1
|
Sui AR, Piao H, Xiong ST, Zhang P, Guo SY, Kong Y, Gao CQ, Wang ZX, Yang J, Ge BY, Supratik K, Yang JY, Li S. Scorpion venom heat-resistant synthesized peptide ameliorates epileptic seizures and imparts neuroprotection in rats mediated by NMDA receptors. Eur J Pharmacol 2024; 978:176704. [PMID: 38830458 DOI: 10.1016/j.ejphar.2024.176704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Si-Ting Xiong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Peng Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Qian Gao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xue Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jun Yang
- Department of Child Health, Yantaishan Hospital, Yantai, 264008, China
| | - Bi-Ying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
3
|
Chen X, Liu K, Lin Z, Huang K, Pan S. Knockout of Transient Receptor Potential Melastatin 4 Channel Mitigates Cerebral Edema and Neuronal Injury After Status Epilepticus in Mice. J Neuropathol Exp Neurol 2021; 79:1354-1364. [PMID: 33186453 DOI: 10.1093/jnen/nlaa134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate whether the knockout of transient receptor potential melastatin 4 (TRPM4) could reduce cerebral edema and improve neurologic outcome in a mouse model of status epilepticus (SE). Wild-type (WT) (n = 61) and Trpm4-/- mice (n = 61) with behavioral seizures induced by lithium (10 mEq/kg) and pilocarpine (30-40 mg/kg) were terminated 2.5 hours after the onset of SE. After SE, 28 WT-SE and 27 Trpm4-/--SE mice were observed for 28 days and assessed for survival and cognitive function; the others were killed after 24 hours, 72 hours, or 7 days, and evaluated for cerebral edema and histological injury. In comparison to WT-SE mice, the mortality and cognitive deficit for Trpm4-/--SE mice following SE after 28 days were significantly ameliorated. Trpm4-/--SE mice also showed less water content and cerebral edema assessed by magnetic resonance imaging, and decreased blood-brain barrier breakdown after SE. Moreover, Trpm4 deficiency significantly mitigated neuronal loss, cellular necrosis and apoptosis in the hippocampus and piriform cortex and mitigated astrocytosis and microgliosis. In conclusion, this study suggests that Trmp4 may represent a new target for improving outcomes after SE.
Collapse
Affiliation(s)
- Xing Chen
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhou Lin
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- From the Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Singh N, Serres F, Toker L, Sade Y, Blackburn V, Batra AS, Saiardi A, Agam G, Belmaker RH, Sharp T, Vasudevan SR, Churchill GC. Effects of the putative lithium mimetic ebselen on pilocarpine-induced neural activity. Eur J Pharmacol 2020; 883:173377. [PMID: 32687920 DOI: 10.1016/j.ejphar.2020.173377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023]
Abstract
Lithium, commonly used to treat bipolar disorder, potentiates the ability of the muscarinic agonist pilocarpine to induce seizures in rodents. As this potentiation by lithium is reversed by the administration of myo-inositol, the potentiation may be mediated by inhibition of inositol monophosphatase (IMPase), a known target of lithium. Recently, we demonstrated that ebselen is a 'lithium mimetic' in regard to behaviours in both mice and man. Ebselen inhibits IMPase in vitro and lowers myo-inositol in vivo in the brains of mice and men, making ebselen the only known inhibitor of IMPase, other than lithium, that penetrates the blood-brain barrier. Our objective was to determine the effects of ebselen on sensitization to pilocarpine-induced seizures and neural activity. We administered ebselen at different doses and time intervals to mice, followed by injection of a sub-seizure dose of pilocarpine. We assessed seizure and neural activity by a subjective seizure rating scale, by monitoring tremors, and by induction of the immediate early gene c-fos. In contrast to lithium, ebselen did not potentiate the ability of pilocarpine to induce seizures. Unexpectedly, ebselen inhibited pilocarpine-induced tremor as well as pilocarpine-induced increases in c-fos mRNA levels. Both lithium and ebselen inhibit a common target, IMPase, but only lithium potentiates pilocarpine-induced seizures, consistent with their polypharmacology at diverse molecular targets. We conclude that ebselen does not potentiate pilocarpine-induced seizures and instead, reduces pilocarpine-mediated neural activation. This lack of potentiation of muscarinic sensitization may be one reason for the lack of side-effects observed with ebselen treatment clinically.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Florence Serres
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lilah Toker
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yeala Sade
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Robert H Belmaker
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences and Mental Health Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
5
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
6
|
Toker L, Kara N, Hadas I, Einat H, Bersudsky Y, Belmaker RH, Agam G. Acute intracerebroventricular inositol does not reverse the effect of chronic lithium treatment in the forced swim test. Neuropsychobiology 2014; 68:189-92. [PMID: 24157652 DOI: 10.1159/000355294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lithium has numerous biochemical effects but it is difficult to dissect which of these is responsible for its therapeutic action in bipolar disorder. In the current study we aimed to address one of the major hypotheses, the inositol depletion hypothesis. This hypothesis postulates that lithium's mood-stabilizing effect is mediated by the depletion of brain inositol levels and the subsequent effect on cellular signaling. METHODS We studied whether acute intracerebroventricular (ICV) administration of myo-inositol could reverse the antidepressant-like effect of chronic lithium treatment in the forced swim test (FST). RESULTS In contrast with our prediction, acute myo-inositol administration did not reverse the effect of chronic lithium to decrease immobility in the FST. CONCLUSIONS The results of the present study are limited due to the following: (1) inositol was given acutely while possible events downstream of inositol depletion might require a longer period and (2) ICV inositol may not have reached those areas of the brain involved in the FST.
Collapse
Affiliation(s)
- L Toker
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Hillert MH, Imran I, Zimmermann M, Lau H, Weinfurter S, Klein J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J Neurochem 2014; 131:42-52. [PMID: 24909269 DOI: 10.1111/jnc.12787] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/30/2023]
Abstract
The lithium-pilocarpine model is a rat model of epilepsy that mimics status epilepticus in humans. Here, we report changes of acetylcholine (ACh) release in the hippocampus before, during and after status epilepticus as monitored by microdialysis in unanesthetized rats. Administration of pilocarpine (30 mg/kg s.c.) to rats pretreated with lithium chloride (127 mg/kg i.p.) caused a massive, six-fold increase of hippocampal ACh release, paralleling the development of tonic seizures. When seizures were stopped by administration of diazepam (10 mg/kg i.p.) or ketamine (75 mg/kg i.p.), ACh levels returned to normal. Extracellular concentrations of glutamate remained unchanged during this procedure. Administration of atropine (1 mg/kg i.p.) 2 h after pilocarpine caused a further increase of ACh but did not affect seizures, whereas injection of mecamylamine (5 mg/kg i.p.) reduced ACh levels and seizures in a delayed fashion. Local infusion of tetrodotoxin, 1 μM locally) or hemicholinium (10 μM locally) strongly reduced ACh release and had delayed effects on seizures. Administration of glucose or inositol (250 mg/kg each i.p.) had no visible consequences. In parallel experiments, lithium-pilocarpine-induced status epilepticus also enhanced striatal ACh release, and hippocampal ACh levels equally increased when status epilepticus was induced by kainate (30 mg/kg i.p.). Taken together, our results demonstrate that seizure development in status epilepticus models is accompanied by massive increases of extracellular ACh, but not glutamate, levels. Treatments that reduce seizure activity also reliably reduce extracellular ACh levels.
Collapse
Affiliation(s)
- Markus H Hillert
- Department of Pharmacology, School of Pharmacy, Biocenter N260, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Levi I, Eskira Y, Eisenstein M, Gilon C, Hoffman A, Tal-Gan Y, Fanous J, Bersudsky Y, Belmaker RH, Agam G, Almog O, Almog O. Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects. Eur Neuropsychopharmacol 2013; 23:1806-15. [PMID: 23619164 DOI: 10.1016/j.euroneuro.2013.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/01/2013] [Accepted: 02/08/2013] [Indexed: 01/13/2023]
Abstract
Bipolar-disorder (manic-depressive illness) is a severe chronic illness affecting ∼1% of the adult population. It is treated with mood-stabilizers, the prototypic one being lithium-salts (lithium), but it has life threatening side-effects and a significant number of patients fail to respond. The lithium-inhibitable enzyme inositol-monophosphatase (IMPase) is one of the viable targets for lithium's mechanism of action. Calbindin-D28k (calbindin) up-regulates IMPase activity. The IMPase-calbindincomplex was modeled using the program MolFit. The in-silico model indicated that the 55-66 amino-acid segment of IMPase anchors calbindin via Lys59 and Lys61 with a glutamate in between (Lys-Glu-Lys motif) and that the motif interacts with residues Asp24 and Asp26 of calbindin. We found that differently from wildtype calbindin, IMPase was not activated by mutated calbindin in which Asp24 and Asp26 were replaced by alanine. Calbindin's effect was significantly reduced by a linear peptide with the sequence of amino acids 58-63 of IMPase (peptide 1) and by six amino-acid linear peptides including at least part of the Lys-Glu-Lys motif. The three amino-acid peptide Lys-Glu-Lys or five amino-acid linear peptides containing this motif were ineffective. Mice administered peptide 1 intracerebroventricularly exhibited a significant anti-depressant-like reduced immobility in the forced-swim test. Based on the sequence of peptide 1, and to potentially increase the peptide's stability, cyclic and linear pre-cyclic analog peptides were synthesized. One cyclic peptide and one linear pre-cyclic analog peptide inhibited calbindin-activated brain IMPase activity in-vitro. Our findings may lead to the development of molecules capable of inhibiting IMPase activity at an alternative site than that of lithium.
Collapse
Affiliation(s)
- Itzhak Levi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Psychiatry Research Unit, Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kotaria N, Kiladze M, Zhvania MG, Japaridze NJ, Bikashvili T, Solomonia RO, Bolkvadze T. The protective effect of myo-inositol on hippocamal cell loss and structural alterations in neurons and synapses triggered by kainic acid-induced status epilepticus. Cell Mol Neurobiol 2013; 33:659-71. [PMID: 23568659 DOI: 10.1007/s10571-013-9930-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023]
Abstract
It is known that myo-inositol pretreatment attenuates the seizure severity and several biochemical changes provoked by experimentally induced status epilepticus. However, it remains unidentified whether such properties of myo-inositol influence the structure of epileptic brain. In the present light and electron microscopic research we elucidate if pretreatment with myo-inositol has positive effect on hippocampal cell loss, and cell and synapses damage provoked by kainic acid-induced status epilepticus. Adult male Wistar rats were treated with (i) saline, (ii) saline + kainic acid, (iii) myo-inositol + kainic acid. Assessment of cell loss at 2, 14, and 30 days after treatment demonstrate cytoprotective effect of myo-inositol in CA1 and CA3 areas. It was strongly expressed in pyramidal layer of CA1, radial and oriental layers of CA3 and in less degree-in other layers of both fields. Ultrastructural alterations were described in CA1, 14 days after treatment. The structure of neurons, synapses, and porosomes are well preserved in the rats pretreated with myo-inositol in comparing with rats treated with only kainic acid.
Collapse
Affiliation(s)
- Nato Kotaria
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | | | | | | | | | | | | |
Collapse
|
10
|
Shtein L, Toker L, Bersudsky Y, Belmaker RH, Agam G. The inositol monophosphatase inhibitor L-690,330 affects pilocarpine-behavior and the forced swim test. Psychopharmacology (Berl) 2013; 227:503-8. [PMID: 23344554 DOI: 10.1007/s00213-013-2969-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE Lithium has been a standard pharmacological treatment for bipolar disorder over the last 60 years; however, the molecular targets through which lithium exerts its therapeutic effects are still not defined. Attenuation of the phosphatidylinositol signal transduction pathway as a consequence of inhibition of inositol monophosphatase (IMPase) has been proposed as one of the possible mechanisms for lithium-induced mood stabilization. OBJECTIVES The objective was to study the behavioral effect of the specific competitive IMPase inhibitor L-690,330 in mice in the lithium-sensitive pilocarpine-induced seizures paradigm and the forced swim test (FST). METHODS The inhibitor was administered intracerebroventricularly in liposomes. RESULTS L-690,330 increased the sensitivity to subconvulsive doses of pilocarpine and decreased immobility time in the FST. CONCLUSIONS It is possible that the behavioral effects of lithium in the pilocarpine-induced seizures and in the FST are mediated through the inhibition of IMPase, but reversal of the inhibitor's effect with intracerebroventricular inositol would be an important further step in proof.
Collapse
Affiliation(s)
- Liza Shtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
11
|
Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 2011; 32:420-34. [PMID: 21492946 DOI: 10.1016/j.tips.2011.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Although lithium has largely met its initial promise as the first drug discovered in the modern era of psychopharmacology, to date no definitive mechanism for its effects has been established. It has been proposed that lithium exerts its therapeutic effects by interfering with signal transduction through G-protein-coupled receptor (GPCR) pathways or direct inhibition of specific targets in signaling systems, including inositol monophosphatase and glycogen synthase kinase-3 (GSK-3). Recently, increasing evidence has suggested that N-methyl-D-aspartate receptor (NMDAR)/nitric oxide (NO) signaling could mediate some lithium-induced responses in the brain and peripheral tissues. However, the probable role of the NMDAR/NO system in the action of lithium has not been fully elucidated. In this review, we discuss biochemical, preclinical/behavioral and physiological evidence that implicates NMDAR/NO signaling in the therapeutic effect of lithium. NMDAR/NO signaling could also explain some of side effects of lithium.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
12
|
Fujita S, Ohnishi T, Okuda S, Kobayashi R, Fukuno S, Furuta D, Kikuchi T, Yoshikawa T, Fujita N. In silico study on the substrate binding manner in human myo-inositol monophosphatase 2. J Mol Model 2011; 17:2559-67. [DOI: 10.1007/s00894-010-0937-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 12/15/2010] [Indexed: 11/29/2022]
|
13
|
Abstract
Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.
Collapse
Affiliation(s)
- Eric J Nestler
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.
| | | |
Collapse
|
14
|
Knockout mice in understanding the mechanism of action of lithium. Biochem Soc Trans 2009; 37:1121-5. [PMID: 19754464 DOI: 10.1042/bst0371121] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lithium inhibits IMPase (inositol monophosphatase) activity, as well as inositol transporter function. To determine whether one or more of these mechanisms might underlie lithium's behavioural effects, we studied Impa1 (encoding IMPase) and Smit1 (sodium-myo-inositol transporter 1)-knockout mice. In brains of adult homozygous Impa1-knockout mice, IMPase activity was found to be decreased; however, inositol levels were not found to be altered. Behavioural analysis indicated decreased immobility in the forced-swim test as well as a strongly increased sensitivity to pilocarpine-induced seizures. These are behaviours robustly induced by lithium. In homozygous Smit1-knockout mice, free inositol levels were decreased in the frontal cortex and hippocampus. These animals behave like lithium-treated animals in the model of pilocarpine seizures and in the Porsolt forced-swim test model of depression. In contrast with O'Brien et al. [O'Brien, Harper, Jove, Woodgett, Maretto, Piccolo and Klein (2004) J. Neurosci. 24, 6791-6798], we could not confirm that heterozygous Gsk3b (glycogen synthase kinase 3beta)-knockout mice exhibit decreased immobility in the Porsolt forced-swim test or decreased amphetamine-induced hyperactivity in a manner mimicking lithium's behavioural effects. These data support the role of inositol-related processes rather than GSK3beta in the mechanism of the therapeutic action of lithium.
Collapse
|
15
|
Bersudsky Y, Shaldubina A, Agam G, Berry GT, Belmaker RH. Homozygote inositol transporter knockout mice show a lithium-like phenotype. Bipolar Disord 2008; 10:453-9. [PMID: 18452441 DOI: 10.1111/j.1399-5618.2007.00546.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Lithium inhibits inositol monophosphatase and also reduces inositol transporter function. To determine if one or more of these mechanisms might underlie the behavioral effects of lithium, we studied inositol transporter knockout mice. We previously reported that heterozygous knockout mice with reduction of 15-37% in brain inositol had no abnormalities of pilocarpine sensitivity or antidepressant-like behavior in the Porsolt forced swim test. We now report on studies of homozygous inositol transporter knockout mice. METHODS Homozygote knockout mice were rescued by 2% inositol supplementation to the drinking water of the dam mice through pregnancy and lactation. Genotyping was carried out by polymerase chain reaction followed by agarose electrophoresis. Brain free myo-inositol levels were determined gas-chromatographically. Motor activity and coordination were assessed by the rotarod test. Behavior of the mice was studied in lithium-pilocarpine seizure models for lithium action and in the Porsolt forced swim test model for depression. RESULTS In homozygote knockout mice, free inositol levels were reduced by 55% in the frontal cortex and by 60% in the hippocampus. There were no differences in weight or motor coordination by the rotarod test. They behaved similarly to lithium-treated animals in the model of pilocarpine seizures and in the Porsolt forced swimming test model of depression. CONCLUSIONS Reduction of brain inositol more than 15-37% may be required to elicit lithium-like neurobehavioral effects.
Collapse
Affiliation(s)
- Yuly Bersudsky
- Stanley Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | |
Collapse
|
16
|
Gould TD, Einat H. Animal models of bipolar disorder and mood stabilizer efficacy: a critical need for improvement. Neurosci Biobehav Rev 2007; 31:825-31. [PMID: 17628675 PMCID: PMC2150564 DOI: 10.1016/j.neubiorev.2007.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
The limited number of suitable animal models of bipolar disorder available for in-depth behavioral, biochemical, histological, and pharmacological analysis is a rate-limiting step in the process of understanding the relevant neurobiology of the disorder, as well as the development of novel medications. In the search for new models, both new and old approaches hold promise for future discoveries. Clinical studies regarding the underlying genetics and pathophysiology of bipolar disorder are providing important clues. In particular, the identification of susceptibility genes for bipolar disorder will help to define specific neurobiological processes, and associated behaviors, that are unquestionably involved in the pathways connecting genes and distal symptoms. These endophenotypes will hold great value in further enhancing the validity of animal models and will strongly complement symptom-based models and models of medication efficacy. Regardless of the path taken by different researchers to develop better models, we believe that this area of work requires additional attention not only from researchers but also from funding agencies.
Collapse
Affiliation(s)
- Todd D. Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, 35 Convent Drive, Bldg 35, Rm 1C-912, Bethesda, Maryland, 20892-3711,
| | - Haim Einat
- College of Pharmacy, Duluth, University of Minnesota, 376 Kirby Plaza, 1208 Kirby Drive, Duluth, MN, 55812
| |
Collapse
|
17
|
O'Donnell KC, Gould TD. The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev 2007; 31:932-62. [PMID: 17532044 PMCID: PMC2150568 DOI: 10.1016/j.neubiorev.2007.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/27/2007] [Indexed: 12/13/2022]
Abstract
For nearly as long as lithium has been in clinical use for the treatment of bipolar disorder, depression, and other conditions, investigators have attempted to characterize its effects on behaviors in rodents. Lithium consistently decreases exploratory activity, rearing, aggression, and amphetamine-induced hyperlocomotion; and it increases the sensitivity to pilocarpine-induced seizures, decreases immobility time in the forced swim test, and attenuates reserpine-induced hypolocomotion. Lithium also predictably induces conditioned taste aversion and alterations in circadian rhythms. The modulation of stereotypy, sensitization, and reward behavior are less consistent actions of the drug. These behavioral models may be relevant to human symptoms and to clinical endophenotypes. It is likely that the actions of lithium in a subset of these animal models are related to the therapeutic efficacy, as well the side effects, of the drug. We conclude with a brief discussion of various molecular mechanisms by which these lithium-sensitive behaviors may be mediated, and comment on the ways in which rat and mouse models can be used more effectively in the future to address persistent questions about the therapeutically relevant molecular actions of lithium.
Collapse
Affiliation(s)
- Kelley C O'Donnell
- The Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, NIH, HHS, Bldg 35, Rm 1C-912, 35 Convent Drive, Bethesda, MD 20892 3711, USA
| | | |
Collapse
|