1
|
Bailey CS, Craig AJ, Jagielo-Miller JE, Leibold CT, Keller PS, Beckmann JS, Prendergast MA. Late-term moderate prenatal alcohol exposure impairs tactile, but not spatial, discrimination in a T-maze continuous performance task in juvenile rats. Behav Brain Res 2024; 474:115208. [PMID: 39154755 PMCID: PMC11418090 DOI: 10.1016/j.bbr.2024.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Existing maze apparatuses used in rodents often exclusively assess spatial discriminability as a means to evaluate learning impairments. Spatial learning in such paradigms is reportedly spared by moderate prenatal alcohol exposure in rats, suggesting that spatial reinforcement alone is insufficient to delineate executive dysfunction, which consistently manifests in humans prenatally-exposed to alcohol. To address this, we designed a single-session continuous performance task in the T-maze apparatus that requires rats to discriminate within and between simultaneously-presented spatial (left or right) and tactile (sandpaper or smooth) stimuli for food reinforcement across four sequential discrimination stages: simple discrimination, intradimensional reversal 1, extradimensional shift, and intradimensional reversal 2. This design incorporates elements of working memory, attention, and goal-seeking behavior which collectively contribute to the executive function construct. Here, we found that rats prenatally-exposed to alcohol performed worse in both the tactile intradimensional reversal and extradimensional shift; alternatively, rats prenatally-exposed to alcohol acquired the extradimensional shift faster when shifting from the tactile to spatial dimension. In line with previous work, moderate prenatal alcohol exposure spared specifically spatial discrimination in this paradigm. However, when tactile stimuli were mapped into the spatial dimension, rats prenatally-exposed to alcohol required more trials to discriminate between the dimensions. We demonstrate that tactile stimuli can be operantly employed in a continuous performance T-maze task to detect discriminatory learning impairments in rats exposed to moderate prenatal alcohol. The current paradigm may be useful for assessing features of executive dysfunction in rodent models of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Caleb S Bailey
- Department of Psychology, University of Kentucky, United States; Department of Neuroscience, University of Kentucky, United States.
| | - Ashley J Craig
- Department of Neuroscience, University of Kentucky, United States
| | | | | | - Peggy S Keller
- Department of Psychology, University of Kentucky, United States
| | | | | |
Collapse
|
2
|
Gonçalves-Garcia M, Barto D, Reyna N, Clark BJ, Hamilton DA. The Prominence of Action Sequences and Behavioral Similarity in the Morris Water Task. Perspect Behav Sci 2024; 47:449-470. [PMID: 39099741 PMCID: PMC11294510 DOI: 10.1007/s40614-024-00402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 08/06/2024] Open
Abstract
The question of What is learned when navigating to a place is reinforced has been the subject of considerable debate. Prevailing views emphasize cognitive structures (e.g., maps) or associative learning, which has shaped measurement in spatial navigation tasks (e.g., the Morris water task [MWT]) toward selection of coarse measures that do not capture precise behaviors of individual animals. We analyzed the navigation paths of 15 rats (60 trials each) in the MWT at high temporal resolution (30Hz) and utilized dynamic time warping to quantify the similarity of paths within and between animals. Paths were largely direct, yet suboptimal, and included changes in speed and trajectory that were established early in training and unique to each animal. Individual rats executed similar paths from the same release point from trial to trial, which were distinct from paths executed by other rats as well as paths performed by the same rat from other release points. These observations suggest that rats learn to execute similar path sequences from trial to trial for each release point in the MWT. Occasional spontaneous deviations from the established, unique behavioral sequence, resulted in profound disruption in navigation accuracy. We discuss the potential implications of sequence navigation behaviors for understanding relations between behavior and spatial neural signals such as place cells, grid cells, and head direction cells. Supplementary Information The online version contains supplementary material available at 10.1007/s40614-024-00402-8.
Collapse
Affiliation(s)
- Mônica Gonçalves-Garcia
- Department of Psychology, University of New Mexico, MSC03 2220, 1, Albuquerque, NM 87131 USA
| | - Daniel Barto
- Department of Psychology, University of New Mexico, MSC03 2220, 1, Albuquerque, NM 87131 USA
| | - Nicole Reyna
- Department of Psychology, University of New Mexico, MSC03 2220, 1, Albuquerque, NM 87131 USA
| | - Benjamin J. Clark
- Department of Psychology, University of New Mexico, MSC03 2220, 1, Albuquerque, NM 87131 USA
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, MSC03 2220, 1, Albuquerque, NM 87131 USA
| |
Collapse
|
3
|
Simmons CM, Moseley SC, Ogg JD, Zhou X, Johnson M, Wu W, Clark BJ, Wilber AA. A thalamo-parietal cortex circuit is critical for place-action coordination. Hippocampus 2023; 33:1252-1266. [PMID: 37811797 PMCID: PMC10872801 DOI: 10.1002/hipo.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The anterior and lateral thalamus (ALT) contains head direction cells that signal the directional orientation of an individual within the environment. ALT has direct and indirect connections with the parietal cortex (PC), an area hypothesized to play a role in coordinating viewer-dependent and viewer-independent spatial reference frames. This coordination between reference frames would allow an individual to translate movements toward a desired location from memory. Thus, ALT-PC functional connectivity would be critical for moving toward remembered allocentric locations. This hypothesis was tested in rats with a place-action task that requires associating an appropriate action (left or right turn) with a spatial location. There are four arms, each offset by 90°, positioned around a central starting point. A trial begins in the central starting point. After exiting a pseudorandomly selected arm, the rat had to displace the correct object covering one of two (left versus right) feeding stations to receive a reward. For a pair of arms facing opposite directions, the reward was located on the left, and for the other pair, the reward was located on the right. Thus, each reward location had a different combination of allocentric location and egocentric action. Removal of an object was scored as correct or incorrect. Trials in which the rat did not displace any objects were scored as "no selection" trials. After an object was removed, the rat returned to the center starting position and the maze was reset for the next trial. To investigate the role of the ALT-PC network, muscimol inactivation infusions targeted bilateral PC, bilateral ALT, or the ALT-PC network. Muscimol sessions were counterbalanced and compared to saline sessions within the same animal. All inactivations resulted in decreased accuracy, but only bilateral PC inactivations resulted in increased non selecting, increased errors, and longer latency responses on the remaining trials. Thus, the ALT-PC circuit is critical for linking an action with a spatial location for successful navigation.
Collapse
Affiliation(s)
- Christine M Simmons
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Shawn C Moseley
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Jordan D Ogg
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Xinyu Zhou
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Madeline Johnson
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Wei Wu
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Aaron A Wilber
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Entropy of city street networks linked to future spatial navigation ability. Nature 2022; 604:104-110. [PMID: 35355009 DOI: 10.1038/s41586-022-04486-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
The cultural and geographical properties of the environment have been shown to deeply influence cognition and mental health1-6. Living near green spaces has been found to be strongly beneficial7-11, and urban residence has been associated with a higher risk of some psychiatric disorders12-14-although some studies suggest that dense socioeconomic networks found in larger cities provide a buffer against depression15. However, how the environment in which one grew up affects later cognitive abilities remains poorly understood. Here we used a cognitive task embedded in a video game16 to measure non-verbal spatial navigation ability in 397,162 people from 38 countries across the world. Overall, we found that people who grew up outside cities were better at navigation. More specifically, people were better at navigating in environments that were topologically similar to where they grew up. Growing up in cities with a low street network entropy (for example, Chicago) led to better results at video game levels with a regular layout, whereas growing up outside cities or in cities with a higher street network entropy (for example, Prague) led to better results at more entropic video game levels. This provides evidence of the effect of the environment on human cognition on a global scale, and highlights the importance of urban design in human cognition and brain function.
Collapse
|
5
|
Johnsen SHW, Rytter HM. Dissociating spatial strategies in animal research: Critical methodological review with focus on egocentric navigation and the hippocampus. Neurosci Biobehav Rev 2021; 126:57-78. [PMID: 33771535 DOI: 10.1016/j.neubiorev.2021.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
One major challenge in animal research on spatial learning and memory pertains to designing methods to dissociate spatial strategies (allocentric vs. egocentric). This is crucial for understanding the underlying cognitive processes and neural circuits that are recruited in navigational tasks. Taking the egocentric reference frames as a starting point, this review argues that in many extensively used spatial paradigms, multiple spatial reference frames are often available to the animals but remain unaccounted for. We discuss the implications this has for the inferences that can be made and propose a decision-algorithm to construct spatial learning paradigms that can reduce the influence of these confounding variables. Furthermore, with these considerations in mind, we review the role of the hippocampus in egocentric navigation forms, i.e. in response learning, egocentric sequential learning and path integration. This choice is based on the controversy surrounding the role of hippocampus in these spatial paradigms. We discuss the possible methodological confounders that may explain the inconclusive results.
Collapse
Affiliation(s)
- Svend Heini W Johnsen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen, Denmark.
| | - Hana Malá Rytter
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen, Denmark; University Hospital Bispebjerg - Frederiksberg, Department of Neurology, Nielsine Nielsens vej 7, 2400 Copenhagen, Denmark; Danish Concussion Center, Amagerfælledvej 56A, 2300 Copenhagen, Denmark.
| |
Collapse
|
6
|
Bermudez-Contreras E, Clark BJ, Wilber A. The Neuroscience of Spatial Navigation and the Relationship to Artificial Intelligence. Front Comput Neurosci 2020; 14:63. [PMID: 32848684 PMCID: PMC7399088 DOI: 10.3389/fncom.2020.00063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.
Collapse
Affiliation(s)
| | - Benjamin J. Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Aaron Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Sex differences after environmental enrichment and physical exercise in rats when solving a navigation task. Learn Behav 2018; 44:227-38. [PMID: 26511132 DOI: 10.3758/s13420-015-0200-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of early environmental enrichment (EE) and voluntary wheel running on the preference for using a landmark or pool geometry when solving a simple spatial task in adult male and female rats were assessed. After weaning, rats were housed in same-sex pairs in enriched or standard cages (EE and control groups) for two and a half months. Then the rats were trained in a triangular-shaped pool to find a hidden platform whose location was defined in terms of these two sources of information, a landmark outside the pool and a particular corner of the pool. As expected, enriched rats reached the platform faster than control animals, and males and females did not differ. Enriched rats also performed better on subsequent test trials without the platform with the cues individually presented (either pool geometry or landmark). However, on a preference test without the platform, a clear sex difference was found: Females spent more time in an area of the pool that corresponded to the landmark, whereas males spent more time in the distinctive corner of the pool. The present EE protocol did not alter females' preference for the landmark cue. The results agree with the claim that environmental enrichment is a consequence of a reduced anxiety response (measured by thigmotaxis) during cognitive testing. A possible implication of ancestral selection pressures is discussed.
Collapse
|
8
|
Golub MS. Cognitive neuroscience and developmental neurotoxicity testing. Neurotoxicol Teratol 2017; 61:134. [DOI: 10.1016/j.ntt.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
9
|
Schoenfeld R, Schiffelholz T, Beyer C, Leplow B, Foreman N. Variants of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiol Learn Mem 2017; 139:117-127. [DOI: 10.1016/j.nlm.2016.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/20/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022]
|
10
|
Increased task demand during spatial memory testing recruits the anterior cingulate cortex. Learn Mem 2016; 23:450-4. [PMID: 27531834 PMCID: PMC4986854 DOI: 10.1101/lm.042366.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 11/25/2022]
Abstract
We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was manipulated by removing several prominent extra-pool cues from the testing room. Immediate early gene expression (c-Fos) in the ACC was greater following the cue removal and comparable to remote memory retrieval (30-d retention interval) levels, supporting the view of increased ACC contribution during high cognitive-demand memory processes.
Collapse
|
11
|
Devan BD, Chaban N, Piscopello J, Deibel SH, McDonald RJ. Cognitive and Stimulus–Response Habit Functions of the Neo-(Dorsal) Striatum. INNOVATIONS IN COGNITIVE NEUROSCIENCE 2016. [DOI: 10.1007/978-3-319-42743-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Ma Z(S. Towards computational models of animal cognition, an introduction for computer scientists. COGN SYST RES 2015. [DOI: 10.1016/j.cogsys.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Hamilton DA, Brigman JL. Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. GENES, BRAIN, AND BEHAVIOR 2015; 14:4-21. [PMID: 25561028 PMCID: PMC4482359 DOI: 10.1111/gbb.12191] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023]
Abstract
Research examining the contribution of genetics to behavior is increasingly focused on higher order behavioral and cognitive processes including the ability to modify behaviors when environmental demands change. The frontal cortices of mammals, including rodents, subserve a diverse set of behavioral and cognitive functions including motor planning, social behavior, evaluation of expected outcomes and working memory, which may be particularly sensitive to genetic factors and interactions with experience (e.g. stress). Behavioral flexibility is a core attribute of these functions. This review orients readers to the current landscape of the literature on the frontocortical bases of behavioral flexibility in rodent laboratory experiments. Studies are divided into three broad categories: reversal learning, inhibitory learning and set-shifting. Functional dissociations within the broader scope of behavioral flexibility are reviewed, followed by discussion of the associations between specific components of frontal cortex and specific aspects of relevant behavioral processes. Finally, the authors identify open questions that need to be addressed to better establish the constituents of frontal cortex underlying behavioral flexibility.
Collapse
Affiliation(s)
- D A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
14
|
Gaskin S, White NM. Parallel processing of information about location in the amygdala, entorhinal cortex and hippocampus. Hippocampus 2014; 23:1075-83. [PMID: 23929819 DOI: 10.1002/hipo.22179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/07/2022]
Abstract
The conditioned cue preference paradigm was used to study how rats use extra-maze cues to discriminate between 2 adjacent arms on an 8-arm radial maze, a situation in which most of the same cues can be seen from both arms but only one arm contains food. Since the food-restricted rats eat while passively confined on the food-paired arm no responses are reinforced, so the discrimination is due to Pavlovian stimulus-reward (or outcome) learning. Consistent with other evidence that rats must move around in an environment to acquire a spatial map, we found that learning the adjacent arms CCP (ACCP) required a minimum amount of active exploration of the maze with no reinforcers present prior to passive pairing of the extra-maze cues with the food reinforcer, an instance of latent learning. Temporary inactivation of the hippocampus during the pre-exposure sessions had no effect on ACCP learning, confirming other evidence that the hippocampus is not involved in latent learning. A series of experiments indentified a circuit involving fimbria-fornix and dorsal entorhinal cortex as the neural basis of latent learning in this situation. In contrast, temporary inactivation of the entorhinal cortex or hippocampus during passive training or during testing blocked ACCP learning and expression, respectively, suggesting that these two structures co-operate in using spatial information to learn the location of food on the maze during passive pairing and to express this combined information during testing. In parallel with these processes we found that the amygdala processes information leading to an equal tendency to enter both adjacent arms (even though only one was paired with food) suggesting that the stimulus information available to this structure is not sufficiently precise to discriminate between the ambiguous cues visible from the adjacent arms. Expression of the ACCP in normal rats depends on hippocampus-based learning to avoid the unpaired arm which competes with the amygdala-based tendency to enter that arm. In contrast, there is cooperation between amygdala- and hippocampus-based tendencies to enter the food-paired arm. These independent forms of learning contribute to the rat's ability to discriminate among spatial locations using ambiguous extra-maze cues.
Collapse
Affiliation(s)
- Stephane Gaskin
- Department of Psychology, McGill University, Montreal, Quebec, H3G 1C7, Canada
| | | |
Collapse
|
15
|
Faraji J, Jafari SY, Soltanpour N, Arjang K, Soltanpour N, Moeeini R. Stress enhances return-based behaviors in Wistar rats during spatial navigation without altering spatial performance: improvement or deficit? Physiol Behav 2013; 122:163-71. [PMID: 24012698 DOI: 10.1016/j.physbeh.2013.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/11/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022]
Abstract
Stress is frequently reported to be deleterious to spatial learning and memory. However, there are many instances in which spatial performance is not affected by stress. This discrepancy observed across different studies, in addition to the animals' strain and gender, may be caused by the type of the task employed to assess stress-related behavioral changes. The present experiments set out to investigate the effects of repeated restraint stress (3h/21 days) on spatial performance within the two wet-land (Morris water task; MWT) and dry-land (the ziggurat task; ZT) tasks for spatial learning and memory in adult male Wistar rats. All rats were tested before and after stress treatment. Stressed rats gained less weight than controls. Stress also enhanced circulating corticosterone (CORT). We did not observe a deleterious effect of stress on spatial learning and memory in either of the tasks: both groups successfully performed the wet- and dry-land tasks across all spatial testing days, indicating intact spatial cognition in control and stress rats. However, daily restraint stress for 21 days significantly caused enhancement in rats' memory-dependent returns during the goal-directed investigation in the ZT. The number of returns on learning days was not affected by repeated restraint stress. Return-based spatial investigation induced by stress only on memory days in the dry-land task, not only emphasize on the task-dependent nature of stress-related alterations, it may reveal one of the silent, but arguably deleterious effects of stress on spatial memory in Wistar rats.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada; Golestan University of Medical Sciences, Faculty of Nursing & Midwifery, Gorgan, Islamic Republic of Iran.
| | | | | | | | | | | |
Collapse
|
16
|
Clark B, Rice JP, Akers KG, Candelaria-Cook FT, Taube JS, Hamilton DA. Lesions of the dorsal tegmental nuclei disrupt control of navigation by distal landmarks in cued, directional, and place variants of the Morris water task. Behav Neurosci 2013; 127:566-81. [PMID: 23731069 PMCID: PMC3997071 DOI: 10.1037/a0033087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Navigation depends on a network of neural systems that accurately monitor an animal's spatial orientation in an environment. Within this navigation system are head direction (HD) cells which discharge as a function of an animal's directional heading, providing an animal with a neural compass to guide ongoing spatial behavior. Experiments were designed to test this hypothesis by damaging the dorsal tegmental nucleus (DTN), a midbrain structure that plays a critical role in the generation of the rodent HD cell signal, and evaluating landmark based navigation using variants of the Morris water task. In Experiments 1 and 2, shams and DTN-lesioned rats were trained to navigate toward a cued platform in the presence of a constellation of distal landmarks located outside the pool. After reaching a training criteria, rats were tested in three probe trials in which (a) the cued platform was completely removed from the pool, (b) the pool was repositioned and the cued platform remained in the same absolute location with respect to distal landmarks, or (c) the pool was repositioned and the cued platform remained in the same relative location in the pool. In general, DTN-lesioned rats required more training trials to reach performance criterion, were less accurate to navigate to the platform position when it was removed, and navigated directly to the cued platform regardless of its position in the pool, indicating a general absence of control over navigation by distal landmarks. In Experiment 3, DTN and control rats were trained in directional and place navigation variants of the water task where the pool was repositioned for each training trial and a hidden platform was placed either in the same relative location (direction) in the pool or in the same absolute location (place) in the distal room reference frame. DTN-lesioned rats were initially impaired in the direction task, but ultimately performed as well as controls. In the place task, DTN-lesioned rats were severely impaired and displayed little evidence of improvement over the course of training. Together, these results support the conclusion that the DTN is required for accurate landmark navigation.
Collapse
Affiliation(s)
- Benjamin Clark
- Department of Psychological and Brain Sciences, Dartmouth College,
Hanover, NH
| | - James P. Rice
- Department of Psychology, University of New Mexico, Albuquerque,
NM
| | | | | | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Dartmouth College,
Hanover, NH
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque,
NM
- Department of Neurosciences, University of New Mexico, Albuquerque,
NM
| |
Collapse
|
17
|
Khamassi M, Humphries MD. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci 2012. [PMID: 23205006 PMCID: PMC3506961 DOI: 10.3389/fnbeh.2012.00079] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free (cue-driven) strategies; behavior in operant conditioning research is often organized into goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one powerful theory for distinct forms of learning during instrumental conditioning, namely model-based (maintaining a representation of the world) and model-free (reacting to immediate stimuli) learning algorithms. We extend these lines of argument to propose an alternative taxonomy for spatial navigation, showing how various previously identified strategies can be distinguished as “model-based” or “model-free” depending on the usage of information and not on the type of information (e.g., cue vs. place). We argue that identifying “model-free” learning with dorsolateral striatum and “model-based” learning with dorsomedial striatum could reconcile numerous conflicting results in the spatial navigation literature. From this perspective, we further propose that the ventral striatum plays key roles in the model-building process. We propose that the core of the ventral striatum is positioned to learn the probability of action selection for every transition between states of the world. We further review suggestions that the ventral striatal core and shell are positioned to act as “critics” contributing to the computation of a reward prediction error for model-free and model-based systems, respectively.
Collapse
Affiliation(s)
- Mehdi Khamassi
- Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie Paris, France ; Centre National de la Recherche Scientifique, UMR7222 Paris, France
| | | |
Collapse
|
18
|
Barkas L, Redhead E, Taylor M, Shtaya A, Hamilton DA, Gray WP. Fluoxetine restores spatial learning but not accelerated forgetting in mesial temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; 135:2358-74. [PMID: 22843410 DOI: 10.1093/brain/aws176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Learning and memory dysfunction is the most common neuropsychological effect of mesial temporal lobe epilepsy, and because the underlying neurobiology is poorly understood, there are no pharmacological strategies to help restore memory function in these patients. We have demonstrated impairments in the acquisition of an allocentric spatial task, in patients with unilateral hippocampal sclerosis. We also show that patients have accelerated forgetting of the learned spatial task and that this is associated with damage to the non-dominant hippocampal formation. We go on to show a very similar pattern of chronic allocentric learning and accelerated forgetting in a status epilepticus model of mesial temporal lobe epilepsy in rats, which is associated with reduced and abnormal hippocampal neurogenesis. Finally, we show that reversal of the neurogenic deficit using fluoxetine is associated with reversal of the learning deficit but not the accelerated forgetting, pointing to a possible dissociation in the underlying mechanisms, as well as a potential therapeutic strategy for improving hippocampal-dependent learning in patients with mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Lisa Barkas
- Division of Clinical Neurosciences, University of Southampton; LD70, South Academic Block, Southampton General Hospital, Southampton SO166YD, UK
| | | | | | | | | | | |
Collapse
|
19
|
Knierim JJ, Hamilton DA. Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol Rev 2011; 91:1245-79. [PMID: 22013211 DOI: 10.1152/physrev.00021.2010] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The most common behavioral test of hippocampus-dependent, spatial learning and memory is the Morris water task, and the most commonly studied behavioral correlate of hippocampal neurons is the spatial specificity of place cells. Despite decades of intensive research, it is not completely understood how animals solve the water task and how place cells generate their spatially specific firing fields. Based on early work, it has become the accepted wisdom in the general neuroscience community that distal spatial cues are the primary sources of information used by animals to solve the water task (and similar spatial tasks) and by place cells to generate their spatial specificity. More recent research, along with earlier studies that were overshadowed by the emphasis on distal cues, put this common view into question by demonstrating primary influences of local cues and local boundaries on spatial behavior and place-cell firing. This paper first reviews the historical underpinnings of the "standard" view from a behavioral perspective, and then reviews newer results demonstrating that an animal's behavior in such spatial tasks is more strongly controlled by a local-apparatus frame of reference than by distal landmarks. The paper then reviews similar findings from the literature on the neurophysiological correlates of place cells and other spatially correlated cells from related brain areas. A model is proposed by which distal cues primarily set the orientation of the animal's internal spatial coordinate system, via the head direction cell system, whereas local cues and apparatus boundaries primarily set the translation and scale of that coordinate system.
Collapse
Affiliation(s)
- James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
20
|
Martin GM, Pirzada A, Bridger A, Tomlin J, Thorpe CM, Skinner DM. Manipulations of start and food locations affect navigation on a foraging task. LEARNING AND MOTIVATION 2011. [DOI: 10.1016/j.lmot.2011.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Voikar V, Colacicco G, Gruber O, Vannoni E, Lipp HP, Wolfer DP. Conditioned response suppression in the IntelliCage: assessment of mouse strain differences and effects of hippocampal and striatal lesions on acquisition and retention of memory. Behav Brain Res 2010; 213:304-12. [PMID: 20493907 DOI: 10.1016/j.bbr.2010.05.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/09/2010] [Accepted: 05/12/2010] [Indexed: 02/01/2023]
Abstract
The IntelliCage allows fully automated continuous testing of various behaviours in the home cage environment without handling the mice. Here we tested whether conditioned avoidance is retained after a time period delay spent outside the IntelliCage. During the training, nosepokes in one of the four learning corners were punished with an air-puff. After 24h of training, the mice were placed in regular cages for 24h. During the last 18h of this interval, the mice were water deprived and then returned to the IntelliCage for a probe trial where drinking was allowed in all corners. The C57BL/6 mice developed a significant suppression of nosepoking in the punished corner during training, and the avoidance was carried over to the following probe trial. Repetition of the experiment by delivering punishment in a different corner assigned to individual mice revealed a similar performance pattern. Comparison between the different strains revealed a reduced nosepoke suppression in DBA/2 and B6D2F1 mice as compared to C57BL/6 mice in the probe trial, despite similar error rates during the training with short (1-s) air-puffs. However, the performance of the three strains in the probe trial were equalised when the air-puffs were prolonged until the end of the corner visit. Significant extinction of the nosepoke suppression occurred after 6 days. A prolonged interval (7 days) between the training and the probe trial resulted in a loss of suppression in DBA/2 mice, but not in C57BL/6 and B6D2F1 mice. Additional experiments revealed that performance in the probe trial was dependent on a complex set of intramaze cues. Testing of mice with bilateral excitotoxic lesions of the hippocampus or dorso-lateral striatum revealed that learning this task was dependent on an intact hippocampus, but not on an intact striatum. In summary, the conditioned nosepoke suppression test presented here is sensitive to both genetic differences and hippocampal lesions. This test could be applied to the screening of mutant mice with impaired hippocampal functions more efficiently than those of the standard memory tests.
Collapse
Affiliation(s)
- Vootele Voikar
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
The modulation of striatal dopamine release correlates with water-maze performance in aged rats. Neurobiol Aging 2009; 30:957-72. [DOI: 10.1016/j.neurobiolaging.2007.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
|
23
|
Hamilton DA, Johnson TE, Redhead ES, Verney SP. Control of rodent and human spatial navigation by room and apparatus cues. Behav Processes 2008; 81:154-69. [PMID: 19121374 DOI: 10.1016/j.beproc.2008.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/19/2022]
Abstract
A growing body of literature indicates that rats prefer to navigate in the direction of a goal in the environment (directional responding) rather than to the precise location of the goal (place navigation). This paper provides a brief review of this literature with an emphasis on recent findings in the Morris water task. Four experiments designed to extend this work to humans in a computerized, virtual Morris water task are also described. Special emphasis is devoted to how directional responding and place navigation are influenced by room and apparatus cues, and how these cues control distinct components of navigation to a goal. Experiments 1 and 2 demonstrate that humans, like rats, perform directional responses when cues from the apparatus are present, while Experiment 3 demonstrates that place navigation predominates when apparatus cues are eliminated. In Experiment 4, an eyetracking system measured gaze location in the virtual environment dynamically as participants navigated from a start point to the goal. Participants primarily looked at room cues during the early segment of each trial, but primarily focused on the apparatus as the trial progressed, suggesting distinct, sequential stimulus functions. Implications for computational modeling of navigation in the Morris water task and related tasks are discussed.
Collapse
Affiliation(s)
- Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
24
|
Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: A new task to evaluate spatial behavior. Behav Brain Res 2008; 189:17-31. [DOI: 10.1016/j.bbr.2007.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 12/03/2007] [Accepted: 12/05/2007] [Indexed: 01/08/2023]
|
25
|
VanderSal ND. Rapid spatial learning in a velvet ant (Dasymutilla coccineohirta). Anim Cogn 2008; 11:563-7. [DOI: 10.1007/s10071-008-0145-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 11/24/2022]
|
26
|
Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, Ihara M, Takahashi R, Tomimoto H. Selective Impairment of Working Memory in a Mouse Model of Chronic Cerebral Hypoperfusion. Stroke 2007; 38:2826-32. [PMID: 17761909 DOI: 10.1161/strokeaha.107.490151] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We recently designed a mouse model of chronic cerebral hypoperfusion, in which the cerebral white matter is damaged without significant gray matter lesions. The behavioral characteristics of these mice were studied using a test battery for neurological and cognitive functions. METHODS Adult C57Bl/6 male mice were subjected to either sham-operation or bilateral common carotid artery stenosis (BCAS) using microcoils with an internal diameter of 0.18 mm. At 30 days after BCAS, 70 animals were divided into 3 groups and subjected to behavioral test batteries. The first group underwent comprehensive behavioral test, including the neurological screen, prepulse inhibition, hot plate, open field, light/dark transition, Porsolt forced swim and contextual and cued fear conditioning (BCAS n=13; sham-operated n=11). The second group was for the working memory task of the 8-arm radial maze test (BCAS n=12; sham-operated n=10), and the third for the reference memory task of the 8-arm radial maze test (BCAS n=13; sham-operated n=11). Another batch of animals were examined for histological changes (BCAS n=11; sham-operated n=12). RESULTS The white matter including the corpus callosum was consistently found to be rarefied without clear ischemic lesions in the hippocampus. No apparent differences were observed in the comprehensive test batteries between the control and BCAS mice. However, in the working memory tasks tested with the 8-arm radial maze, the BCAS mice made significantly more errors than the control mice (P<0.0001). Again, there were no detectable differences in the reference memory tasks between the groups. CONCLUSIONS At 30 days after BCAS, working memory deficits as well as white matter changes were apparent in the mice. Working memory deficit was attributable to damage of the frontal-subcortical circuits, suggesting the BCAS model is useful to evaluate the substrates of subcortical vascular dementia.
Collapse
Affiliation(s)
- Masunari Shibata
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cassel JC, Lazaris A, Birthelmer A, Jackisch R. Spatial reference- (not working- or procedural-) memory performance of aged rats in the water maze predicts the magnitude of sulpiride-induced facilitation of acetylcholine release by striatal slices. Neurobiol Aging 2007; 28:1270-85. [PMID: 16843572 DOI: 10.1016/j.neurobiolaging.2006.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/18/2006] [Accepted: 05/30/2006] [Indexed: 11/17/2022]
Abstract
Cluster analysis of water-maze reference-memory performance distinguished subpopulations of young adult (3-5 months), aged (25-27 months) unimpaired (AU) and aged impaired (AI) rats. Working-memory performances of AU and AI rats were close to normal (though young and aged rats differed in exploration strategies). All aged rats showed impaired procedural-memory. Electrically evoked release of tritium was assessed in striatal slices (preloaded with [(3)H]choline) in the presence of oxotremorine, physostigmine, atropine+physostigmine, quinpirole, nomifensine or sulpiride. Aged rats exhibited reduced accumulation of [(3)H]choline (-30%) and weaker transmitter release. Drug effects (highest concentration) were reductions of release by 44% (oxotremorine), 72% (physostigmine), 84% (quinpirole) and 65% (nomifensine) regardless of age. Sulpiride and atropine+physostigmine facilitated the release more efficiently in young rats versus aged rats. The sulpiride-induced facilitation was weaker in AI rats versus AU rats; it significantly correlated with reference-memory performance. The results confirm age-related alterations of cholinergic and dopaminergic striatal functions, and point to the possibility that alterations in the D(2)-mediated dopaminergic regulation of these functions contribute to age-related reference-memory deficits.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Comportementales et Cognitives, FRE 2855, CNRS-Université Louis Pasteur, IFR 37 Neurosciences, GDR CNRS 2905, Strasbourg, France.
| | | | | | | |
Collapse
|
28
|
Hanlon FM, Weisend MP, Hamilton DA, Jones AP, Thoma RJ, Huang M, Martin K, Yeo RA, Miller GA, Cañive JM. Impairment on the hippocampal-dependent virtual Morris water task in schizophrenia. Schizophr Res 2006; 87:67-80. [PMID: 16844347 DOI: 10.1016/j.schres.2006.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Traditional neuropsychological tests of visual and verbal memory have been used to evaluate memory deficits in schizophrenia. However, these tests cannot be used in non-human animal research, which is important for the discovery of treatments that will improve cognition and for study of the etiology of schizophrenia. To help bridge the gap between human and non-human animal research on hippocampal function in schizophrenia, this study sought to characterize the behavioral performance exhibited by patients using the Morris water task (MWT). The MWT has been shown in human and non-human animal studies to be hippocampus-dependent. In the virtual MWT, human subjects navigate a computer-generated on-screen environment to escape from the "water" by locating a platform. Patients with schizophrenia and controls performed two versions of the virtual MWT: a hippocampal-dependent hidden-platform version, relying on allocentric navigational abilities, and a non-hippocampal-dependent visible-platform version, relying on cued-navigational abilities. Patients traveled further and took longer to find the hidden platform over training blocks and spent less time in the correct quadrant during a probe trial. There was no deficit in the visible-platform condition. These findings identify a behavioral impairment on a hippocampal-dependent task in schizophrenia and support using the MWT in testing animal models of schizophrenia.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mental Illness and Neuroscience Discovery (MIND) Institute, 1101 Yale Blvd. NE, Albuquerque, New Mexico 87106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sarter M. Preclinical research into cognition enhancers. Trends Pharmacol Sci 2006; 27:602-8. [PMID: 16997388 DOI: 10.1016/j.tips.2006.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 08/16/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
The preclinical development of drugs to treat the cognitive symptoms of neuropsychiatric and neurological disorders is a formidable challenge. Evidence from a wide range of preclinical behavioral and neuropharmacological tests has formed the basis for predicting drug-induced cognition enhancement in normal volunteers and in patients with cognitive impairments. However, the limited validity of preclinical predictions of this enhancement in humans indicates that conventional screening for "broadly active" compounds represents a below-optimal research strategy. This article conceptualizes the evidence needed to improve the predictive validity of preclinical research designed to discover and characterize cognition enhancers. We suggest that the investigation of reciprocal relationships among molecular, cellular, behavioral and cognitive processes modulated by candidate drugs represents the core of such research. By contrast, the usefulness of simple and high-throughput screening tests for the detection of cognition enhancers might be restricted to advanced drug-finding programs that are guided by evidence of the modulation of neurocognitive relationships by cognition enhancers and that are informed by iterative preclinical-clinical cross-validation of research approaches. We stress the need for basic biopsychological research approaches in preclinical programs to find and characterize drugs to treat cognitive disorders.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, 4032 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA.
| |
Collapse
|
30
|
van der Staay FJ, Bouger P, Lehmann O, Lazarus C, Cosquer B, Koenig J, Stump V, Cassel JC. Long-term effects of immunotoxic cholinergic lesions in the septum on acquisition of the cone-field task and noncognitive measures in rats. Hippocampus 2006; 16:1061-79. [PMID: 17016816 DOI: 10.1002/hipo.20229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, nonspecific mechanical or neurotoxic lesions of the septum impair spatial memory in, e.g., Morris water- and radial-maze tasks. Unfortunately, the lack of specificity of such lesions limits inferences about the role of the cholinergic hippocampal projections in spatial cognition. We therefore tested the effects of septal lesions produced by 192 IgG-saporin in rats, which is highly selective for basal forebrain cholinergic neurons, on home cage activity, noncognitive tests (modified Irwin test, open field and forced swimming tests, and various sensorimotor tasks), and the cone-field spatial learning task. The immunotoxic lesion reduced acetylcholine (ACh) levels in the septum (-61%) and hippocampus (>-75%). Rats with lesions showed mild home-cage hyperactivity at 4 weeks postlesion, but no noncognitive deficits at 13 weeks postsurgery. In the cone-field task, rats with septal lesions made more working- and reference-memory errors than the controls, but acquisition curves were parallel in both groups. The speed of visiting cones was faster in the rats with lesions, indicative of disturbed attention or increased motivation. These data support the growing evidence that involvement of the septohippocampal cholinergic system in spatial learning and memory may have been overestimated in studies that used lesions with poor selectivity.
Collapse
|
31
|
Miranda R, Blanco E, Begega A, Rubio S, Arias JL. Hippocampal and caudate metabolic activity associated with different navigational strategies. Behav Neurosci 2006; 120:641-50. [PMID: 16768616 DOI: 10.1037/0735-7044.120.3.641] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hippocampal and striatal systems are widely related to spatial tasks. Depending on the strategies used, different memory systems can be activated. In this study, the authors used the cytochrome c-oxidase technique as a functional marker of the hippocampal and dorsal striatum activity related to training in several water maze tasks. Current results show a differential participation of the hippocampal and striatal systems in navigation. When spatial information is relevant, participation of the hippocampal system is more important, and when the task is similar to a response learning one, the striatal system is more active. According to computational models, CA3 seems to be more active when the associative demand is higher, whereas CA1 and dentate gyrus activity are higher when spatial information processing is required.
Collapse
Affiliation(s)
- Rubén Miranda
- Laboratory of Psychobiology, School of Psychology, University of Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
32
|
Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP. Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berl) 2005; 180:177-90. [PMID: 15654502 DOI: 10.1007/s00213-004-2132-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 11/27/2004] [Indexed: 12/26/2022]
Abstract
RATIONALE APP23 mice are a promising model of Alzheimer's disease, expressing several histopathological, cognitive and behavioural hallmarks of the human condition. A valid animal model should respond to therapeutic interventions in an equivalent manner as human patients. OBJECTIVES To further validate the APP23 model, we examined whether cognitive deficits could be antagonised by donepezil, rivastigmine, galantamine or memantine, which are approved drugs for symptomatic treatment of dementia. METHODS Animals were tested at an age at which untreated APP23 mice display severe deficits in visual-spatial learning. Four-month-old APP23 mice and control littermates were administered donepezil (0.3 or 0.6 mg kg(-1)), rivastigmine (0.5 or 1.0 mg kg(-1)), galantamine (1.25 or 2.5 mg kg(-1)), memantine (2 or 10 mg kg(-1)) or saline through daily i.p. injections. After 1 week of treatment, acquisition phase commenced, with daily treatment continuing during cognitive testing. RESULTS All cholinesterase inhibitors reduced cognitive deficits with the following optimal daily doses: galantamine 1.25 mg kg(-1), rivastigmine 0.5 mg kg(-1) and donepezil 0.3 mg kg(-1). Higher dosages often did not exert beneficial effects in accordance with inverted U-shaped dose-response curves described for cholinomimetics. Symptomatic efficacy of memantine on cognition was mild, with significant amelioration manifesting during probe trial. CONCLUSIONS This is the first study to simultaneously evaluate the efficacy of therapeutically relevant doses of these four compounds in one particular learning and memory paradigm, being the Morris water maze. The fact that symptomatic intervention was able to diminish cognitive impairment, substantially adds to the validity of the APP23 model as a valuable tool to evaluate future therapeutic approaches.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Born-Bunge Institute, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | |
Collapse
|