1
|
Liu H, Wang X, Liu L, Yan B, Qiu F, Zhou B. Targeting liposarcoma: unveiling molecular pathways and therapeutic opportunities. Front Oncol 2024; 14:1484027. [PMID: 39723387 PMCID: PMC11668776 DOI: 10.3389/fonc.2024.1484027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, an increasing number of studies have utilized molecular biology techniques to reveal important molecular heterogeneity among different subtypes of liposarcoma. Each subtype exhibits distinct genetic patterns and molecular pathways, which may serve as important targets for molecular therapy. In the present review, we focus on the molecular characteristics, molecular diagnostics, driver genes, and molecular mechanisms of liposarcoma. We also discuss the clinical research progress of related targeted therapies, with an aim to provide a reference and crucial insights for colleagues in the field.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xi Wang
- Department of Oncology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Lingyan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Bingsong Yan
- Department of Hepatobiliary Surgery, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Osama MA, Chatterjee P, Singh S, Pandey A, Mohta A. Myxoid liposarcoma diagnosed on fine needle aspiration cytology: There is more to it than meets the eye. J Cancer Res Ther 2024:01363817-990000000-00095. [PMID: 39016314 DOI: 10.4103/jcrt.jcrt_419_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
ABSTRACT Liposarcoma is a rare mesenchymal neoplasm commonly involving deep soft tissues and the retroperitoneum. Among the various types of liposarcoma, myxoid liposarcoma is the most frequently encountered in adolescents and young adults, with a predilection for lower extremities. Fine needle aspiration allows easy assessment and rapid on-site evaluation for distinguishing benign from malignant lipomatous lesions. Here, we present a case of myxoid liposarcoma in the calf region of a 19-year-old boy, diagnosed via fine needle aspiration cytology, and subsequently confirmed by histopathological examination after surgical resection. The intention behind this case report is to highlight the cytological features of myxoid liposarcoma and to improve understanding of this tumor entity, aiming to prevent misdiagnosis by inexperienced pathologists when evaluating cytology specimens.
Collapse
Affiliation(s)
- Md Ali Osama
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Priti Chatterjee
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Smita Singh
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Ankita Pandey
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Anup Mohta
- Departments of Surgery, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
3
|
Ciongariu AM, Țăpoi DA, Dumitru AV, Bejenariu A, Marin A, Costache M. Pleomorphic Liposarcoma Unraveled: Investigating Histopathological and Immunohistochemical Markers for Tailored Diagnosis and Therapeutic Innovations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:950. [PMID: 38929567 PMCID: PMC11205576 DOI: 10.3390/medicina60060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Liposarcomas are some of the most challenging soft tissue tumors and are subclassified into multiple subtypes with special histologic and molecular features. The peculiarities of each histopathological subtype influence the clinical behavior, management, and treatment of these neoplasms. For instance, well-differentiated liposarcomas are common soft tissue malignancies and usually display a favorable outcome. On the other hand, pleomorphic liposarcoma is the rarest, yet the most aggressive subtype of liposarcoma. This histopathological diagnosis may be challenging due to the scarce available data and because pleomorphic liposarcomas can mimic other pleomorphic sarcomas or other neoplasms of dissimilar differentiation. Nevertheless, the correct diagnosis of pleomorphic liposarcoma is of utmost importance as such patients are prone to develop local recurrences and metastases. Treatment usually consists of surgical excision along with radiotherapy and follow-up of the patients. Therefore, this review aims to assess the complex clinical, histological, and immunohistochemical features of liposarcomas in order to establish how these characteristics influence the management and prognosis of the patients, emphasizing the particularities of pleomorphic liposarcoma.
Collapse
Affiliation(s)
- Ana-Maria Ciongariu
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Dana-Antonia Țăpoi
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Adrian-Vasile Dumitru
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Adrian Bejenariu
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Andrei Marin
- Department of Plastic Surgery, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Mariana Costache
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| |
Collapse
|
4
|
M S A, K C, Bhargavan RV, Somanathan T, Subhadradevi L. An overview on liposarcoma subtypes: Genetic alterations and recent advances in therapeutic strategies. J Mol Histol 2024; 55:227-240. [PMID: 38696048 DOI: 10.1007/s10735-024-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Liposarcoma (LPS) is a rare malignancy of adipocytic differentiation. According to World Health Organization classification, LPS comprises of four principle subtypes Atypical lipomatous tumor/Well-differentiated liposarcoma (ATL/WDLPS), Dedifferentiated liposarcoma (WDLPS), Myxoid liposarcoma (MLPS), and Pleomorphic liposarcoma (PLPS). Each subtype can develop at any location and shows distinct clinical behavior and treatment sensitivity. ATL/ WDLPS subtype has a higher incidence rate, low recurrence, and is insensitive to radiation and chemotherapy. DDLPS is the focal progression of WDLPS, which is aggressive and highly metastasizing. MLPS is sensitive to radiation and chemotherapy, with a higher recurrence rate and metastasis. PLPS subtype is highly metastasizing, has a poor prognosis, and exhibiting higher recurrence rate. Initial histological analysis provides information for the characterization of LPS subtypes', further molecular and genetic analysis provides certain subtype specifications, such as gene amplifications and gene fusions. Such molecular genetic alterations will be useful as therapeutic targets in various cancers, including the LPS subtypes. A wide range of novel therapeutic agents based on genetic alterations that aim to target LPS subtypes specifically are under investigation. This review summarizes the LPS subtype classification, their molecular genetic characteristics, and the implications of genetic alterations in therapeutics.
Collapse
Affiliation(s)
- Anju M S
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Chandramohan K
- Division of Surgical Oncology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Rexeena V Bhargavan
- Division of Surgical Oncology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
5
|
Rask GC, Taslim C, Bayanjargal A, Cannon MV, Selich-Anderson J, Crow JC, Duncan A, Theisen ER. Seclidemstat blocks the transcriptional function of multiple FET-fusion oncoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594897. [PMID: 38826330 PMCID: PMC11142045 DOI: 10.1101/2024.05.19.594897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Genes encoding the RNA-binding proteins FUS, EWSR1, and TAF15 (FET proteins) are involved in chromosomal translocations in rare sarcomas. FET-rearranged sarcomas are often aggressive malignancies affecting patients of all ages. New therapies are needed. These translocations fuse the 5' portion of the FET gene with a 3' partner gene encoding a transcription factor (TF). The resulting fusion proteins are oncogenic TFs with a FET protein low complexity domain (LCD) and a DNA binding domain. FET fusion proteins have proven stubbornly difficult to target directly and promising strategies target critical co-regulators. One candidate is lysine specific demethylase 1 (LSD1). LSD1 is recruited by multiple FET fusions, including EWSR1::FLI1. LSD1 promotes EWSR1::FLI1 activity and treatment with the noncompetitive inhibitor SP-2509 blocks EWSR1::FLI1 transcriptional function. A similar molecule, seclidemstat (SP-2577), is currently in clinical trials for FET-rearranged sarcomas (NCT03600649). However, whether seclidemstat has pharmacological activity against FET fusions has not been demonstrated. Here, we evaluate the in vitro potency of seclidemstat against multiple FET-rearranged sarcoma cell lines, including Ewing sarcoma, desmoplastic small round cell tumor, clear cell sarcoma, and myxoid liposarcoma. We also define the transcriptomic effects of seclidemstat treatment and evaluated the activity of seclidemstat against FET fusion transcriptional regulation. Seclidemstat showed potent activity in cell viability assays across FET-rearranged sarcomas and disrupted the transcriptional function of all tested fusions. Though epigenetic and targeted inhibitors are unlikely to be effective as a single agents in the clinic, these data suggest seclidemstat remains a promising new treatment strategy for patients with FET-rearranged sarcomas.
Collapse
Affiliation(s)
- Galen C. Rask
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Cenny Taslim
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Ariunaa Bayanjargal
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Jesse C. Crow
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | | | - Emily R. Theisen
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Ranji P, Jonasson E, Andersson L, Filges S, Luna Santamaría M, Vannas C, Dolatabadi S, Gustafsson A, Myklebost O, Håkansson J, Fagman H, Landberg G, Åman P, Ståhlberg A. Deciphering the role of FUS::DDIT3 expression and tumor microenvironment in myxoid liposarcoma development. J Transl Med 2024; 22:389. [PMID: 38671504 PMCID: PMC11046918 DOI: 10.1186/s12967-024-05211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.
Collapse
Affiliation(s)
- Parmida Ranji
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Science, University of Bergen, Bergen, Norway
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, Faculty of Science at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Diaz-Perez JA, Kerr DA. Gene of the month: DDIT3. J Clin Pathol 2024; 77:211-216. [PMID: 38053287 DOI: 10.1136/jcp-2023-208963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3) gene, mapped to the human chromosome 12q13.3, encodes a protein that belongs to the CCAAT/enhancer-binding protein family of transcription factors. DDIT3 is involved in the proliferative control that responds to endoplasmic reticulum stress in normal conditions, dimerising other transcription factors with basic leucine zipper (bZIP) structural motifs. DDIT3 plays a significant role during cell differentiation, especially adipogenesis, arresting the maturation of adipoblasts. In disease, FUS/EWSR1::DDIT3 fusion is the pathogenic event that drives the development of myxoid liposarcoma. The amplification of DDIT3 in other adipocytic neoplasms mediates the presence of adipoblast-like elements. Another fusion, GLI1::DDIT3, has rarely been documented in other tumours. This paper reviews the structure and function of DDIT3, its role in disease-particularly cancer-and its use and pitfalls in diagnostic testing, including immunohistochemistry as a tissue-based marker.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
8
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers (Basel) 2024; 16:271. [PMID: 38254762 PMCID: PMC10813500 DOI: 10.3390/cancers16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Timur I. Fetisov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Varvara P. Maksimova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Evgeny P. Kulikov
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
9
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Ciongariu AM, Dumitru AV, Cîrstoiu C, Crețu B, Sajin M, Țăpoi DA, Ciobănoiu AD, Bejenariu A, Marin A, Costache M. The Conundrum of Dedifferentiation in a Liposarcoma at a Peculiar Location: A Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050967. [PMID: 37241198 DOI: 10.3390/medicina59050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Dedifferentiated liposarcoma of the deep soft tissue of the lower extremities is an infrequent finding. Myxoid liposarcoma is considered the most common soft tissue neoplasia arising in this anatomic region. Divergent differentiation usually occurs within well-differentiated liposarcoma and is exceedingly rare in a myxoid liposarcoma. We report a 32-year-old man who developed a dedifferentiated liposarcoma of the thigh on the background of a pre-existing myxoid liposarcoma. The gross examination of the surgical specimen showed a 11/7/2 cm tumour mass with solid tan-grey areas and focal myxoid degeneration. The microscopic examination revealed a malignant lipogenic proliferation, containing round cells with hyperchromatic nuclei and atypical lipoblasts, confined to the basophilic stroma with a myxoid aspect. Abrupt transition towards a hypercellular, non-lipogenic area consisting of highly pleomorphic spindle cells with atypical mitotic figures was also noted. Immunohistochemical staining was performed. Tumour cells in the lipogenic area were intensely positive for S100 and p16, and CD34 staining highlighted an arborizing capillary network. The dedifferentiated tumour areas showed positive MDM2 and CDK4 staining within neoplastic cells, with the Ki 67 proliferation marker expressed in approximately 10% of the cells. Wild-type TP53 protein expression pattern was documented. Thus, the diagnosis of a dedifferentiated liposarcoma was established. This paper aims to provide further knowledge about liposarcomas with divergent differentiation at peculiar locations, emphasizing the importance of histopathologic examination and immunohistochemical analysis for establishing the diagnosis and assessing the therapeutic response and prognosis of this condition.
Collapse
Affiliation(s)
- Ana-Maria Ciongariu
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian-Vasile Dumitru
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cătălin Cîrstoiu
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Orthopedic Surgery and Traumatology Department, University Emergency Hospital, 050098 Bucharest, Romania
| | - Bogdan Crețu
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Orthopedic Surgery and Traumatology Department, University Emergency Hospital, 050098 Bucharest, Romania
| | - Maria Sajin
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dana-Antonia Țăpoi
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Aminia-Diana Ciobănoiu
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian Bejenariu
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
| | - Andrei Marin
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Plastic Surgery Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mariana Costache
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
- Morphology Department, Faculty of Medicine "Carol Davila", University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
11
|
王 微, 李 鑫, 柳 萍, 董 颖. [Clinical value of fluorescence in situ hybridization with MDM2 and DDIT3 probe in diagnosis of liposarcoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:228-233. [PMID: 37042132 PMCID: PMC10091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 04/13/2023]
Abstract
OBJECTIVE To investigate the value of using MDM2 amplification probe and DDIT3 dual-color, break-apart rearrangement probe fluorescence in situ hybridization (FISH) technique in the diagnosis of liposarcoma. METHODS In the study, 62 cases of liposarcoma diagnosed in Peking University First Hospital from January 2015 to December 2019 were analysed for clinicopathological information. Of these 62 cases of liposarcoma, all were analysed for MDM2 amplification and 48 cases were analysed for DDIT3 rearrangement using a FISH technique. Our study aimed to evaluate the status of MDM2 and DDIT3 by FISH in liposarcoma and correlate it with diagnosis of different subtypes of liposarcoma. The subtypes of liposarcoma were classified according to the FISH results, combined with the relevant clinicopathological features. RESULTS The patients aged 31-89 years (mean: 59 years) with a 1.75:1 male to female ratio. Histologically, there were 20 cases of atypical lipomatous tumour/well-differentiated liposarcoma (ALT/WDLPS), 26 cases of dedifferentiated liposarcoma (DDLPS), 13 myxoid liposarcoma (MLPS) and 3 pleomorphic liposarcoma (PLPS). Tumors with DDLPS (23/26) and WDLPS (8/20) were localized retroperitoneally, while both tumours of MLPS and PLPS were localized extra-retroperitoneally, and the difference of sites among the four subtypes of liposarcoma was statistically significant (P < 0.05). Histologically, varied mucoid matrix could be observed in the four subtypes of liposarcoma, and the difference was statistically significant (P < 0.05). MDM2 gene amplification was demonstrated in all cases of ALT/WDLPS and DDLPS (100%, 20/20 and 26/26 respectively); DDIT3 gene rearrangement was noted only in MLPS (100%, 13/13); most cases of DDLPS (96.2%, 25/26) and ALT/WDLPS (83.3%, 5/6, 6 cases selected for detection) demonstrated the picture of amplification of the DDIT3 telomeric tag. According to the instructions of DDIT3 break-apart rearrangement probe, the 5' telomere probe and 3' centromere probe spanned but did not cover the DDIT3 gene itself, on the contrary, the 5' telomere probe covered the CDK4 gene, while the DDIT3 and CDK4 gene were located adjacent to each other on chromosome, therefore, when the amplification signal appeared on the telomeric tag of the DDIT3 rearrangement probe, it indeed indicated the CDK4 gene amplification rather than the DDIT3 gene rearrangement. Then the 10 cases with DDIT3 telomeric tag amplification were selected for CDK4 and DDIT3 gene amplification probe FISH tests, and all the cases showed CDK4 gene amplification (100%, 10/10) and two of the 10 cases demonstrated co-amplification of CDK4 and DDIT3 (20%, 2/10); DDIT3 polysomy detected by DDIT3 gene rearrangement probe was found in 1 case of DDLPS and 2 cases of PLPS (66.7%, 2/3) with morphology of high-grade malignant tumour and poor prognosis. CONCLUSION Our results indicate that a diagnosis of different subtype liposarcoma could be confirmed based on the application of MDM2 and DDIT3 FISH, combined with clinicopathological findings. It is also noteworthy that atypical signals should be correctly interpreted to guide correct treatment of liposarcomas.
Collapse
Affiliation(s)
- 微 王
- />北京大学第一医院病理科,北京 100034Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - 鑫 李
- />北京大学第一医院病理科,北京 100034Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - 萍 柳
- />北京大学第一医院病理科,北京 100034Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - 颖 董
- />北京大学第一医院病理科,北京 100034Department of Pathology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
12
|
Dreher RD, Theisen ER. Lysine specific demethylase 1 is a molecular driver and therapeutic target in sarcoma. Front Oncol 2023; 12:1076581. [PMID: 36686841 PMCID: PMC9846348 DOI: 10.3389/fonc.2022.1076581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcomas are a diverse group of tumors with numerous oncogenic drivers, and display varied clinical behaviors and prognoses. This complexity makes diagnosis and the development of new and effective treatments challenging. An incomplete understanding of both cell of origin and the biological drivers of sarcomas complicates efforts to develop clinically relevant model systems and find new molecular targets. Notably, the histone lysine specific demethylase 1 (LSD1) is overexpressed in a number of different sarcomas and is a potential therapeutic target in these malignancies. With the ability to modify histone marks, LSD1 is a key player in many protein complexes that epigenetically regulate gene expression. It is a largely context dependent enzyme, having vastly different and often opposing roles depending on the cellular environment and which interaction partners are involved. LSD1 has been implicated in the development of many different types of cancer, but its role in bone and soft tissue sarcomas remains poorly understood. In this review, we compiled what is known about the LSD1 function in various sarcomas, to determine where knowledge is lacking and to find what theme emerge to characterize how LSD1 is a key molecular driver in bone and soft tissue sarcoma. We further discuss the current clinical landscape for the development of LSD1 inhibitors and where sarcomas have been included in early clinical trials.
Collapse
Affiliation(s)
- Rachel D. Dreher
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
| | - Emily R. Theisen
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Xia H, Fang F, Yuan H, Tu Y. Survival of a patient with multiple-recurrent giant retroperitoneal dedifferentiated liposarcoma for 15 years: A case report. Front Surg 2022; 9:916802. [DOI: 10.3389/fsurg.2022.916802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
BackgroundRetroperitoneal liposarcoma (RPLS) is a variety of soft tissue sarcoma that originates from mesenchymal cells. A tumor measuring greater than 30 cm is called a “giant liposarcoma.” A part of the neoplasm tends to grow in size, recur locally, or metastasize distantly. In those with such a condition, long-term survival is uncommon. Therefore, it is necessary to present a uniform and optimized program to improve the prognosis.MethodsBy successfully treating a multiple-recurrent giant retroperitoneal dedifferentiated liposarcoma (RP DDLPS) in July 2010, we hope to devise more comprehensive strategies to improve diagnosis, therapy, and outcome.ResultsIn July 2010, we thoroughly resected a giant multifocal RPLS with a concomitant part of the gastric wall. The histopathological examination revealed a high-grade (grade III) dedifferentiated liposarcoma. The patient was discharged uneventfully on the 15th postoperative day. She relapsed after 16 months and needed another complete excision. After 9 months, she died after the fourth recidive. The patient had experienced four recurrences and underwent operations with 15 years of follow-up.ConclusionsThe above demonstrates that we were able to successfully treat the multirecurrent giant RPLS, despite the patient’s poor medical condition, with meticulous management. Moreover, this indicates that long-term survival could be achieved for high-grade RP DDLPS.
Collapse
|
14
|
Resag A, Toffanin G, Benešová I, Müller L, Potkrajcic V, Ozaniak A, Lischke R, Bartunkova J, Rosato A, Jöhrens K, Eckert F, Strizova Z, Schmitz M. The Immune Contexture of Liposarcoma and Its Clinical Implications. Cancers (Basel) 2022; 14:cancers14194578. [PMID: 36230502 PMCID: PMC9559230 DOI: 10.3390/cancers14194578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Liposarcomas (LPS) are the most frequent malignancies in the soft tissue sarcoma family and consist of five distinctive histological subtypes, termed well-differentiated LPS, dedifferentiated LPS (DDLPS), myxoid LPS (MLPS), pleomorphic LPS, and myxoid pleomorphic LPS. They display variations in genetic alterations, clinical behavior, and prognostic course. While accumulating evidence implicates a crucial role of the tumor immune contexture in shaping the response to anticancer treatments, the immunological landscape of LPS is highly variable across different subtypes. Thus, DDLPS is characterized by a higher abundance of infiltrating T cells, yet the opposite was reported for MLPS. Interestingly, a recent study indicated that the frequency of pre-existing T cells in soft tissue sarcomas has a predictive value for immune checkpoint inhibitor (CPI) therapy. Additionally, B cells and tertiary lymphoid structures were identified as potential biomarkers for the clinical outcome of LPS patients and response to CPI therapy. Furthermore, it was demonstrated that macrophages, predominantly of M2 polarization, are frequently associated with poor prognosis. An improved understanding of the complex LPS immune contexture enables the design and refinement of novel immunotherapeutic approaches. Here, we summarize recent studies focusing on the clinicopathological, genetic, and immunological determinants of LPS.
Collapse
Affiliation(s)
- Antonia Resag
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Giulia Toffanin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy
| | - Iva Benešová
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Andrej Ozaniak
- Third Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Antonio Rosato
- Department of Surgery Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
- Correspondence: (Z.S.); (M.S.); Tel.: +420-604712471 (Z.S.); +49-351-458-6501 (M.S.)
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: (Z.S.); (M.S.); Tel.: +420-604712471 (Z.S.); +49-351-458-6501 (M.S.)
| |
Collapse
|
15
|
Wei Z, Xu J, Li W, Ou L, Zhou Y, Wang Y, Shi B. SMARCC1 Enters the Nucleus via KPNA2 and Plays an Oncogenic Role in Bladder Cancer. Front Mol Biosci 2022; 9:902220. [PMID: 35669562 PMCID: PMC9163745 DOI: 10.3389/fmolb.2022.902220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background: SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1), a component of the SWI/SNF complex, is thought to be an oncogene in several kinds of cancer. Materials and methods: The potential interaction between SMARCC1 and KPNA2 was inquired by Spearman’s correlation analysis, immunofluorescence staining and co-immunoprecipitation (Co-IP) assays. The immunohistochemistry staining, RT-PCR and western blot assay were taken for determining the expression levels of SMARCC1. And CCK-8, transwell assay, cell apoptosis assay, cell cycle analysis and subcutaneous tumor model were conducted to explore the role of SMARCC1 in carcinogenesis of bladder cancer. Results: In our experiments, Spearman’s correlation analysis, immunofluorescence staining and co-immunoprecipitation (Co-IP) assays showed that SMARCC1 interacted with KPNA2, and after knockdown of KPNA2, Nup50 and Nup153, the nuclear content of SMARCC1 decreased while the amount of SMARCC1 protein remaining in the cytoplasm increased, indicating that SMARCC1 could be transported into the nucleus via KPNA2 and thus acted as an oncogene. We found that both the mRNA and protein expression levels of SMARCC1 were increased in bladder cancer, and increased SMARCC1 expression was significantly associated with a higher T stage and poorer prognosis in bladder cancer patients. Knockdown of SMARCC1 slowed the growth of the two tested cell lines and clearly arrested the cell cycle at the G0/G1 phase checkpoint. Moreover, the migratory ability was significantly decreased and the number of apoptotic cells was increased. Conclusion: On the whole, our results demonstrate KPNA2, Nup50 and Nup153 regulate the process of SMARCC1 nuclear translocation in BC. SMARCC1 may be a competent candidate as a diagnostic and therapeutic target for BC. Further studies are required to research the mechanism and assess the role of SMARCC1 in vivo.
Collapse
Affiliation(s)
- Zhengmao Wei
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinming Xu
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiqing Li
- Karamay Central Hospital of Xinjiang, Karamay, China
| | - Longhua Ou
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingchen Zhou
- Department of Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, University of South China, Shenzhen, China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yan Wang, ; Bentao Shi,
| | - Bentao Shi
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Yan Wang, ; Bentao Shi,
| |
Collapse
|
16
|
Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma. Oncogenesis 2022; 11:20. [PMID: 35459264 PMCID: PMC9033823 DOI: 10.1038/s41389-022-00394-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Myxoid liposarcoma (MLS) represents a common subtype of liposarcoma molecularly characterized by a recurrent chromosomal translocation that generates a chimeric FUS-DDIT3 fusion gene. The FUS-DDIT3 oncoprotein has been shown to be crucial in MLS pathogenesis. Acting as a transcriptional dysregulator, FUS-DDIT3 stimulates proliferation and interferes with adipogenic differentiation. As the fusion protein represents a therapeutically challenging target, a profound understanding of MLS biology is elementary to uncover FUS-DDIT3-dependent molecular vulnerabilities. Recently, a specific reliance on the Hippo pathway effector and transcriptional co-regulator YAP1 was detected in MLS; however, details on the molecular mechanism of FUS-DDIT3-dependent YAP1 activation, and YAP1´s precise mode of action remain unclear. In elaborate in vitro studies, employing RNA interference-based approaches, small-molecule inhibitors, and stimulation experiments with IGF-II, we show that FUS-DDIT3-driven IGF-IR/PI3K/AKT signaling promotes stability and nuclear accumulation of YAP1 via deregulation of the Hippo pathway. Co-immunoprecipitation and proximity ligation assays revealed nuclear co-localization of FUS-DDIT3 and YAP1/TEAD in FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines. Transcriptome sequencing of MLS cells demonstrated that FUS-DDIT3 and YAP1 co-regulate oncogenic gene signatures related to proliferation, cell cycle progression, apoptosis, and adipogenesis. In adipogenic differentiation assays, we show that YAP1 critically contributes to FUS-DDIT3-mediated adipogenic differentiation arrest. Taken together, our study provides mechanistic insights into a complex FUS-DDIT3-driven network involving IGF-IR/PI3K/AKT signals acting on Hippo/YAP1, and uncovers substantial cooperative effects of YAP1 and FUS-DDIT3 in the pathogenesis of MLS.
Collapse
|
17
|
Dolatabadi S, Jonasson E, Andersson L, Luna Santamaría M, Lindén M, Österlund T, Åman P, Ståhlberg A. FUS-DDIT3 Fusion Oncoprotein Expression Affects JAK-STAT Signaling in Myxoid Liposarcoma. Front Oncol 2022; 12:816894. [PMID: 35186752 PMCID: PMC8851354 DOI: 10.3389/fonc.2022.816894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
Myxoid liposarcoma is one of the most common sarcoma entities characterized by FET fusion oncogenes. Despite a generally favorable prognosis of myxoid liposarcoma, chemotherapy resistance remains a clinical problem. This cancer stem cell property is associated with JAK-STAT signaling, but the link to the myxoid-liposarcoma-specific FET fusion oncogene FUS-DDIT3 is not known. Here, we show that ectopic expression of FUS-DDIT3 resulted in elevated levels of STAT3 and phosphorylated STAT3. RNA sequencing identified 126 genes that were regulated by both FUS-DDIT3 expression and JAK1/2 inhibition using ruxolitinib. Sixty-six of these genes were connected in a protein interaction network. Fifty-three and 29 of these genes were confirmed as FUS-DDIT3 and STAT3 targets, respectively, using public chromatin immunoprecipitation sequencing data sets. Enriched gene sets among the 126 regulated genes included processes related to cytokine signaling, adipocytokine signaling, and chromatin remodeling. We validated CD44 as a target gene of JAK1/2 inhibition and as a potential cancer stem cell marker in myxoid liposarcoma. Finally, we showed that FUS-DDIT3 interacted with phosphorylated STAT3 in association with subunits of the SWI/SNF chromatin remodeling complex and PRC2 repressive complex. Our data show that the function of FUS-DDIT3 is closely connected to JAK-STAT signaling. Detailed deciphering of molecular mechanisms behind tumor progression opens up new avenues for targeted therapies in sarcomas and leukemia characterized by FET fusion oncogenes.
Collapse
Affiliation(s)
- Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin Lindén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
18
|
Lindén M, Vannas C, Österlund T, Andersson L, Osman A, Escobar M, Fagman H, Ståhlberg A, Åman P. FET fusion oncoproteins interact with BRD4 and SWI/SNF chromatin remodeling complex subtypes in sarcoma. Mol Oncol 2022; 16:2470-2495. [PMID: 35182012 PMCID: PMC9251840 DOI: 10.1002/1878-0261.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/25/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
FET fusion oncoproteins containing one of the FET (FUS, EWSR1, TAF15) family proteins juxtaposed to alternative transcription‐factor partners are characteristic of more than 20 types of sarcoma and leukaemia. FET oncoproteins bind to the SWI/SNF chromatin remodelling complex, which exists in three subtypes: cBAF, PBAF and GBAF/ncBAF. We used comprehensive biochemical analysis to characterize the interactions between FET oncoproteins, SWI/SNF complexes and the transcriptional coactivator BRD4. Here, we report that FET oncoproteins bind all three main SWI/SNF subtypes cBAF, PBAF and GBAF, and that FET oncoproteins interact indirectly with BRD4 via their shared interaction partner SWI/SNF. Furthermore, chromatin immunoprecipitation sequencing and proteomic analysis showed that FET oncoproteins, SWI/SNF components and BRD4 co‐localize on chromatin and interact with mediator and RNA Polymerase II. Our results provide a possible molecular mechanism for the FET‐fusion‐induced oncogenic transcriptional profiles and may lead to novel therapies targeting aberrant SWI/SNF complexes and/or BRD4 in FET‐fusion‐caused malignancies.
Collapse
Affiliation(s)
- Malin Lindén
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Ayman Osman
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| |
Collapse
|
19
|
Hong YT, Yang Y, Lee H. A case report of primary myxoid liposarcoma mimicking as a parotid cystic lesion. Medicine (Baltimore) 2022; 101:e28473. [PMID: 35029195 PMCID: PMC8757944 DOI: 10.1097/md.0000000000028473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Myxoid liposarcoma (MLS) is an extremely rare tumor of the salivary gland and it arises from undifferentiated pluripotent mesenchymal cells. We report a rare case of a primary MLS in the parotid gland. PATIENT CONCERNS The patient was a 49-year-old female who presented with a hard fixed mass in the left parotid region. DIAGNOSIS On computed tomography and MR images, this tumor has a low attenuation center with a thick enhancing wall and ill-defined margins. The absence of high-signal-intensity foci on T1-weighted images makes a MLS indistinguishable from most other soft-tissue masses. Pathologically, the tumor was diagnosed as MLS. INTERVENTIONS The patient received total parotidectomy with facial nerve preservation and selective neck dissection. OUTCOMES Immediate facial nerve function was House Brackmann Grade III and recovered within 3 months after the surgery. Follow-up period is 57 months and there was no recurrence until now. LESSONS In this report, we report a rare case of primary MLS mimicking a cystic lesion of the parotid gland.
Collapse
|
20
|
Owen I, Yee D, Wyne H, Perdikari TM, Johnson V, Smyth J, Kortum R, Fawzi NL, Shewmaker F. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci 2021; 134:272045. [PMID: 34357401 DOI: 10.1242/jcs.258578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein, also known as DDIT3). FUS functions in RNA metabolism, and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. Although it is clear that the FUS segment is required for oncogenic transformation, the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers have been proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N terminus, transcriptional activation by FUS-CHOP could result from the N terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate that FUS-CHOP forms phase-separated condensates that colocalize with BRD4, a marker of super enhancer condensates. We provide evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for myxoid liposarcoma. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Izzy Owen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Debra Yee
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Hala Wyne
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Victoria Johnson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeremy Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Robert Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Frank Shewmaker
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
21
|
Mannarino L, Craparotta I, Ballabio S, Frapolli R, Meroni M, Bello E, Panini N, Callari M, Sanfilippo R, Casali PG, Barisella M, Fabbroni C, Marchini S, D'Incalci M. Mechanisms of responsiveness to and resistance against trabectedin in murine models of human myxoid liposarcoma. Genomics 2021; 113:3439-3448. [PMID: 34339817 DOI: 10.1016/j.ygeno.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and resistant against trabectedin, respectively. Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance against the drug. The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combinatorial approaches for the treatment of MLPS that could overcome drug-resistance.
Collapse
Affiliation(s)
- Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Sara Ballabio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Roberta Sanfilippo
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paolo G Casali
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Marta Barisella
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Fabbroni
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy..
| |
Collapse
|
22
|
Davis RB, Kaur T, Moosa MM, Banerjee PR. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci 2021; 30:1454-1466. [PMID: 34018649 PMCID: PMC8197437 DOI: 10.1002/pro.4127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Fusion transcription factors generated by genomic translocations are common drivers of several types of cancers including sarcomas and leukemias. Oncofusions of the FET (FUS, EWSR1, and TAF15) family proteins result from the fusion of the prion-like domain (PLD) of FET proteins to the DNA-binding domain (DBD) of certain transcription regulators and are implicated in aberrant transcriptional programs through interactions with chromatin remodelers. Here, we show that FUS-DDIT3, a FET oncofusion protein, undergoes PLD-mediated phase separation into liquid-like condensates. Nuclear FUS-DDIT3 condensates can recruit essential components of the global transcriptional machinery such as the chromatin remodeler SWI/SNF. The recruitment of mammalian SWI/SNF (mSWI/SNF) is driven by heterotypic PLD-PLD interactions between FUS-DDIT3 and core subunits of SWI/SNF, such as the catalytic component BRG1. Further experiments with single-molecule correlative force-fluorescence microscopy support a model wherein the fusion protein forms condensates on DNA surface and enrich BRG1 to activate transcription by ectopic chromatin remodeling. Similar PLD-driven co-condensation of mSWI/SNF with transcription factors can be employed by other oncogenic fusion proteins with a generic PLD-DBD domain architecture for global transcriptional reprogramming.
Collapse
Affiliation(s)
- Richoo B. Davis
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | - Taranpreet Kaur
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | | | | |
Collapse
|
23
|
Murshed KA, Abo Samra H, Ammar A. Well-Differentiated Liposarcoma of the Hypopharynx Exhibiting Myxoid Liposarcoma-like Morphology with MDM2 and DDIT3 Co-Amplification. Head Neck Pathol 2021; 16:288-293. [PMID: 34089125 PMCID: PMC9018935 DOI: 10.1007/s12105-021-01341-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Well-differentiated liposarcoma (WDL) is one of the most common soft tissue sarcomas in adults. It has a predilection for middle-aged males and arises in deep-seated locations such as retroperitoneum, mediastinum, and spermatic cord. Its occurrence in young individuals at the hypopharyngeal region is an exceedingly rare event. Myxoid liposarcoma (ML)-like changes can seldom occur in some cases of WDL, which makes the diagnosis of WDL more challenging. Amplification of DDIT3 gene in a subset of cases of WDL has shown to be associated with such unique morphology. Herein, we present a case of a 36-year-old gentleman who presented with difficulty in breathing and swallowing for 3 months duration. CT scan of the neck revealed a lesion along the posterior wall of the hypopharynx measuring 3.5 cm. Histopathologic examination revealed a tumor composed of lobules of oval to spindle cells in a prominent myxoid stroma with delicate chicken-wire vasculature. In the vicinity, there were lobules composed of variably sized adipocytes separated by thick fibrous septa that contains atypical hyperchromatic spindle cells. By immunohistochemistry, the tumor cells in both components were immunoreactive for CDK4, but negative for MDM2. Fluorescence in-situ hybridization (FISH) confirmed the presence of MDM2 gene amplification. There was no evidence of FUS-DDIT3 gene rearrangement, however, DDIT3 gene was also amplified. The diagnosis of well-differentiated liposarcoma with prominent myxoid stroma was rendered. This is the first documentation of WDL with ML-like morphology harboring co-amplification of MDM2 and DDIT3 in the hypopharynx.
Collapse
Affiliation(s)
- Khaled A. Murshed
- grid.413548.f0000 0004 0571 546XDepartment of Laboratory Medicine and Pathology, Anatomic Pathology Division, Hamad Medical Corporation, Doha, Qatar
| | - Hayan Abo Samra
- grid.413548.f0000 0004 0571 546XDepartment of Laboratory Medicine and Pathology, Anatomic Pathology Division, Hamad Medical Corporation, Doha, Qatar
| | - Adham Ammar
- grid.413548.f0000 0004 0571 546XDepartment of Laboratory Medicine and Pathology, Anatomic Pathology Division, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
24
|
Vargas AC, Chan NL, Wong DD, Zaborowski M, Fuchs TL, Ahadi M, Clarkson A, Sioson L, Sheen A, Maclean F, Bonar F, Cheah A, Jones M, Chou A, Gill AJ. DNA damage-inducible transcript 3 immunohistochemistry is highly sensitive for the diagnosis of myxoid liposarcoma but care is required in interpreting the significance of focal expression. Histopathology 2021; 79:106-116. [PMID: 33465826 DOI: 10.1111/his.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
Abstract
AIMS Myxoid liposarcoma (MLPS) is characterised by DNA damage-inducible transcript 3 (DDIT3) gene rearrangements, confirmation of which is commonly used diagnostically. Recently, DDIT3 immunohistochemistry (IHC) has been reported to be highly sensitive and, when strict criteria are employed, specific for the diagnosis of MLPS. The aim of this study was to independently investigate DDIT3 IHC as a diagnostic marker for MLPS. METHODS AND RESULTS DDIT3 IHC was performed on 52 MLPS and on 152 mimics on whole sections, and on 515 non-MLPS sarcomas in tissue microarray format. Only one MLPS (which had undergone acid-based decalcification) was completely negative. With inclusion of this case if any nuclear expression is considered to indicate positivity, the overall sensitivity of DDIT3 is 98% (51 of 52 cases) and the specificity is 94% (633 of 667 non-MLPS cases are negative). If a cut-off of >10% of neoplastic cells is required for positivity, then the sensitivity remains 98% (51/52) and the specificity is 98.5% (657 of 667 non-MLPS cases are negative). If a cut-off of >50% of cells is required for positivity, then the sensitivity is 96% (50 of 52 cases) but the specificity improves to 100%. CONCLUSIONS Diffuse nuclear DDIT3 expression occurs in the overwhelming majority of MLPSs, and can be used to confirm the diagnosis in most cases without the need for molecular testing. A complete absence of expression argues strongly against MLPS, and almost completely excludes this diagnosis, particularly if there is consideration of technical factors such as decalcification. The significance of focal DDIT3 expression should be interpreted in the morphological and clinical context, although most tumours showing only focal expression are not MLPS.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Noni L Chan
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Daniel D Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia.,School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Matthew Zaborowski
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Talia L Fuchs
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mahsa Ahadi
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Adele Clarkson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Amy Sheen
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Fiona Maclean
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fiona Bonar
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.,Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alison Cheah
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Martin Jones
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
25
|
Diagnosis and Prognosis of Retroperitoneal Liposarcoma: A Single Asian Center Cohort of 57 Cases. JOURNAL OF ONCOLOGY 2021; 2021:7594027. [PMID: 34035812 PMCID: PMC8116140 DOI: 10.1155/2021/7594027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Background Liposarcoma is a soft tissue malignancy, commonly observed in the extremities. However, retroperitoneal liposarcoma is seldom reported and its diagnosis is frequently neglected. This study aims to present the clinical characteristics, diagnosis, and prognosis of five liposarcoma subtypes and report our experience of patient treatment. Methods We conducted a single-center noninterventional retrospective study of 57 retroperitoneal liposarcoma patients admitted to Peking Union Medical College Hospital (PUMCH, Beijing, China) between July 2011 and December 2019. We collected and analyzed their demographic, clinical, imaging, histological, therapeutic, and prognostic data over a mean 4.5-year follow-up period. Results Twenty-five (44%) patients were asymptomatic prior to diagnosis, with abdominal distension as the chief complaint in 18 (32%) patients and abdominal pain observed in 16 (28%) patients. Masses were evaluated by computed tomography (n = 48, 84%) or ultrasound (n = 25, 44%). Laparotomy (n = 52, 91%) was the dominant therapeutic modality rather than laparoscopy (n = 5, 9%). All patients were treated with R0 resection except two patients who underwent R2 resection. We conducted regular follow-ups every six months after surgery for a mean duration of 4.5 years. Recurrence was experienced by 14 (25%) patients and a further 9 (16%) died during follow-up. Conclusions Abdominal distension and pain are chief complaints with liposarcoma. As the extremities are the main liposarcomas locations, the diagnosis of retroperitoneal liposarcoma is usually neglected. Since half of the patients are asymptomatic, timely diagnosis and treatment are highly dependent on regular ultrasound and computed tomography imaging. R0 resection is the key to retroperitoneal liposarcoma treatment. In comparison, patients who underwent R2 resection, which is considered a palliative treatment, had bad prognoses. Large, symptomatic dedifferentiated, and pleomorphic liposarcomas are more likely to have poor prognoses, while the prognosis for well-differentiated or myxoid liposarcoma is relatively good.
Collapse
|
26
|
Abstract
Liposarcomas are a common subfamily of soft tissue sarcoma with several subtypes recognized by the World Health Organization: atypical lipomatous tumors (ALT)/well-differentiated liposarcoma (WDLPS), dedifferentiated liposarcoma (DDLPS), myxoid liposarcoma (MLPS), pleomorphic liposarcoma (PLPS), and myxoid pleomorphic liposarcoma (MPLPS). Despite shared adipocytic features among liposarcomas, the clinical approach to each subtype differs based on histology, location, clinical behavior, and specific oncogenic drivers. In this review, we highlight subtype-specific molecular features with the potential to generate novel therapies. We discuss recent clinical trials investigating the use of preoperative radiation therapy for retroperitoneal liposarcoma, chemotherapy, small molecule inhibitors, and innovative immunotherapy approaches and describe how we incorporate these advancements into the management of liposarcoma.
Collapse
Affiliation(s)
- Candace L Haddox
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Richard F Riedel
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
27
|
Liu H, Hei S, Wang J, Zhang Q, Yu X, Chen H. Dendritic fibromyxolipoma: A case report. Mol Clin Oncol 2020; 14:7. [PMID: 33262887 PMCID: PMC7690240 DOI: 10.3892/mco.2020.2169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/07/2020] [Indexed: 11/06/2022] Open
Abstract
Dendritic fibromyxolipoma (DFML) is a rare variant of spindle cell lipoma. It is characterized by extensive myxoid change and the presence of stellate cells with dendritic processes. The present study reports three cases of DFML that arose from the limbs and thoracic cavity. Pathologically, the tumor was composed of mature adipocytes admixing with patch spindle cells in a myxoid stroma. The cell atypia was not apparent and mitotic figures were rare. Immunohistochemistry revealed that the spindle cells were strongly positive for CD34. The three patients demonstrated no significant issues during a two-year's follow-up without evidence of recurrence and metastasis. The current study additionally reviewed all reported DFML cases in the PubMed database and Chinese journals.
Collapse
Affiliation(s)
- Hongyun Liu
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Shumin Hei
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qiliang Zhang
- Department of Sports Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Xinjuan Yu
- Department of Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
28
|
Pollack SM, Somaiah N, Araujo DM, Druta M, Van Tine BA, Burgess MA, Chawla SP, Seetharam M, Okuno SH, Bohac C, Chen M, Yurasov S, Attia S. Clinical outcomes of patients with advanced synovial sarcoma or myxoid/round cell liposarcoma treated at major cancer centers in the United States. Cancer Med 2020; 9:4593-4602. [PMID: 32374488 PMCID: PMC7333839 DOI: 10.1002/cam4.3039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Outcomes data regarding advanced synovial sarcoma (SS) and myxoid/round cell liposarcoma (MRCL) are limited, consisting primarily of retrospective series and post hoc analyses of clinical trials. METHODS In this multi-center retrospective study, data were abstracted from the medical records of 350 patients from nine sarcoma centers throughout the United States and combined into a registry. Patients with advanced/unresectable or metastatic SS (n = 249) or MRCL (n = 101) who received first-line systemic anticancer therapy and had records of tumor imaging were included. Overall survival (OS), time to next treatment, time to distant metastasis, and progression-free survival (PFS) were evaluated using the Kaplan-Meier method and Cox regression. RESULTS At start of first-line systemic anticancer therapy, 92.4% of patients with SS and 91.1% of patients with MRCL had metastatic lesions. However, 74.7% of patients with SS and 72.3% of patients with MRCL had ≥2 lines of systemic therapy. Median OS and median PFS from first-line therapy for SS was 24.7 months (95% CI, 20.9-29.4) and 7.5 months, respectively (95% CI, 6.4-8.4). Median OS and median PFS from start of first-line therapy for MRCL was 29.9 months (95% CI, 27-44.6) and 8.9 months (95% CI 4.5-12.0). CONCLUSIONS To the best of our knowledge, this is the largest retrospective study of patients with SS and MRCL. It provides an analysis of real-world clinical outcomes among patients treated at major sarcoma cancer centers and could inform treatment decisions and design of clinical trials. In general, the survival outcomes for this selected population appear more favorable than in published literature.
Collapse
Affiliation(s)
- Seth M Pollack
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | - Brian A Van Tine
- Washington University Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | | | | | | | | | - Chet Bohac
- Immune Design, South San Francisco, CA, USA.,Macrogenics, Rockville, MD, USA
| | | | | | | |
Collapse
|
29
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
30
|
Young R, Snow H, Hendry S, Mitchell C, Slavin J, Schlicht S, Na L, Hofman MS, Gyorki DE. Correlation between percutaneous biopsy and final histopathology for retroperitoneal sarcoma: a single-centre study. ANZ J Surg 2020; 90:497-502. [PMID: 32064728 DOI: 10.1111/ans.15723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Retroperitoneal sarcomas are rare soft tissue tumours accounting for 10-15% of soft tissue sarcomas. Patient prognosis and treatment recommendations (including extent of surgery and neoadjuvant strategies) are determined by the pre-operative histopathological subtype and grade obtained from biopsy and thus it is important to understand the accuracy of biopsy in retroperitoneal masses. METHODS This study presents a case series of primary retroperitoneal sarcomas managed at Peter MacCallum Cancer Centre (PMCC) between 2008 and 2019. Statistical analyses were performed to determine correlation between histopathology from percutaneous biopsy and surgical excision. RESULTS A total of 117 patients who underwent percutaneous core biopsy and surgical excision of retroperitoneal sarcoma were included. Diagnostic accuracy varied with histopathological diagnosis, but overall precise concordance between biopsy and final histopathology was seen in 61% (κ = 0.57). Biopsy was most sensitive for identifying well-differentiated liposarcoma (WDLPS) (sensitivity 85%, 95% CI 0.06-0.96) and leiomyosarcoma (sensitivity 81%, 95% CI 0.54-0.96) and was least sensitive for identifying de-differentiated liposarcoma (DDLPS) (sensitivity 40%, 95% CI 0.25-0.56). Overall agreement between biopsy and final histopathology increased with use of PET/CT scan pre-biopsy and with use of fluorescence in situ hybridisation testing on biopsy, however, neither test improved recognition of de-differentiated components within WD/DDLPS on core biopsy. CONCLUSIONS Pre-operative biopsy is important for clinical decision making in the treatment of retroperitoneal sarcoma. A significant portion of patients with a WDLPS will have a de-differentiated component identified at the time of resection that was not identified on initial biopsy.
Collapse
Affiliation(s)
- Rebekah Young
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Hayden Snow
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shona Hendry
- Department of Anatomical Pathology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - John Slavin
- Department of Anatomical Pathology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Stephen Schlicht
- Department of Radiology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Lumine Na
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - David E Gyorki
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|