1
|
Valvassori SS, Peper-Nascimento J, Aguiar-Geraldo JM, Hilsendeger A, Daminelli T, Juruena MF, El-Mallakh RS, Quevedo J. Biological rhythms are correlated with Na +, K +-ATPase and oxidative stress biomarkers: A translational study on bipolar disorder. J Affect Disord 2023; 340:877-885. [PMID: 37572705 DOI: 10.1016/j.jad.2023.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic, severe, and multifactorial psychiatric disorder. Although biological rhythms alterations, sodium potassium pump (Na+, K+-ATPase) changes, and oxidative stress appear to play a critical role in the etiology and pathophysiology of BD, the inter-connection between them has not been described. Therefore this study evaluated the association between biological rhythms, Na+, K+-ATPase, and oxidative stress parameters in BD patients and the preclinical paradoxical sleep deprivation model (PSD). METHODS A translational study was conducted, including a case-control protocol with 36 BD and 46 healthy controls (HC). Subjects completed the Biological Rhythm Interview of Assessment in Neuropsychiatry (BRIAN). In addition, Erythrocyte Na+, K+-ATPase activity, and oxidative and nitrosative stress markers were assessed (4-hydroxynonenal [4-HNE], 8-isoprostane [8-ISO], thiobarbituric acid reactive substances [TBARS], carbonyl, 3-nitrotyrosine [3-nitro]). In the preclinical protocol, the same biomarkers were evaluated in the frontal cortex, hippocampus, and striatum from mice submitted to the PSD. RESULTS BD patients had a significantly higher total score of BRIAN versus HCs. Additionally, individuals with BD showed decreased Na+, K+-ATPase activity and increased oxidative stress parameters compared to HC without psychiatric disorders. This difference was driven by actively depressed BD subjects. The mice submitted to the PSD also demonstrated decreased Na+, K+-ATPase activity and increased oxidative stress parameters. LIMITATIONS BRIAN biological underpinning is less well characterized; We did not control for medication status; Sample size is limited; PSD it is not a true model of BD. CONCLUSIONS The present study found a significant correlation between Na+, K+-ATPase and oxidative stress with changes in biological rhythms, reinforcing the importance of these parameters to BD.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda Hilsendeger
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience-King's College London, London, UK
| | - Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, The University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
2
|
Aguiar-Geraldo JM, Possamai-Della T, Menegas S, Peper-Nascimento J, Quevedo J, Valvassori SS. Folic acid does not have an anti-manic effect but protect the brain against oxidative stress in an animal model of mania induced by ouabain. J Affect Disord 2023; 334:307-316. [PMID: 37150224 PMCID: PMC10464577 DOI: 10.1016/j.jad.2023.04.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a complex and severe mental disorder that affects 1-3 % of the world population. Studies have suggested the involvement of oxidative stress in the physiopathology of this psychiatry disorder. Folic acid (FA), a vitamin from the B complex, is a nutraceutical that has recently been researched as a possible treatment for BD since folate is reduced in patients with the disorder. The present study aimed to evaluate the effects of lithium (Li) and FA on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). METHODS Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (aCSF). From the day following ICV injection, the rats were treated for seven days with gavage injections of Li (47.5 mg/kg/mL), FA (50 mg/kg/mL), or water (1 mL/kg). On the 7th day after OUA injection, locomotor activity was measured using the open-field test. In addition, the oxidative stress parameters were evaluated in rats' frontal cortex, striatum, and hippocampus. RESULTS OUA induced mania-like behavior and oxidative stress in rats' brains, but Li could reverse these alterations. FA did not affect behavior parameters; however, it presents an antioxidant effect on the brain structures evaluated. LIMITATIONS The study was only evaluated male rats and ICV injection is an invasive procedure. CONCLUSION These results indicate that even though FA has an effect against the oxidative stress induced by OUA, this effect was not strong enough to interfere with behavior parameters.
Collapse
Affiliation(s)
- Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA; Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
3
|
Rajkhowa B, Mehan S, Sethi P, Prajapati A, Suri M, Kumar S, Bhalla S, Narula AS, Alshammari A, Alharbi M, Alkahtani N, Alghamdi S, Kalfin R. Activating SIRT-1 Signalling with the Mitochondrial-CoQ10 Activator Solanesol Improves Neurobehavioral and Neurochemical Defects in Ouabain-Induced Experimental Model of Bipolar Disorder. Pharmaceuticals (Basel) 2022; 15:ph15080959. [PMID: 36015107 PMCID: PMC9415079 DOI: 10.3390/ph15080959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1β) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol’s protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.
Collapse
Affiliation(s)
- Bidisha Rajkhowa
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
- Correspondence: ; Tel.: +91-8059889909
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Nora Alkahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Saeed Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
4
|
Valvassori SS, Cararo JH, Marino CAP, Possamai-Della T, Ferreira CL, Aguiar-Geraldo JM, Dal-Pont GC, Quevedo J. Imipramine induces hyperactivity in rats pretreated with ouabain: Implications to the mania switch induced by antidepressants. J Affect Disord 2022; 299:425-434. [PMID: 34910958 PMCID: PMC10485776 DOI: 10.1016/j.jad.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a psychiatric disorder with complex therapy, besides the treatment with antidepressants induce a mania switch. OBJECTIVE Investigate the effect of the administration of imipramine (IMI) in rats submitted to intracerebroventricular (ICV) administrations of ouabain (OUA). METHODS Adult Wistar rats (n = 28) were submitted to only one ICV administration of OUA or artificial cerebrospinal fluid. On the 7th and 9th days following the ICV administration, animals were submitted to a behavioral analysis comprising open field task and forced swimming test. Between the 9th and 14th days, the rats received one daily intraperitoneal administration of IMI or saline (Sal). On the 15th day rats were submitted to the last session of behavioral analysis, followed by euthanasia. The frontal cortex and hippocampus were dissected for the subsequent biochemical assessments: oxidative parameters, and Na+/K+-ATPase activity. RESULTS OUA administration induced a manic-like effect on the 7th day and a depressive-like behavior on the 14th day. In contrast, IMI administration elicited significant mania switch-like effect on this same stage in animals who received OUA. OUA increased oxidative damage and activity of antioxidant enzymes in the brain of rats. IMI potentialized the oxidative damage of OUA. No significant differences between groups were observed in the Na+/K+-ATPase activity. CONCLUSION The present study suggests that residual effects from inhibition of the Na+K+ATPase could be involved in the manic-switch observed in bipolar patients. Besides, the OUA model of bipolar disorder could be used to study bipolar disorder in the context of mania switch.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - José H Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Carlos Augusto P Marino
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila L Ferreira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
5
|
Kukula O, Çiçekli MN, Şafak S, Günaydın C. Role of TRPV1 channels on glycogen synthase kinase-3β and oxidative stress in ouabain-induced bipolar disease. J Recept Signal Transduct Res 2021; 42:338-348. [PMID: 34304690 DOI: 10.1080/10799893.2021.1955928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BD) is a multifactorial chronic and refractory disease characterized by manic, depressive, and mixed mood episodes. Although epidemiological, and pathophysiological studies demonstrated a strong correlation between bipolar disorder and oxidative stress, precise etiology is still missing. Recent studies suggested the possible role of transient receptor potential channels (TRP) in the BD but, current knowledge is limited. Therefore, the current study investigates the possible role of TRPV1 in the ouabain-induced model of BD. The model was created with intracerebroventricular single dose ouabain (10-3 M) administration. Animals were treated with capsaicin, capsazepine, and lithium for seven days. Mania and depressive-like states were investigated with open-field, sucrose preference, and elevated plus maze tests. Oxidative stress was assessed by measuring total antioxidant and oxidant states, spectrophotometrically. The phosphorylation Glycogen synthase kinase-3β (GSK-3β) evaluated by western blotting. Our results demonstrated that capsaicin dose-dependently inhibited the ouabain-induced hyperlocomotion and depression. Although capsazepine exacerbated behavioral impairment, it did not show a significant effect on the antioxidant and oxidant states, and the effects of capsazepine on behaviors were abolished by combination with capsaicin. Additionally, capsaicin potently prevented the ouabain-induced decrease in GSK-3β phosphorylation. In contrast, capsazepine potentiated ouabain-induced decrease in GSK-3β phosphorylation and combination with capsaicin, suppressed the effect of capsazepine on GSK-3β phosphorylation. The effects of TRPV1 activation on oxidative stress and mania-like behaviors in the ouabain-induced BD model might be regulated by GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Osman Kukula
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Nusret Çiçekli
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
6
|
Valvassori SS, Dal-Pont GC, Varela RB, Resende WR, Gava FF, Mina FG, Budni J, Quevedo J. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder: Cognitive and neurochemical alterations in BD model. J Affect Disord 2021; 282:1195-1202. [PMID: 33601696 DOI: 10.1016/j.jad.2020.12.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The present study aims to evaluate the effects of ouabain on memory and neurotrophic parameters in the brains of rats. METHODS Wistar rats received an intracerebroventricular (ICV) injection of ouabain or artificial cerebrospinal fluid (aCSF). Seven and 14 days after ICV administration, the animals were subjected to the open-field and splash tests. Furthermore, the pro-BDNF, BDNF, TrkB, and CREB were assessed in the frontal cortex and hippocampus of the rats, in both seven and 14 days after ICV injection. The memory of the animals was tested by novel object recognition test (NOR) and inhibitory avoidance task (IA), only 14 days after ICV administration. RESULTS Ouabain increased locomotion and exploration in the animals seven days after its administration; however, 14 days after ICV, these behavioral parameters return to the basal level. Seven days after ouabain administration increased grooming behavior in the splash test; on the other hand, seven days after ouabain injection decreased the grooming behavior, which is considered an anhedonic response. Besides, ouabain decreased recognition index in the NOR and decreased aversive memory in the IA, when compared to the control group. The levels of pro-BDNF and BDNF decreased in the frontal cortex seven days after ouabain; but its receptor (TrkB) and CREB decreased seven and 14 days after ouabain, in both cerebral structures evaluated. CONCLUSION Ouabain-induced animal model of BD is an excellent model to assess memory alteration, observed in bipolar patients. Besides, the memory impairment induced by ouabain seems to be related to BDNF signaling pathway alterations.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Queensland Brain Institute, The Universty of Queensland, St Lucia, QLD 4072, Australia
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Franciele G Mina
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Josiane Budni
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States
| |
Collapse
|
7
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Tye SJ, Quevedo J, Valvassori SS. HDAC inhibitors reverse mania-like behavior and modulate epigenetic regulatory enzymes in an animal model of mania induced by Ouabain. Pharmacol Biochem Behav 2020; 193:172917. [PMID: 32222371 DOI: 10.1016/j.pbb.2020.172917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The etiology of bipolar disorder (BD) is multifactorial, involving both environmental and genetic factors. Current pharmacological treatment is associated with several side effects, which are the main reason patients discontinue treatment. Epigenetic alterations have been studied for their role in the pathophysiology of BD, as they bridge the gap between gene and environment. OBJECTIVE Evaluate the effects of histone deacetylase inhibitors on behavior and epigenetic enzymes activity in a rat model of mania induced by ouabain. METHODS Adult male rats were subjected to a single intracerebroventricular injection of ouabain (10-3 M) followed by 7 days of valproate (200 mg/kg) or sodium butyrate (600 mg/kg) administration. Locomotor and exploratory activities were evaluated in the open-field test. Histone deacetylase, DNA methyltransferase, and histone acetyltransferase activity were assessed in the frontal cortex, hippocampus, and striatum. RESULTS Ouabain induced hyperactivity in rats, which was reversed by valproate and sodium butyrate treatment. Ouabain did not alter the activity of any of the enzymes evaluated. However, valproate and sodium butyrate decreased the activity of histone deacetylase and DNA methyltransferase. Moreover, there was a positive correlation between these two enzymes. CONCLUSION These results suggest that targeting epigenetic mechanisms may play an important role in mania-like behavior management.
Collapse
Affiliation(s)
- Roger B Varela
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences -, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Phan DH, Shin EJ, Jeong JH, Tran HQ, Sharma N, Nguyen BT, Jung TW, Nah SY, Saito K, Nabeshima T, Kim HC. Lithium attenuates d-amphetamine-induced hyperlocomotor activity in mice via inhibition of interaction between cyclooxygenase-2 and indoleamine-2,3-dioxygenase. Clin Exp Pharmacol Physiol 2020; 47:790-797. [PMID: 31883280 DOI: 10.1111/1440-1681.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022]
Abstract
In the present study, we investigated whether mood stabilizer lithium (Li) protects against d-amphetamine (AMP)-induced mania-like behaviours via modulating the novel proinflammatory potential. Repeated treatment with AMP resulted in significant increases in proinflammatory cyclooxygenase-2 (COX-2) and indolemaine-2,3-dioxygenase-1 (IDO)-1 expression in the prefrontal cortex (PFC) of mice. However, AMP treatment did not significantly change IDO-2 and 5-lipoxygenase (5-LOX) expression, suggesting that proinflammatory parameters such as COX-2 and IDO-1 are specific for AMP-induced behaviours. AMP-induced initial expression of COX-2 (15 minutes post-AMP) was earlier than that of IDO-1 (1 hour post-AMP). Mood stabilizer Li and COX-2 inhibitor meloxicam significantly attenuated COX-2 expression 15 minutes post-AMP, whereas IDO-1 inhibitor 1-methyl-DL-tryptophan (1-MT) did not affect COX-2 expression. However, AMP-induced IDO-1 expression was significantly attenuated by Li, meloxicam or 1-MT, suggesting that COX-2 is an upstream molecule for the induction of IDO-1 caused by AMP. Consistently, co-immunoprecipitation between COX-2 and IDO-1 was observed at 30 minutes, 1, 3, and 6 hours after the final AMP treatment. This interaction was also significantly inhibited by Li, meloxicam or 1-MT. Furthermore, AMP-induced hyperlocomotion was significantly attenuated by Li, meloxicam or 1-MT. We report, for the first time, that mood stabilizer Li attenuates AMP-induced mania-like behaviour via attenuation of interaction between COX-2 and IDO-1, and that the interaction of COX-2 and IDO-1 may be critical for the therapeutic intervention mediated by mood stabilizer.
Collapse
Affiliation(s)
- Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
9
|
Tran HQ, Shin EJ, Saito K, Tran TV, Phan DH, Sharma N, Kim DW, Choi SY, Jeong JH, Jang CG, Cheong JH, Nabeshima T, Kim HC. Indoleamine-2,3-dioxygenase-1 is a molecular target for the protective activity of mood stabilizers against mania-like behavior induced by d-amphetamine. Food Chem Toxicol 2019; 136:110986. [PMID: 31760073 DOI: 10.1016/j.fct.2019.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023]
Abstract
It is recognized that d-amphetamine (AMPH)-induced hyperactivity is thought to be a valid animal model of mania. In the present study, we investigated whether a proinflammatory oxidative gene indoleamine-2,3-dioxygenase (IDO) is involved in AMPH-induced mitochondrial burden, and whether mood stabilizers (i.e., lithium and valproate) modulate IDO to protect against AMPH-induced mania-like behaviors. AMPH-induced IDO-1 expression was significantly greater than IDO-2 expression in the prefrontal cortex of wild type mice. IDO-1 expression was more pronounced in the mitochondria than in the cytosol. AMPH treatment activated intra-mitochondrial Ca2+ accumulation and mitochondrial oxidative burden, while inhibited mitochondrial membrane potential and activity of the mitochondrial complex (I > II), mitochondrial glutathione peroxidase, and superoxide dismutase, indicating that mitochondrial burden might be contributable to mania-like behaviors induced by AMPH. The behaviors were significantly attenuated by lithium, valproate, or IDO-1 knockout, but not in IDO-2 knockout mice. Lithium, valproate administration, or IDO-1 knockout significantly attenuated mitochondrial burden. Neither lithium nor valproate produced additive effects above the protective effects observed in IDO-1 KO in mice. Collectively, our results suggest that mood stabilizers attenuate AMPH-induced mania-like behaviors via attenuation of IDO-1-dependent mitochondrial stress, highlighting IDO-1 as a novel molecular target for the protective potential of mood stabilizers.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, 24252, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Valvassori SS, Dal-Pont GC, Resende WR, Varela RB, Lopes-Borges J, Cararo JH, Quevedo J. Validation of the animal model of bipolar disorder induced by Ouabain: face, construct and predictive perspectives. Transl Psychiatry 2019; 9:158. [PMID: 31164628 PMCID: PMC6548776 DOI: 10.1038/s41398-019-0494-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
A particular challenge in the development of a bipolar disorder (BD) model in animals is the complicated clinical course of the condition, characterized by manic, depressive and mixed mood episodes. Ouabain (OUA) is an inhibitor of Na+/K+-ATPase enzyme. Intracerebroventricular (ICV) injection of this drug in rats has been regarded a proper model to study BD by mimic specific manic symptoms, which are reversed by lithium (Li), an important mood stabilizer drug. However, further validation of this experimental approach is required to characterize it as an animal model of BD, including depressive-like behaviors. The present study aimed to assess manic- and depressive-like behaviors, potential alteration in the hypothalamic-pituitary-adrenal (HPA) system and oxidative stress parameters after a single OUA ICV administration in adult male Wistar rats. Moreover, we evaluated Li effects in this experimental setting. Data show that OUA ICV administration could constitute a suitable model for BD since the injection of the drug triggered manic- and depressive-like behaviors in the same animal. Additionally, the OUA model mimics significant physiological and neurochemical alterations detected in BD patients, including an increase in oxidative stress and change in HPA axis. Our findings suggest that decreased Na+/K+-ATPase activity detected in bipolar patients may be linked to increased secretion of glucocorticoid hormones and oxidative damage, leading to the marked behavioral swings. The Li administration mitigated these pathological changes in the rats. The proposed OUA model is regarded as suitable to simulate BD by complying with all validities required to a proper animal model of the psychiatric disorder.
Collapse
Affiliation(s)
- Samira S. Valvassori
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Gustavo C. Dal-Pont
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Wilson R. Resende
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Roger B. Varela
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Jéssica Lopes-Borges
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - José Henrique Cararo
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - João Quevedo
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil ,0000 0000 9206 2401grid.267308.8Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,0000 0000 9206 2401grid.267308.8Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,0000 0001 2291 4776grid.240145.6Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX USA
| |
Collapse
|
11
|
Wang YC, Yu YH, Tsai ML, Huang ACW. Motor function in an animal model with ouabain-induced bipolar disorder and comorbid anxiety behavior. Psychiatry Res 2018; 268:508-513. [PMID: 30165326 DOI: 10.1016/j.psychres.2018.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
Abstract
In a clinical setting, anxiety disorder is highly correlated with bipolar I disorder in humans. However, the comorbidity of anxiety behavior and bipolar disorder still remains unclear in an animal model. This study utilized an ouabain-induced animal mode to examine anxiety and mania in an open field test. In the present study, 5 µl of artificial cerebrospinal fluid (aCSF) or ouabain (10-5, 10-4, and 10-3 M) were administered into the left ventricle. The animals' motor functions and anxiety behaviors were measured for 15 min. The results showed that 10-3 M ouabain significantly increased the animal's total distance traveled, average speed, and maximum speed compared to the control group. The time spent inside (i.e., how much time rats spent in the center of the square) and the inside-outside times of the central square (i.e., how many times rats ran across the center square) of the higher-concentration groups (10-4 M and 10-3 M) were significantly decreased. Therefore, a high concentration of ouabain may induce hyperactivity. The 10-4 M and 10-3 M ouabain groups exhibited more anxiety behaviors. The study is the first model to examine comorbid anxiety behaviors and bipolar disorder in an animal model. The study provides some insights for comorbid anxiety and bipolar disorder in clinics.
Collapse
Affiliation(s)
- Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ying Hao Yu
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Meng-Li Tsai
- Department of Biomechatronic Engineering, National Ilan University, Ilan, Taiwan
| | | |
Collapse
|
12
|
Wesołowska A, Partyka A, Jastrzębska-Więsek M, Kołaczkowski M. The preclinical discovery and development of cariprazine for the treatment of schizophrenia. Expert Opin Drug Discov 2018; 13:779-790. [PMID: 29722587 DOI: 10.1080/17460441.2018.1471057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cariprazine is approved in the United States and Europe for the treatment of manic or mixed episodes associated with bipolar I disorder and for the treatment of schizophrenia in adult patients. It is typically administered orally once a day (a dose range 1.5 - 6 mg/day), does require titration, and may be given with or without food. It has a half-life of 2 - 4 days with an active metabolite that has a terminal half-life of 2 - 3 weeks. Areas covered: This review article focuses on the preclinical discovery of cariprazine providing details regarding its pharmacological, behavioral, and neurochemical mechanisms and its contribution to clinical therapeutic benefits. This article is based on the available literature with respect to the preclinical and clinical findings and product labels of cariprazine. Expert opinion: Cariprazine shows highest affinity toward D3 receptors, followed by D2, 5-HT2B, and 5-HT1A receptors. It also shows moderate affinity toward σ1, 5-HT2A, and histamine H1 receptors. Long-term administration of cariprazine altered the abundance of dopamine, serotonin, and glutamate receptor subtypes in different brain regions. All these mechanisms of cariprazine may contribute toward its unique preclinical profile and its clinically observed benefits in the treatment of schizophrenia, bipolar mania, and possibly other psychiatric disorders.
Collapse
Affiliation(s)
- Anna Wesołowska
- a Department of Clinical Pharmacy , Jagiellonian University Medical College , Kraków , Poland
| | - Anna Partyka
- a Department of Clinical Pharmacy , Jagiellonian University Medical College , Kraków , Poland
| | | | - Marcin Kołaczkowski
- b Department of Pharmaceutical Chemistry , Jagiellonian University Medical College , Kraków , Poland
| |
Collapse
|
13
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
14
|
Sousa FSS, Seus N, Alves D, Salles HD, Schneider PH, Savegnago L, Castro M. Evaluation of Se-phenyl-thiazolidine-4-carboselenoate protective activity against oxidative and behavioral stress in the maniac model induced by ouabain in male rats. Neurosci Lett 2017; 651:182-187. [PMID: 28432028 DOI: 10.1016/j.neulet.2017.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
This study investigates Se-phenyl-thiazolidine-4-carboselenoate (Se-PTC) protective activity against oxidative and behavioral stress in the model of mania induced by ouabain (OUA) in male rats. The compound used was Se-PTC (50mg/kg) and the positive control LiCl (45mg/kg) was administered for intragastric route (i.g.) 30min prior to administration of OUA (10-5M). OUA was dissolved in artificial cerebrospinal fluid (aCSF) and administered at the 5μl through an intracerebroventricular (i.c.v) cannula. The pretreatment with Se-PTC was effective in preventing the increase in locomotor activity induced by OUA, however the positive control LiCl is capable to block crossing augmentation induced by OUA. Na+/K+-ATPase activity was significantly reduced in OUA group and the Se-PTC to normalize Na+/K+-ATPase activity. Pretreatment with Se-PTC protect against the increase in catalase activity and thiobarbituric acid reactive species (TBARS) content in the brain caused by OUA. Therefore, Se-PTC is effective against OUA-induced hyperactivity and alterations in brain oxidative status of rats.
Collapse
Affiliation(s)
- Fernanda Severo Sabedra Sousa
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Programa de Pós Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Seus
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Programa de Pós Graduação em Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Diego Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Programa de Pós Graduação em Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Helena Domingues Salles
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Lucielli Savegnago
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Programa de Pós Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Centro de Desenvolvimento Tecnológico (CDtec), Programa de Pós Graduação em Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Micheli Castro
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Programa de Pós Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
15
|
Amodeo DA, Grospe G, Zang H, Dwivedi Y, Ragozzino ME. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience 2017; 345:229-242. [PMID: 27267245 PMCID: PMC5136525 DOI: 10.1016/j.neuroscience.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
Abstract
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Gena Grospe
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hui Zang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35209, United States
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
16
|
Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3975101. [PMID: 27563374 PMCID: PMC4983669 DOI: 10.1155/2016/3975101] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.
Collapse
|
17
|
Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Na+, K+-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures. Brain Res 2016; 1644:249-57. [DOI: 10.1016/j.brainres.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/17/2023]
|
18
|
El-Mallakh RS, Payne RS, Schurr A, Gao Y, Lei Z, Kiss B, Gyertyán I, Adham N. Cariprazine delays ouabain-evoked epileptiform spikes and loss of activity in rat hippocampal slices. Psychiatry Res 2015; 229:370-3. [PMID: 26160196 DOI: 10.1016/j.psychres.2015.05.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 03/24/2015] [Accepted: 05/24/2015] [Indexed: 11/30/2022]
Abstract
In the only bipolar cycling in vitro model, rat hippocampal slices are treated with the sodium pump inhibitor ouabain, which induces epileptiform activity, followed by refractory activity loss that recovers and cycles back to epileptiform activity. Thus, clinical cycling seen in patients with bipolar disorder is modeled on a cellular level as alternating hyperactivity and hypoactivity interspersed with normal activity. In this study, we tested the ability of cariprazine a new antipsychotic candidate to block ouabain-induced changes in rat hippocampal slices. Cycling of population spikes and epileptiform bursts was evoked using an extracellular stimulation electrode located in the Schaeffer collaterals of 400-µm-thick rat hippocampal slices treated with ouabain (3.3μM) alone or in combination with cariprazine (1, 5, 25, and 50µM). Responses were recorded using an extracellular electrode placed in the cell body layer of the CA1 region. Cariprazine 25 and 50µM delayed ouabain-induced epileptiform burst onset and subsequent activity loss. Lower cariprazine concentrations were ineffective. Cariprazine delays the onset of ouabain-induced epileptiform bursts and the loss of spiking activity similarly to that previously demonstrated with the mood stabilizer lithium. These results suggest that cariprazine may have therapeutic potential for treatment of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Services, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Ralphiel S Payne
- Department of Anesthesiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Avital Schurr
- Department of Anesthesiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Services, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zhemin Lei
- Department of Obstetrics and Gynecology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Béla Kiss
- Pharmacological and Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - István Gyertyán
- Pharmacological and Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Nika Adham
- Forest Research Institute, Jersey City, NJ, USA
| |
Collapse
|
19
|
Abstract
The wide spectrum of disruptions that characterizes major depressive disorder (MDD) and bipolar disorder (BD) highlights the difficulties researchers are posed with as they try to mimic these disorders in the laboratory. Nonetheless, numerous attempts have been made to create rodent models of mood disorders or at least models of the symptoms of MDD and BD. Present antidepressants are all descendants of the serendipitous findings in the 1950s that the monoamine oxidase inhibitor iproniazid and the tricyclic antidepressant imipramine were effective antidepressants. Thus, the need for improved animal models to provide insights into the neuropathology underlying the disease is critical. Such information is in turn crucial for identifying new antidepressants and mood stabilisers. Currently, there is a shift away from traditional animal models to more focused research dealing with an endophenotype-style approach, genetic models, and incorporation of new findings from human neuroimaging and genetic studies. Such approaches are opening up more tractable avenues for understanding the neurobiological and genetic bases of these disorders. Further, such models promise to yield better translational animal models and hence more fruitful therapeutic targets. This overview focuses on such animal models and tests and how they can be used to assess MDD and BD in rodents.
Collapse
|
20
|
Pathak G, Ibrahim BA, McCarthy SA, Baker K, Kelly MP. Amphetamine sensitization in mice is sufficient to produce both manic- and depressive-related behaviors as well as changes in the functional connectivity of corticolimbic structures. Neuropharmacology 2015; 95:434-47. [PMID: 25959066 DOI: 10.1016/j.neuropharm.2015.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
It has been suggested that amphetamine abuse and withdrawal mimics the diverse nature of bipolar disorder symptomatology in humans. Here, we determined if a single paradigm of amphetamine sensitization would be sufficient to produce both manic- and depressive-related behaviors in mice. CD-1 mice were subcutaneously dosed for 5 days with 1.8 mg/kg d-amphetamine or vehicle. On days 6-31 of withdrawal, amphetamine-sensitized (AS) mice were compared to vehicle-treated (VT) mice on a range of behavioral and biochemical endpoints. AS mice demonstrated reliable mania- and depression-related behaviors from day 7 to day 28 of withdrawal. Relative to VT mice, AS mice exhibited long-lasting mania-like hyperactivity following either an acute 30-min restraint stress or a low-dose 1 mg/kg d-amphetamine challenge, which was attenuated by the mood-stabilizers lithium and quetiapine. In absence of any challenge, AS mice showed anhedonia-like decreases in sucrose preference and depression-like impairments in the off-line consolidation of motor memory, as reflected by the lack of spontaneous improvement across days of training on the rotarod. AS mice also demonstrated a functional impairment in nest building, an ethologically-relevant activity of daily living. Western blot analyses revealed a significant increase in methylation of histone 3 at lysine 9 (H3K9), but not lysine 4 (H3K4), in hippocampus of AS mice relative to VT mice. In situ hybridization for the immediate-early gene activity-regulated cytoskeleton-associated protein (Arc) further revealed heightened activation of corticolimbic structures, decreased functional connectivity between frontal cortex and striatum, and increased functional connectivity between the amygdala and hippocampus of AS mice. The effects of amphetamine sensitization were blunted in C57BL/6J mice relative to CD-1 mice. These results show that a single amphetamine sensitization protocol is sufficient to produce behavioral, functional, and biochemical phenotypes in mice that are relevant to bipolar disorder.
Collapse
Affiliation(s)
- G Pathak
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - B A Ibrahim
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | - K Baker
- Pfizer, Neuroscience, Groton, CT 06340, USA
| | - M P Kelly
- University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
21
|
Pezzato FA, Can A, Hoshino K, Horta JDAC, Mijares MG, Gould TD. Effect of lithium on behavioral disinhibition induced by electrolytic lesion of the median raphe nucleus. Psychopharmacology (Berl) 2015; 232:1441-50. [PMID: 25345734 PMCID: PMC4388762 DOI: 10.1007/s00213-014-3775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE Alterations in brainstem circuits have been proposed as a possible mechanism underlying the etiology of mood disorders. Projections from the median raphe nucleus (MnR) modulate dopaminergic activity in the forebrain and are also part of a behavioral disinhibition/inhibition system that produces phenotypes resembling behavioral variations manifested during manic and depressive phases of bipolar disorder. OBJECTIVE The aim of this study is to assess the effect of chronic lithium treatment on behavioral disinhibition induced by MnR lesions. METHODS MnR electrolytic lesions were performed in C57BL/6J mice, with sham-operated and intact animals as control groups. Following recovery, mice were chronically treated with lithium (LiCl, added in chow) followed by behavioral testing. RESULTS MnR lesion induced manic-like behavioral alterations including hyperactivity in the open field (OF), stereotyped circling, anxiolytic/risk taking in the elevated plus maze (EPM) and light/dark box (LDB) tests, and increased basal body temperature. Lithium was specifically effective in reducing OF hyperactivity and stereotypy but did not reverse (EPM) or had a nonspecific effect (LDB) on anxiety/risk-taking measures. Additionally, lithium decreased saccharin preference and prevented weight loss during single housing. CONCLUSIONS Our data support electrolytic lesions of the MnR as an experimental model of a hyper-excitable/disinhibited phenotype consistent with some aspects of mania that are attenuated by the mood stabilizer lithium. Given lithium's relatively specific efficacy in treating mania, these data support the hypothesis that manic symptoms derive not only from the stimulation of excitatory systems but also from inactivation or decreased activity of inhibitory mechanisms.
Collapse
|
22
|
Varela RB, Valvassori SS, Lopes-Borges J, Mariot E, Dal-Pont GC, Amboni RT, Bianchini G, Quevedo J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res 2015; 61:114-21. [PMID: 25467060 DOI: 10.1016/j.jpsychires.2014.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Bipolar Disorder (BD) is one of the most severe psychiatric disorders. Despite adequate treatment, patients continue to have recurrent mood episodes, residual symptoms, and functional impairment. Some preclinical studies have shown that histone deacetylase inhibitors may act on manic-like behaviors. Neurotrophins have been considered important mediators in the pathophysiology of BD. The present study aims to investigate the effects of lithium (Li), valproate (VPA), and sodium butyrate (SB), an HDAC inhibitor, on BDNF, NGF and GDNF in the brain of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single ICV injection of ouabain or artificial cerebrospinal fluid. From the day following ICV injection, the rats were treated for 6 days with intraperitoneal injections of saline, Li, VPA or SB twice a day. In the 7th day after ouabain injection, locomotor activity was measured using the open-field test. The BDNF, NGF and GDNF levels were measured in the hippocampus and frontal cortex by sandwich-ELISA. Li, VPA or SB treatments reversed ouabain-related manic-like behavior. Ouabain decreased BDNF, NGF and GDNF levels in hippocampus and frontal cortex of rats. The treatment with Li, VPA or SB reversed these impairment induced by ouabain. In addition, Li, VPA and SB per se increased NGF and GDNF levels in hippocampus of rats. Our data support the notion that neurotrophic factors play a role in BD and in the mechanisms of the action of Li, VPA and SB.
Collapse
Affiliation(s)
- Roger B Varela
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil.
| | - Jéssica Lopes-Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Gustavo C Dal-Pont
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Rafaela T Amboni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Guilherme Bianchini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
23
|
P2C-Type ATPases and Their Regulation. Mol Neurobiol 2015; 53:1343-1354. [DOI: 10.1007/s12035-014-9076-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
|
24
|
Gao Y, Peterson S, Masri B, Hougland MT, Adham N, Gyertyán I, Kiss B, Caron MG, El-Mallakh RS. Cariprazine exerts antimanic properties and interferes with dopamine D2 receptor β-arrestin interactions. Pharmacol Res Perspect 2014; 3:e00073. [PMID: 25692006 PMCID: PMC4317219 DOI: 10.1002/prp2.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Activation of dopamine D2 receptors (D2R) modulates G protein/cAMP-dependent signaling and also engages Akt-GSK-3 signaling through D2R/β-arrestin 2 scaffolding of Akt and PP2A. This G protein-independent pathway may be important in mediating the antimanic effects of mood stabilizers and antipsychotics. The mood stabilizer lithium influences behavior and Akt/GSK-3 signaling in mice and many antipsychotics have been shown to more potently antagonize the activity of the β-arrestin-2 pathway relative to the G protein-dependent pathway. Cariprazine, an antipsychotic with potent D3R/D2R partial agonist activity and preferential binding to D3R, was investigated for its effects on the mediators of D2R pathways in vitro and its efficacy in animal models of mania. Effects on G protein-dependent activity were measured via inhibition of isoproterenol-induced cAMP production; effects on D2R/β-arrestin 2 signaling were determined using bioluminescence resonance energy transfer (BRET). Cariprazine was tested in vivo for antimanic-like activity, using the ouabain-induced hyperactivity model in rats. Cariprazine was more potent than aripiprazole in inhibiting isoproterenol-induced cAMP although both compounds showed similar maximum efficacy. In assays of D2R/β-arrestin 2-dependent interactions, cariprazine showed very weak partial agonist activity, unless the levels of receptor kinase were increased; as an antagonist it showed similar potency to haloperidol and ∼fivefold greater potency than aripiprazole. In an animal model of mania, cariprazine showed similar efficacy as lithium in attenuating the effects of ouabain-induced hyperactivity. In summary, the differential effects of cariprazine on D2R G protein and β-arrestin 2 mediators of signal transduction pathways could contribute to its potent antimanic-like activity.
Collapse
Affiliation(s)
- Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Sean Peterson
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Bernard Masri
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - M Tyler Hougland
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Nika Adham
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Istvan Gyertyán
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Béla Kiss
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Marc G Caron
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| |
Collapse
|
25
|
Abstract
There is a well-known deficiency in valid animal models for bipolar disorder. Developing the single ideal model for the disorder-one that will represent its full scope-will probably not be possible until we have a much better understanding of the underlying pathology. Yet, intermediate models, even with partial validity, are critical in order to advance our knowledge and put us into position to develop even better models. The present article discusses the various efforts under way to develop the best models based on our current level of understanding. These efforts include (1) identifying new tests, (2) developing models based on the endophenotypes approach, (3) identifying the best rodent strains, (4) identifying the most appropriate species, (5) segregating susceptible versus resilient animals, and (6) segregating animals that respond or do not respond to treatment. It is suggested that a combined approach that includes these directions and others can result in better models with higher validity that will offer significant help in advancing research on bipolar disorder and developing new and better treatments.
Collapse
|
26
|
Abstract
Digoxin and digitoxin are widely used in the treatment of heart diseases. The exact mechanism of action of these drugs has remained an enigma. Ouabain has become the standard tool to investigate the mode of action of cardiotonic steroids, and results with ouabain are regarded as generally valid for all cardiac glycosides. However, there are marked differences between the effects of ouabain and digitalis glycosides. Ouabain has a different therapeutic profile from digitalis derivatives. Unlike digitalis glycosides, ouabain has a fast onset of action and stimulates myocardial metabolism. The inotropic effect of cardiotonic steroids is not related to inhibition of the Na-K-ATPase. Ouabain and digitalis derivatives develop their effects in different cellular spaces. Digitalis glycosides increase the intracellular calcium concentration by entering the cell interior and acting on the ryanodine receptors and by forming transmembrane calcium channels. Ouabain, by activation of the Na-K-ATPase from the extracellular side, triggers release of calcium from intracellular stores via signal transduction pathways and activates myocardial metabolism. These data no longer support the concept that all cardiotonic steroids exhibit their therapeutic effects by partial inhibition of the ion-pumping function of the Na-K-ATPase. Hence, it is suggested that this deeply rooted dogma be revised.
Collapse
|
27
|
Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR. The protective effect of melatonin against brain oxidative stress and hyperlocomotion in a rat model of mania induced by ouabain. Behav Brain Res 2014; 271:316-24. [DOI: 10.1016/j.bbr.2014.06.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
28
|
Intracerebral Administration of BDNF Protects Rat Brain Against Oxidative Stress Induced by Ouabain in an Animal Model of Mania. Mol Neurobiol 2014; 52:353-62. [DOI: 10.1007/s12035-014-8873-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
|
29
|
Wang YC, Wang EN, Wang CC, Huang CL, Huang ACW. Dissociating effects of spatial learning from locomotor activity for ouabain-induced bipolar disorder-like rats. Psychiatry Res 2014; 216:432-7. [PMID: 24656518 DOI: 10.1016/j.psychres.2014.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 12/11/2022]
Abstract
Whether ouabain, a Na+ - and K+-activated adenosine triphosphatase inhibitor, mimics cognitive impairments that can be dissociated from motor effects in the bipolar disorder-like animal model remains unclear. Ouabain and the vehicle aCSF were microinjected into the left lateral ventricle immediately, after 4h, and after 24h. The results showed that (a) locomotion responses of the Immediate group were significantly decreased compared to those of the aCSF group, particularly the first five minutes. (b) The ouabain-treated rats have longer latency and total distance traveled in the water maze task; however, the velocity was not affected for the ouabain group. (c) The analysis of covariance showed that the latency time (but not the total distance traveled and velocity) of the ouabain group was more impaired than that of the aCSF group, regardless of omitting total distance traveled and cross movement in the open field test. The latency might be more sensitive than the distance traveled and the velocity for assessing spatial learning. Dissociating the spatial learning from the movement may allow testing drug treatments of cognitive deficits independent of locomotor effects associated with bipolar disorder.
Collapse
Affiliation(s)
- Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - En-Nan Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Psychiatry, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Humanities in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chuan Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chung-Lei Huang
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | | |
Collapse
|
30
|
Centurião FB, Braga A, Machado FR, Tagliari B, Müller LG, Kolling J, Poser GV, Wyse ATS, Rates SMK. Study of antidepressant-like activity of an enriched phloroglucinol fraction obtained from Hypericum caprifoliatum. PHARMACEUTICAL BIOLOGY 2014; 52:105-110. [PMID: 24102122 DOI: 10.3109/13880209.2013.816970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Hypericum caprifoliatum Cham & Schlecht (Guttiferae) extracts have a potential antidepressant-like effect in rodents. However, the molecular mechanisms by which these extracts exert this effect remain unclear. OBJECTIVE This study evaluated the effect of HC1, a fraction obtained from H. caprifoliatum enriched in phloroglucinol derivatives, on the Na⁺, K⁺ ATPase activity in mouse brain and verified the influence of veratrine on the effect of HC1 in the forced swimming test (FST). MATERIALS AND METHODS Veratrine (0.06 mg/kg) and HC1 (360 mg/kg) were given alone or combined i.p. 60 and p.o. 30 min, respectively, before FST. The effect of single and repeated administration (once a day for 3 consecutive days) of HC1 (360 mg/kg) on Na⁺, K⁺ ATPase activity was evaluated ex vivo in the cerebral cortex and hippocampus of mice subjected or not to FST. RESULTS HC1 reduced the immobility time (103.15 ± 18.67 s), when compared to the control group (183.6 ± 9.51 s). This effect was prevented by veratrine (151.75 ± 22.19 s). Mice repeatedly treated with HC1 presented a significant increase in Na⁺, K⁺ ATPase activity, both in cerebral cortex (46 ± 2.41 nmol Pi/min·mg protein) and hippocampus (49.83 ± 2.31 nmol Pi/min·mg protein), in relation to the respective controls (30 ± 2.66 and 29.83 ± 2.31 nmol Pi/min·mg protein respectively). DISCUSSION AND CONCLUSION The HC1 antidepressant-like effect on FST might be related to its capacity to inhibit Na⁺ influx. HC1 increases hippocampal and cortical Na⁺, K⁺ ATPase activities possibly through long-term regulatory mechanisms.
Collapse
Affiliation(s)
- Fernanda B Centurião
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brasil and
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Niculescu AB. Convergent functional genomics of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:587-94. [PMID: 23728881 DOI: 10.1002/ajmg.b.32163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 12/27/2022]
Abstract
Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana; Indianapolis VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
32
|
Kim SH, Yu HS, Park HG, Ha K, Kim YS, Shin SY, Ahn YM. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates mTOR signal pathways and protein translation in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:73-82. [PMID: 23643758 DOI: 10.1016/j.pnpbp.2013.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/02/2013] [Accepted: 04/21/2013] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) injection of ouabain, a specific Na/K-ATPase inhibitor, induces behavioral changes in rats in a putative animal model of mania. The binding of ouabain to Na/K-ATPase affects signaling molecules in vitro, including ERK1/2 and Akt, which promote protein translation. We have also reported that ERK1/2 and Akt in the brain are involved in the ouabain-induced hyperactivity of rats. In this study, rats were given an ICV injection of ouabain, and then their frontal cortices were examined to determine the effects of ouabain on the mTOR/p70S6K/S6 signaling pathway and protein translation, which are important in modifications of neural circuits and behavior. Rats showed ouabain-induced hyperactivity up to 8h following injection, and increased phosphorylation levels of mTOR, p70S6K, S6, eIF4B, and 4E-BP at 1, 2, 4, and 8h following ouabain injection. Immunohistochemical analyses revealed that increased p-S6 immunoreactivity in the cytoplasm of neurons by ouabain was evident in the prefrontal, cingulate, and orbital cortex. These findings suggested increased translation initiation in response to ouabain. The rate of protein synthesis was measured as the amount of [(3)H]-leucine incorporation in the cell-free extracts of frontal cortical tissues, and showed a significant increase at 8h after ouabain injection. These results suggest that ICV injection of ouabain induced activation of the protein translation initiation pathway regulated by ERK1/2 and Akt, and prolonged hyperactivity in rats. In conclusion, protein translation pathway could play an important role in ouabain-induced hyperactivity in a rodent model of mania.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science & Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Effects of lithium and carbamazepine on spatial learning and depressive behavior in a rat model of bipolar disorder induced by ouabain. Pharmacol Biochem Behav 2013; 105:118-27. [DOI: 10.1016/j.pbb.2013.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/01/2013] [Accepted: 02/09/2013] [Indexed: 01/07/2023]
|
34
|
Carter CJ. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders. J Pathog 2013; 2013:965046. [PMID: 23533776 PMCID: PMC3603208 DOI: 10.1155/2013/965046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/18/2012] [Accepted: 09/10/2012] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P from 8.01E - 05 (ADHD) to 1.22E - 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself.
Collapse
Affiliation(s)
- C. J. Carter
- Polygenic Pathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
35
|
Intracerebroventricular administration of ouabain alters synaptic plasticity and dopamine release in rat medial prefrontal cortex. J Neural Transm (Vienna) 2013; 120:1191-9. [DOI: 10.1007/s00702-013-0973-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
|
36
|
Feier G, Valvassori SS, Varela RB, Resende WR, Bavaresco DV, Morais MO, Scaini G, Andersen ML, Streck EL, Quevedo J. Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 2013; 103:589-96. [DOI: 10.1016/j.pbb.2012.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/24/2022]
|
37
|
Brüning CA, Prigol M, Luchese C, Pinton S, Nogueira CW. Diphenyl diselenide ameliorates behavioral and oxidative parameters in an animal model of mania induced by ouabain. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:168-74. [PMID: 22459096 DOI: 10.1016/j.pnpbp.2012.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 12/28/2022]
Abstract
Bipolar disorder (BD) is a common and severe mood disorder associated with higher rates of suicide and disability. Ouabain, a Na(+)/K(+)-ATPase inhibitor, induces behavioral changes in rats and has been used as a model of mania. The aim of this study was to investigate if diphenyl diselenide [(PhSe)(2)], an organoselenium compound with pharmacological properties, is effective against ouabain-induced hyperactivity and alterations in cerebral oxidative status of rats. Male Wistar rats were treated with a single dose of (PhSe)(2) (50 mg/kg, p.o.) 30 min before i.c.v. injection of ouabain (5 μl, 10(-5) M) or with the mood stabilizer, lithium chloride (LiCl) (45 mg/kg, p.o.), twice a day, for 7 days before the administration of ouabain. Open-field locomotion was quantified after ouabain administration. Thiobarbituric acid reactive substances (TBARS), oxidatively modified proteins, tyrosine nitration, ascorbic acid and non-protein thiols (NPSH) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities were determined in the whole brain. Ouabain increased locomotor activity in the open-field test and pretreatment with (PhSe)(2) or LiCl blocked this effect. In addition, ouabain increased lipid peroxidation and oxidatively modified proteins, demonstrated by a significant increase in TBARS levels and carbonyl content, which were attenuated by pretreatment with (PhSe)(2) or LiCl. The activities of SOD and CAT were increased by ouabain. LiCl was effective on preventing the increases of both enzyme activities, but (PhSe)(2) attenuated the ouabain effect in SOD activity. GPx and GR activities, ascorbic acid, NPSH and tyrosine nitration levels were not altered in all experimental groups. Similarly to LiCl, (PhSe)(2) produced an antimanic-like action, since it was effective against the locomotor hyperactivity elicited by ouabain. The results also indicated that (PhSe)(2) was effective against oxidative stress caused by ouabain in rats.
Collapse
Affiliation(s)
- César Augusto Brüning
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | | | | | |
Collapse
|
38
|
Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates tyrosine hydroxylase through extracellular signal-regulated kinase in rat striatum. Neurochem Int 2011; 59:779-86. [DOI: 10.1016/j.neuint.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/28/2023]
|
39
|
Gao Y, Payne RS, Schurr A, Hougland T, Lord J, Herman L, Lei Z, Banerjee P, El-Mallakh RS. Memantine reduces mania-like symptoms in animal models. Psychiatry Res 2011; 188:366-71. [PMID: 21269711 DOI: 10.1016/j.psychres.2010.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 12/18/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
Memantine, a selective antagonist of the N-methyl-D-aspartate receptor, is approved for the treatment of moderate to severe Alzheimer's disease. Ion dysregulation is thought to be involved in the pathophysiology of bipolar illness, suggesting that memantine may be effective in treating bipolar manic and/or depressive episodes. We utilized two preclinical models of mania that mimic pathophysiologic changes seen in bipolar illness to examine the potential efficacy of memantine in the treatment of this disorder. Locomotor hyperactivity of male Sprague-Dawley rats in an open field was induced with intracerebroventricular (ICV) administration of 10(-3) M ouabain. Memantine (2.5, 5 or 7.5mg/kg), lithium (6.75 mEq/kg), or vehicle were administered acutely via intraperitoneal injection immediately prior to ouabain, then chronically for 7 days (oral memantine 20, 30, and 40 mg/kg/day in water; lithium 2.4 g/kg food). In a second model of bipolar disorder, cycling between population spikes and epileptiform bursts was investigated in rat hippocampal slices treated with ouabain (3.3 μM) alone or in combination with memantine (0.5, 1.0, and 5.0 μM). Ouabain-induced hyperlocomotion was normalized with acute and chronic lithium and chronic use of memantine. Memantine delayed the onset of ouabain-induced-cycling in hippocampal slices. Memantine may have antimanic properties.
Collapse
Affiliation(s)
- Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Freitas TP, Rezin GT, Fraga DB, Moretti M, Vieira JS, Gomes LM, Borges LS, Valvassori SS, Quevedo J, Streck EL. Mitochondrial respiratory chain activity in an animal model of mania induced by ouabain. Acta Neuropsychiatr 2011; 23:106-11. [PMID: 26952896 DOI: 10.1111/j.1601-5215.2011.00543.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a mental illness associated with higher rates of suicide. The present study aims to investigate the brain mitochondrial respiratory chain activity in an animal model of mania induced by ouabain. METHODS Adult male Wistar rats received a single intracerebroventricular administration of ouabain (10-3 and 10-2 M) or vehicle. Locomotor activity was measured using the open field test. Mitochondrial respiratory chain activity was measured in the brain of rats 1 h and 7 days after ouabain administration. RESULTS Our results showed that spontaneous locomotion was increased 1 h and 7 days after ouabain administration. Complexes I, III and IV activities were increased in the prefrontal cortex, hippocampus and striatum immediately after the administration of ouabain, at the concentration of 10-3 and 10-2 M. Moreover, complex II activity was increased only in the prefrontal cortex at the concentration of 10-2 M. On the other hand, no significant alterations were observed in complex I activity 7 days after ouabain administration. However, an increase in complexes II, III and IV activities was observed only in the prefrontal cortex at the concentration of 10-2 M. CONCLUSION Our findings suggest an increase in the activities of mitochondrial respiratory chain in this model of mania. A possible explanation is that these findings occur as a rebound effect trying to compensate for a decrease of ATP deprivation in BD. The present findings suggest that this model may present good face validity and a limitation in construct validity.
Collapse
Affiliation(s)
- Tiago P Freitas
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Daiane B Fraga
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Morgana Moretti
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - Julia S Vieira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara M Gomes
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lislaine S Borges
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - Emilio L Streck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
41
|
Einat H. Strategies for the development of animal models for bipolar disorder: new opportunities and new challenges. Curr Top Behav Neurosci 2011; 5:69-87. [PMID: 25236550 DOI: 10.1007/7854_2010_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The paucity of appropriate animal models for bipolar disorder is repeatedly mentioned as one of the critical factors hindering research into the pathophysiology of the disorder and the development of truly novel treatments. Recent advances in our understanding of the biological basis of bipolar disorder can be used to identify and develop better models. One possibility that is discussed in a separate chapter of this book is the use of molecular biology techniques to develop animals with targeted mutations related to genes implicated in the disorder. However, the development of such animals may not be enough for usable and helpful models. Additional strategies should, therefore, be combined with targeted mutation methodology to develop good model animals and good tests that will significantly impact our ability to further explore the underlying biology of bipolar disorder and to develop better drugs and treatments.The present chapter presents a short introduction related to commonly used models and discusses some of the possible strategies for advancement. These strategies include developing better tests, exploring separate tests for the different domains of the disease, creating test batteries, and developing models for endophenotypes. In addition, the chapter raises the possibility of identifying better model animals using comparative biology approaches. The chapter presents two different ways for identifying advantageous model animals using either specific strains of laboratory animals or using the natural diversity of nontraditional model animals.In summary, it is concluded that while each strategy offers significant contributions, it is important to combine the different approaches in order to be able to achieve novel, appropriate, and predictive models for bipolar disorder.
Collapse
Affiliation(s)
- Haim Einat
- College of Pharmacy, University of Minnesota, 123 Life Sciences, 1110 Kirby Dr., Duluth, MN, 55812, USA,
| |
Collapse
|
42
|
Yu HS, Kim SH, Park HG, Kim YS, Ahn YM. Activation of Akt signaling in rat brain by intracerebroventricular injection of ouabain: a rat model for mania. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:888-94. [PMID: 20403403 DOI: 10.1016/j.pnpbp.2010.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/06/2010] [Accepted: 04/13/2010] [Indexed: 11/17/2022]
Abstract
Intracerebroventricular (ICV) injection of ouabain, a specific Na-K ATPase inhibitor, induces behavioral changes in rats resembling the manic phenotypes of bipolar disorder. The binding of ouabain to the Na-K ATPase affects signal events in vitro including Akt, a possible molecular target of mood disorders. However, the effects of ouabain on Akt in the brain need further clarification. In this study, we investigated changes in the phosphorylation state of Akt in the rat brain after ICV injection of ouabain. Consistent with our previous report, the locomotor activity of rats within 30 min after ouabain ICV injection changed according to the dose with higher doses of ouabain, 0.5 and 1 mM, inducing significant hyperactivity. In addition, ouabain administration induced a dose-dependent increase in the immunoreactivity of p-Akt (Ser473) in the frontal cortex, striatum, and hippocampus after 30 min, and reached statistical significance with 1mM of ouabain. Phosphorylation of GSK-3beta (Ser9), FOXO1 (Ser256), and eNOS (Ser1177), which are downstream molecules of Akt, was also increased in a dose-dependent manner within the same brain regions. Moreover, hyperactivity was seen for 8h after a single 1mM injection of ouabain and increased phosphorylation of Akt (Ser473), GSK-3beta (Ser9), FOXO1 (Ser256), and eNOS (Ser1177) was also observed in the cortex, striatum, and hippocampus. Thus, intrabrain injection of ouabain induces activation of Akt signaling accompanied by hyperactivity, suggesting the possible role of Akt in ouabain rat model of mania.
Collapse
Affiliation(s)
- Hyun-Sook Yu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Effects of brain-derived neurotrophic factor on sodium-induced apoptosis in human olfactory neuroepithelial progenitor cells. Psychiatry Res 2010; 178:391-4. [PMID: 20472302 DOI: 10.1016/j.psychres.2009.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 09/09/2009] [Accepted: 10/20/2009] [Indexed: 01/19/2023]
Abstract
Low levels of brain-derived neurotrophic factor (BDNF) peptide are linked to the pathophysiology of mood disorders. Several single-nucleotide polymorphisms (SNPs) across the BDNF gene (BDNF) have been associated with bipolar illness. Since both elevated intracellular sodium and apoptosis are believed to contribute to cellular dysfunction in bipolar disorder, it is important to determine the effect of exogenous BDNF on apoptosis induced by the high levels of intracellular sodium seen in ill bipolar patients. Human olfactory neuroepithelial progenitor cells were treated with monensin, a sodium ionophore that increases intracellular sodium and leads to apoptosis. Apoptosis was quantified with enzyme-linked immunosorbent assay (ELISA) for mono- and oligonucleosomes. Elevation of intracellular sodium concentration by monensin induced apoptosis. BDNF 100ng/mL pretreatment or co-treatment attenuated the monensin-induced apoptosis. Pretreatment with BDNF for 24h reduced monensin-induced apoptosis by 93%. Co-treatment of BDNF and monensin increased intracellular sodium concentration and reduced apoptosis by 66%. Monensin for 24h models a process that is believed to occur during ill phases of bipolar illness. Treatment with BDNF greatly attenuates or prevents monensin-induced apoptosis. The functional consequences of BDNF SNPs, known to be associated with bipolar illness, need to be examined.
Collapse
|
44
|
Brocardo PS, Budni J, Pavesi E, Franco JL, Uliano-Silva M, Trevisan R, Terenzi MG, Dafre AL, Rodrigues ALS. Folic acid administration prevents ouabain-induced hyperlocomotion and alterations in oxidative stress markers in the rat brain. Bipolar Disord 2010; 12:414-24. [PMID: 20636639 DOI: 10.1111/j.1399-5618.2010.00827.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Bipolar disorder (BD) is a chronic, prevalent, and highly debilitating psychiatric illness. Folic acid has been shown to have antidepressant-like effects in preclinical and clinical studies and has also been suggested to play a role in BD. The present work investigates the therapeutic value of folic acid supplementation in a preclinical animal model of mania induced by ouabain. METHODS Male Wistar rats were treated twice daily for seven days with folic acid (10, 50, and 100 mg/kg, p.o.) or the mood stabilizer lithium chloride (LiCl) (45 mg/kg, p.o.). One day after the last dose was given, the animals received an i.c.v. injection of ouabain (10 microM), a Na(+),K(+)-ATPase-inhibiting compound. Locomotor activity was assessed in the open-field test. Thiobarbituric acid-reactive substance (TBARS) levels, glutathione peroxidase (GPx), and glutathione reductase (GR) activities were measured in the cerebral cortex and hippocampus. RESULTS Ouabain (10 microM, i.c.v.) significantly increased motor activity in the open-field test, and seven days of pretreatment with folic acid (50 mg/kg, p.o.) or LiCl (45 mg/kg, p.o.) completely prevented this effect. Ouabain treatment elicited lipid peroxidation (increased TBARS levels) and reduced GPx activity in the hippocampus. GR activity was decreased in the cerebral cortex and hippocampus. These effects were prevented by pretreatment with folic acid and LiCl. CONCLUSIONS Our results show that folic acid, similarly to LiCl, produces a clear antimanic action and prevents the neurochemical alterations indicative of oxidative stress in an animal model of mania.
Collapse
Affiliation(s)
- Patrícia S Brocardo
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina, Campus Universitario, Trindade, Florianopolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jornada LK, Moretti M, Valvassori SS, Ferreira CL, Padilha PT, Arent CO, Fries GR, Kapczinski F, Quevedo J. Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res 2010; 44:506-10. [PMID: 19954800 DOI: 10.1016/j.jpsychires.2009.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/23/2022]
Abstract
There is a body of evidence suggesting that BDNF is involved in bipolar disorder (BD) pathogenesis. Intracerebroventricular (ICV) injection of ouabain (OUA), a specific Na(+)/K(+) ATPase inhibitor, induces hyperlocomotion in rats, and has been used as an animal model of mania. The present study aims to investigate the effects of the lithium (Li) and valproate (VPT) in an animal model of mania induced by ouabain. In the reversal model, animals received a single ICV injection of OUA or cerebrospinal fluid (aCSF). From the day following the ICV injection, the rats were treated for 6 days with intraperitoneal (IP) injections of saline (SAL), Li or VPT twice a day. In the maintenance treatment (prevention model), the rats received IP injections of Li, VPT, or SAL twice a day for 12 days. In the 7th day of treatment the animals received a single ICV injection of either OUA or aCSF. After the ICV injection, the treatment with the mood stabilizers continued for more 6 days. Locomotor activity was measured using the open-field test and BDNF levels were measured in rat hippocampus and amygdala by sandwich-ELISA. Li and VPT reversed OUA-related hyperactive behavior in the open-field test in both experiments. OUA decreased BDNF levels in first and second experiments in hippocampus and amygdala and Li treatment, but not VPT reversed and prevented the impairment in BDNF expression after OUA administration in these cerebral areas. Our results suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.
Collapse
Affiliation(s)
- Luciano K Jornada
- Laboratory of Neurosciences and National Science and Technology Institute for Translational Medicine, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88808-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang X, Lei Z, Li XP, El-Mallakh RS. Response of sodium pump to ouabain challenge in human glioblastoma cells in culture. World J Biol Psychiatry 2010; 10:884-92. [PMID: 19995221 DOI: 10.1080/15622970902995620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bipolar disorder is a severe psychiatric condition that manifests with abnormalities in ion regulation. Previous studies have suggested that glia may be specifically involved in the pathophysiology of this condition. Since the potent sodium pump inhibitor, ouabain, has been used previously to model the ionic changes of bipolar illness, we investigated its effect of on sodium pump expression and activity in a human glioblastoma cell line. LN229 cells were grown with or without ouabain 10(-7) M for 3 days, and the effect of a therapeutic concentration of lithium was also examined. The mRNA transcription of sodium pump isoforms was determined by reverse transcriptase polymerase chain reaction (RT-PCR), and the protein expression of phosphorylated and non-phosphorylated pump isoforms was semi-quantified utilizing Western blot. Ouabain treatment caused an increase of some 6-fold in alpha1 protein expression and a doubling of alpha1 mRNA. alpha3 protein and alpha2 and alpha3 mRNA more than doubled. Lithium treatment alone had no effect, but lithium co-administered with ouabain normalized Na pump protein and mRNA expression for alpha1 and 2, but not alpha3. These results suggest that disturbance of ion regulation induces changes in glial cell sodium regulatory systems which are normalized by lithium treatment.
Collapse
Affiliation(s)
- Xian Huang
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, KY, USA
| | | | | | | |
Collapse
|
47
|
Hamid H, Gao Y, Lei Z, Hougland MT, El-Mallakh RS. Effect of ouabain on sodium pump alpha-isoform expression in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1103-6. [PMID: 19524007 DOI: 10.1016/j.pnpbp.2009.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 05/16/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
While the pathophysiologic mechanisms of bipolar illness are unknown, a dysregulation of electrolytes, particularly intracellular sodium (Na) and calcium (Ca), are thought to contribute to the illness. Ouabain, a potent Na pump inhibitor, administered intracerebroventricularly (ICV), has been used previously to model mania. The current study evaluates the effect of ICV ouabain on Na pump isoform expression in rat brain. Animals received 5 microl ICV of either 10(-3) M ouabain or artificial cerebrospinal fluid (aCSF). They were then sacrificed 7 days after the ICV injection and specific brain areas were dissected and frozen until the assay (frontal cortex, hippocampus, and basal ganglia). The three isoforms of the alpha subunit of the Na pump that are expressed in the brain were quantified with immunoblot analysis with actin serving as internal control. The behavioral hyperactivity seen in rats receiving ICV ouabain is associated with an increase of expression of the glial-specific alpha2 isoform in the basal ganglia, and the neuron-specific alpha3 isoforms in the frontal cortex. These findings, in association with human post mortem studies finding that alpha2 is underexpressed in the temporal cortex of bipolar subjects, suggest that Na pump isoform expression may be of interest in the pathophysiology of mania.
Collapse
Affiliation(s)
- Humera Hamid
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | | | | | | |
Collapse
|
48
|
Hougland MT, Gao Y, Herman L, Ng CK, Lei Z, El-Mallakh RS. Positron emission tomography with fluorodeoxyglucose-F18 in an animal model of mania. Psychiatry Res 2008; 164:166-71. [PMID: 18930636 DOI: 10.1016/j.pscychresns.2008.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 11/11/2007] [Accepted: 01/07/2008] [Indexed: 10/21/2022]
Abstract
Intracerebroventricular (ICV) administration of ouabain to young adult rats has been suggested to model human bipolar mania. In the human condition, mania and bipolar depression are both associated with reductions in frontal cerebral metabolism. We utilized [(18)F]-fluorodeoxyglucose [(18)FDG] positron emission tomography (PET) to visualize glucose uptake in animals receiving ICV ouabain. Animals received 5 microl of 10(-)(3) M ouabain ICV, were anesthetized with isoflurane inhalation, and administered intraperitoneally with 0.5 mCi of (18)FDG. PET data were collected over 20 min 1 hour later. Additionally, the effect of lithium was examined in animals receiving lithium in their diet for 1 week before the ICV ouabain injection. Data were analyzed with IDL Virtual Machine software. Brain glucose utilization as measured by (18)FDG uptake was significantly reduced in animals receiving ICV ouabain compared with those receiving equal volumes of artificial cerebrospinal fluid. Pretreatment with lithium normalized (18)FDG uptake. These results mirror human studies.
Collapse
Affiliation(s)
- Matthew Tyler Hougland
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | | | | | | | | | | |
Collapse
|
49
|
Kim SH, Yu HS, Park HG, Jeon WJ, Song JY, Kang UG, Ahn YM, Lee YH, Kim YS. Dose-dependent effect of intracerebroventricular injection of ouabain on the phosphorylation of the MEK1/2-ERK1/2-p90RSK pathway in the rat brain related to locomotor activity. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1637-42. [PMID: 18590792 DOI: 10.1016/j.pnpbp.2008.05.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/10/2008] [Accepted: 05/29/2008] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) injection of ouabain, a specific Na-K ATPase inhibitor, induced behavioral changes in rats, a putative animal model for bipolar disorder. The binding of ouabain to Na-K ATPase is known to affect signaling molecules in vitro such as extracellular signal-regulated kinase1/2 (ERK1/2). Although ERK has been suggested to be related to the behavioral alterations induced by various psychotomimetics, the effect of ouabain on ERK in the brain related to behavioral changes has not been examined. After ICV injection of ouabain in rats, we investigated changes in the phosphorylation of mitogen-activated protein kinase kinase1/2 (MEK1/2), ERK1/2, and p90 ribosomal s6 kinase (p90RSK) in rat striatum, frontal cortex, and hippocampus along with changes in locomotor activity. Ouabain induced the following biphasic dose-dependent changes in locomotor activity: no change with 10(-6) M, a statistically significant decrease with 10(-5) M, no change with 10(-4) M, and a statistically significant increase with 0.5x10(-3) and 10(-3) M. The phosphorylation level of MEK1/2, ERK1/2, and p90RSK in rat striatum showed dose-dependent changes similar to those observed in locomotor activity with relatively high correlation. The phosphorylation of these molecules in rat frontal cortex and hippocampus also changed in a similar dose-dependent pattern. Taken together, ouabain induced biphasic dose-dependent changes in locomotor activity and the phosphorylation of the ERK1/2 pathway. These findings suggest a possible relationship between ouabain-induced behavioral changes and ERK activity in the brain and suggest an important role of ERK in regulating locomotor activity and mood state.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gould TD, Einat H. Animal models of bipolar disorder and mood stabilizer efficacy: a critical need for improvement. Neurosci Biobehav Rev 2007; 31:825-31. [PMID: 17628675 PMCID: PMC2150564 DOI: 10.1016/j.neubiorev.2007.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
The limited number of suitable animal models of bipolar disorder available for in-depth behavioral, biochemical, histological, and pharmacological analysis is a rate-limiting step in the process of understanding the relevant neurobiology of the disorder, as well as the development of novel medications. In the search for new models, both new and old approaches hold promise for future discoveries. Clinical studies regarding the underlying genetics and pathophysiology of bipolar disorder are providing important clues. In particular, the identification of susceptibility genes for bipolar disorder will help to define specific neurobiological processes, and associated behaviors, that are unquestionably involved in the pathways connecting genes and distal symptoms. These endophenotypes will hold great value in further enhancing the validity of animal models and will strongly complement symptom-based models and models of medication efficacy. Regardless of the path taken by different researchers to develop better models, we believe that this area of work requires additional attention not only from researchers but also from funding agencies.
Collapse
Affiliation(s)
- Todd D. Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, 35 Convent Drive, Bldg 35, Rm 1C-912, Bethesda, Maryland, 20892-3711,
| | - Haim Einat
- College of Pharmacy, Duluth, University of Minnesota, 376 Kirby Plaza, 1208 Kirby Drive, Duluth, MN, 55812
| |
Collapse
|