: We identified a four-immune checkpoint-related gene signature as a robust biomarker with great potential for clinical application in risk stratification and OS prediction in HCC patients and could be a potential indicator of immunotherapy in HCC. The diagnostic signature had been validated to accurately distinguish HCC from adjacent tissues.
Collapse
Affiliation(s)
- Enfa Zhao
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shimin Chen
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Taihe Country, Taihe, China
| | - Ying Dang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Takkar S, Sharma V, Ghosh S, Suri A, Sarkar C, Kulshreshtha R. Hypoxia-inducible miR-196a modulates glioblastoma cell proliferation and migration through complex regulation of NRAS. Cell Oncol (Dordr) 2021; 44:433-451. [PMID: 33469841 DOI: 10.1007/s13402-020-00580-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in humans. Hypoxia has been correlated with the aggressive form of glial tumors, poor prognosis, recurrence and resistance to various therapies. MicroRNAs (miRNAs) have emerged as critical mediators of hypoxic responses and have shown great potential for cancer diagnostics and therapeutics. Here, we focus on the regulatory and functional characterization of miR-196a, a hypoxia-inducible miRNA, in GBM. METHODS Hypoxia/HIF regulation of miR-196a was assessed by RT-qPCR, promoter-luciferase and ChIP assays in GBM cell lines. miR-196a levels were analyzed in The Cancer Genome Atlas (TCGA)-GBM, Chinese Glioma Genome Atlas (CGGA) and Indian GBM patient cohorts. miR-target interactions were studied using RNA/protein quantification and 3'UTR luciferase assays. The effect of miR-196a overexpression/inhibition was assessed on cellular viability, migration and apoptosis under hypoxia and normoxia. Microarray-based gene expression profiling studies were performrd to study the effect of miR-196a on the GBM cellular transcriptome under hypoxia. RESULTS We identified miR-196a as a hypoxia-inducible and hypoxia-inducible factor (HIF)-regulated miRNA that plays an oncogenic role in GBM. miR-196a was found to be significantly up-regulated in TCGA-GBM, CGGA glioma as well as Indian GBM patient cohorts. miR-196a overexpression was found to induce cellular proliferation, migration, spheroid formation and colony formation and to inhibit apoptosis, while miR-196a inhibition using anti-miR-196a yielded opposite results, suggesting an oncogenic role of miR-196a in GBM. We further unveiled NRAS, AJAP1, TAOK1 and COL24A1 as direct targets of miR-196a. We also report a complex competitive regulation of oncogenic NRAS by miR-196a, miR-146a and let-7 in GBM. Analysis of microarray-based gene expression data obtained by miR-196a inhibition under hypoxia revealed a role of miR-196a in HIF, calcium adhesion, Wnt and cell adhesion pathways. Interestingly, miR-196a was found to positively regulate the expression of various genes involved in the induction or stabilization of HIFs and in maintenance of hypoxic conditions, thereby suggesting the existence of an indirect miR-196a/HIF positive feedback loop under hypoxia. CONCLUSIONS Overall, our work identifies a novel association between hypoxia/HIF signalling and miR-196a in GBM and suggests its therapeutic significance.
Collapse
Affiliation(s)
- Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vikas Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
32
|
Du X, Zhang Y. Integrated Analysis of Immunity- and Ferroptosis-Related Biomarker Signatures to Improve the Prognosis Prediction of Hepatocellular Carcinoma. Front Genet 2020; 11:614888. [PMID: 33391356 PMCID: PMC7775557 DOI: 10.3389/fgene.2020.614888] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognoses around the world. Ferroptosis is a new form of cell death, and some studies have found that it is related to cancer immunotherapy. The aim of our research was to find immunity- and ferroptosis-related biomarkers to improve the treatment and prognosis of HCC by bioinformatics analysis. Methods First, we obtained the original RNA sequencing (RNA-seq) expression data and corresponding clinical data of HCC from The Cancer Genome Atlas (TGCA) database and performed differential analysis. Second, we used immunity- and ferroptosis-related differentially expressed genes (DEGs) to perform a computational difference algorithm and Cox regression analysis. Third, we explored the potential molecular mechanisms and properties of immunity- and ferroptosis-related DEGs by computational biology and performed a new prognostic index based on immunity- and ferroptosis-related DEGs by multivariable Cox analysis. Finally, we used HCC data from International Cancer Genome Consortium (ICGC) data to perform validation. Results We obtained 31 immunity (p < 0.001)- and 14 ferroptosis (p < 0.05)-related DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Then, we screened five immunity- and two ferroptosis-related DEGs (HSPA4, ISG20L2, NRAS, IL17D, NDRG1, ACSL4, and G6PD) to establish a predictive model by multivariate Cox regression analysis. Receiver operating characteristic (ROC) and Kaplan–Meier (K–M) analyses demonstrated a good performance of the seven-biomarker signature. Functional enrichment analysis including Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the seven-biomarker signature was mainly associated with HCC-related biological processes such as nuclear division and the cell cycle, and the immune status was different between the two risk groups. Conclusion Our results suggest that this specific seven-biomarker signature may be clinically useful in the prediction of HCC prognoses beyond conventional clinicopathological factors. Moreover, it also brings us new insights into the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Xuanlong Du
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
33
|
Effect of let-7c on the PI3K/Akt/FoxO signaling pathway in hepatocellular carcinoma. Oncol Lett 2020; 21:96. [PMID: 33376529 PMCID: PMC7751369 DOI: 10.3892/ol.2020.12357] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The early diagnosis and treatment of liver hepatocellular carcinoma (LIHC) remains a major challenge. Therefore, it is of great significance to strengthen basic research on LIHC in order to improve the prevention and treatment of the disease. Numerous studies have indicated that the PI3K/Akt and FoxO signaling pathways mediate proliferation, survival and migration during the development of LIHC. Therefore, they have become a target for LIHC treatment. Furthermore, let-7c has been demonstrated to repress cell proliferation, migration and invasion, and to induce G1 phase arrest and apoptosis of LIHC cells. However, the mechanism of its action is not clear. In the present study, the association between let-7c and the PI3K/Akt/FoxO signaling pathway, as well as their roles in the development of LIHC were investigated using The Cancer Genome Atlas and various public databases (Tumor-miRNA-Pathway, OncomiR, DIANA-TarBase v8, KOBAS 3.0, ONCOMINE, Kaplan-Meier plotter, LinkedOmics, UALCAN and cBioPortal). The effects of let-7c-5p on PI3K/Akt/FoxO signaling pathway-related target genes were analyzed following overexpression of let-7c-5p in the MHCC-97H cell line via reverse transcription-quantitative PCR, and the let-7c-5p target genes belonging to the PI3K/Akt/FOXO signaling pathway in LIHC were screened out. GO and KEGG enrichment analyses of these target genes was performed using g:Profiler, gOST. In addition, GeneMANIA and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases were used to determine the gene-gene and protein-protein interaction networks, respectively. The data demonstrated that cyclin B2 (CCNB2), cyclin E2 (CCNE2), cyclin dependent kinase 4 (CDK4), homer scaffold protein 1 (HOMER1), heat shock protein 90 α family class A member 1 (HSP90AA1), neuroblastoma RAS viral oncogene homolog (NRAS), protein phosphatase 2 catalytic subunit α (PPP2CA), protein kinase AMP-activated catalytic subunit α2 (PRKAA2) and Rac family small GTPase 1 (RAC1) may be target genes of let-7c-5p. These genes, particularly CCNE2, were associated with poor overall survival and could be promising candidate biomarkers for disease and poor prognosis in LIHC. Among them, seven genes (CCNE2, CDK4, HSP90AA1, NRAS, PPP2CA, PRKAA2 and RAC1) belonged to the PI3K-Akt signaling pathway and four genes (CCNB2, HOMER1, NRAS and PRKAA2) belonged to the FoxO signaling pathway. The majority of these genes were closely associated with the cell cycle and their elevated expression may aggravate cell cycle disorders. Therefore, let-7c may be considered to be an anti-oncogene of LIHC. The present study may provide novel targets and strategies for the diagnosis and treatment of LIHC.
Collapse
|
34
|
Li Z, Liu H, Luo X. Lipid droplet and its implication in cancer progression. Am J Cancer Res 2020; 10:4112-4122. [PMID: 33414989 PMCID: PMC7783747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023] Open
Abstract
Lipid droplets (LDs) are a kind of organelle that is commonly found in eukaryotic cells to store lipids, which encompass a hydrophobic core composed of a single layer of phospholipids and neutral lipids (mainly including triacylglycerol (TAG) and cholesterol ester (CE)) as well as a small amount of proteins. LD accumulation is gradually recognized as a prominent characteristic in a variety of cancers and attracts increasing attention on this field. In this article, we not only summarize the composition, synthesis and decomposition of LD, but also highlight its role in carcinogenesis and malignant development of cancers.
Collapse
Affiliation(s)
- Zhenzhen Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
| | - Huiwen Liu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
- Molecular Imaging Research Center of Central South UniversityChangsha 410078, Hunan, PR China
| |
Collapse
|
35
|
Zhang X, Zhang J, Gao F, Fan S, Dai L, Zhang J. KPNA2-Associated Immune Analyses Highlight the Dysregulation and Prognostic Effects of GRB2, NRAS, and Their RNA-Binding Proteins in Hepatocellular Carcinoma. Front Genet 2020; 11:593273. [PMID: 33193737 PMCID: PMC7649362 DOI: 10.3389/fgene.2020.593273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Karyopherin α2 (KPNA2) was reported to be overexpressed and have unfavorable prognostic effects in many malignancies including hepatocellular carcinoma (HCC). Although its contributions to inflammatory response were reported in many studies, its specific associations with immune infiltrations and immune pathways during cancer progression were unclear. Here, we aimed to identify new markers for HCC diagnosis and prognosis through KPNA2-associated immune analyses. RNA-seq expression data of HCC datasets were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. The gene expressions were counts per million normalized. The infiltrations of 24 kinds of immune cells in the samples were evaluated with ImmuCellAI (Immune Cell Abundance Identifier). The Spearman correlations of the immune infiltrations with KPNA2 expression were investigated, and the specific positive correlation of B-cell infiltration with KPNA2 expression in HCC tumors was identified. Fifteen genes in KEGG (Kyoto Encyclopedia of Genes and Genomes) B-cell receptor signaling pathway presented significant correlations with KPNA2 expression in HCC. Among them, GRB2 and NRAS were indicated to be independent unfavorable prognostic factors for HCC overall survival. Clinical Proteomic Tumor Analysis Consortium HCC dataset was investigated to validate the results at protein level. The upregulation and unfavorable prognostic effects of KPNA2 and GRB2 were confirmed, whereas, unlike its mRNA form, NRAS protein was presented to be downregulated and have favorable prognostic effects. Through receiver operating characteristic curve analysis, the diagnostic potential of the three proteins was shown. The RNA-binding proteins (RBPs) of KPNA2, NRAS, and GRB2, downloaded via The Encyclopedia of RNA Interactomes, were investigated for their clinical significance in HCC at protein level. An eight-RBP signature with independent prognostic value and dysregulations in HCC was identified. All the RBPs were significantly correlated with MKI67 expression and at least one of KPNA2, GRB2, and NRAS at protein level in HCC, indicating their roles in HCC progression and the regulation of the three proteins. We concluded that KPNA2, GRB2, NRAS, and their RBPs might have coordinating roles in HCC immunoregulation and progression. They might be new markers for HCC diagnosis and prognosis predication and new targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Jialing Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Fenglan Gao
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Shasha Fan
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinzhong Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
36
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Sun G, Su G, Liu F, Han W. NRAS Contributes to Retinoblastoma Progression Through SNHG16/miR-183-5p/NRAS Regulatory Network. Onco Targets Ther 2019; 12:10703-10715. [PMID: 31827328 PMCID: PMC6902855 DOI: 10.2147/ott.s232470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose The oncogene of wild type neuroblastoma RAS viral oncogene homolog (NRAS) has been found to involve in the tumorigenesis of cancers. However, the role of NRAS in retinoblastoma (RB) progression remains largely unknown. Methods The expression levels of NRAS, miR-183-5p and small nucleolar RNA host gene 16 (SNHG16) were measured using quantitative real-time polymerase chain reaction assay or Western blot assay, respectively. Cell proliferation and apoptosis were analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or flow cytometry, respectively. Transwell assay was used to determine cell migration and invasion abilities. The interaction between miR-183-5p and NRAS or SNHG16 was analyzed using bioinformatics analysis and dual-luciferase reporter assay. Results NRAS was elevated in RB tissues and cell lines, knockdown of NRAS could inhibit proliferation, migration and invasion but induced apoptosis in vitro and suppressed tumor growth in vivo. NRAS was confirmed to be a target of miR-183-5p and was negatively regulated by miR-183-5p in RB cells. Moreover, overexpressed NRAS reversed miR-183-5p mediated inhibition on RB cell progression. Besides that, SNHG16 directly interacted with miR-183-5p and reduced miR-183-5p expression in RB cells. The suppression of RB cell progression induced by SNHG16 silencing could be partially attenuated by the inhibition of miR-183-5p. Besides that, SNHG16 could regulate NRAS expression through competitively binding to miR-183-5p in RB cells. Conclusion NRAS functioned as an oncogene to contribute to RB progression by SNHG16/miR-183-5p/NRAS regulatory network, indicating a novel and promising therapeutic target for RB.
Collapse
Affiliation(s)
- Guangli Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Gang Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Fang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Wenjie Han
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| |
Collapse
|