1
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-cell analysis of Rohon-Beard neurons implicates Fgf signaling in axon maintenance and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554953. [PMID: 37693470 PMCID: PMC10491107 DOI: 10.1101/2023.08.26.554953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
|
2
|
Chen Y, Xiao L, Gao G, He L, Zhao K, Shang X, Liu C. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114007. [PMID: 36030688 DOI: 10.1016/j.ecoenv.2022.114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
2, 5-dichloro-1, 4-benuinone (2, 5-DCBQ) is an emerging disinfection by-product belonging to the class of halobenzoquinones (HBQs). However, there is limited evidence regarding the neurotoxic effects of 2, 5-DCBQ. To better understand the toxicological mechanisms of aquatic organisms, zebrafish embryos were exposed to 0.2 mg/L, 0.4 mg/L, and 0.6 mg/L of 2, 5-DCBQ from 4 h post-fertilization (hpf) to 120 hpf. Developmental defects, such as reduced body length, decreased heart rate, decreased pigmentation, and abnormal motor axon structure was observed. In particular, the locomotor activity of zebrafish larvae reduced with exposure to increasing 2, 5-DCBQ concentrations, and this effect was more pronounced under dark stimulation. The results indicated that the genes associated with neuronal development (gfap, mbp, syn2a, elavl3, ache, and a1-tubulin) were significantly downregulated after treatment with 2, 5-DCBQ. Furthermore, the KEGG result showed the neuroactive ligand-receptor interaction and apoptosis pathways were visibly disrupted, and we found acetylcholinesterase activity was also affected. In summary, the disinfection by-product, 2, 5-DCBQ, exhibits neurodevelopmental toxicity in zebrafish embryos, providing novel evidence for comprehensive analyses of its toxicity.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Guangyu Gao
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Liting He
- The Second People's Hospital of Guiyang, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
3
|
Shen C, Zhou Y, Tang C, He C, Zuo Z. Developmental exposure to mepanipyrim induces locomotor hyperactivity in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2020; 256:127106. [PMID: 32447115 DOI: 10.1016/j.chemosphere.2020.127106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Mepanipyrim is a widely used fungicide, and residues of mepanipyrim are frequently detected in commodities. However, the neurotoxicity and underlying mechanisms of mepanipyrim are still insufficiently understood. In this study, zebrafish embryos at 0.5-1.0 post-fertilization hours (hpf) were exposed to 0.1, 1, 10 and 100 μg/L mepanipyrim for 7 days. Our results showed that mepanipyrim could cause the locomotor hyperactivity and increase the concentration of γ-amino butyric acid (GABA) and the Na+/K+- and Ca2+-ATPase activities in zebrafish larvae. We have conducted the RNA-sequence and RT-qPCR to analyze the gene expressions. The mRNA expression levels of calcium/sodium ion conduction associated genes were observably up-regulated, demonstrating that mepanipyrim could enhance the cell energy metabolism, the synaptic transmission and skeletal muscle contraction, which were consistent with the locomotor hyperactivity. Meanwhile, exposure to mepanipyrim could significantly change the gene expression levels of gad1, bdnf, nlgn1, and type A and B GABA receptors in zebrafish larvae. This is the first study focusing on the underlying mechanisms of the neurotoxic effects that are induced by mepanipyrim.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
4
|
Yan J, Chen S, Zuo Z, He C, Yi M. Graphene oxide quantum dot exposure induces abnormalities in locomotor activities and mechanisms in zebrafish (
Danio rerio
). J Appl Toxicol 2020; 40:794-803. [DOI: 10.1002/jat.3944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Jinhui Yan
- School of KinesiologyShanghai University of Sport Shanghai China
- College of Physical EducationJimei University Xiamen Fujian China
| | - Shujing Chen
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen University Xiamen Fujian China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen University Xiamen Fujian China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen University Xiamen Fujian China
| | - Muqing Yi
- School of KinesiologyShanghai University of Sport Shanghai China
- Center for Sports NutritionNational Institute of Sports Medicine Beijing China
| |
Collapse
|
5
|
Ünal İ, Çalışkan-Ak E, Üstündağ ÜV, Ateş PS, Alturfan AA, Altinoz MA, Elmaci I, Emekli-Alturfan E. Neuroprotective effects of mitoquinone and oleandrin on Parkinson's disease model in zebrafish. Int J Neurosci 2019; 130:574-582. [PMID: 31771386 DOI: 10.1080/00207454.2019.1698567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aim: The aim of this study is to investigate the possible protective effects of mitoquinone and oleandrin on rotenone induced Parkinson's disease in zebrafish. Materials and methods: Adult zebrafish were exposed to rotenone and mitoquinone for 30 days. Biochemical parameters were determined by spectrophotometric method and Parkinson's disease-related gene expressions were determined by reverse transcription polymerase chain reaction method. Measurement of neurotransmitters was performed by liquid chromatography tandem-mass spectrometry instrument. The accumulation of synuclein was demonstrated by immunohistochemical staining. In vitro thiazolyl blue tetrazolium bromide method was applied to determine the mitochondrial function of synaptosomal brain fractions using rotenone as a neurotoxic agent and mitoquinone and oleandrin as neuroprotective agents. Results: Mitoquinone improved the oxidant-antioxidant balance and neurotransmitter levels that were disrupted by rotenone. Mitoquinone also ameliorated the expressions of Parkinson's disease-related gene expressions that were disrupted by rotenone. According to thiazolyl blue tetrazolium bromide assay results, mitoquinone and oleandrin increased mitochondrial function which was decreased due to rotenone exposure. Conclusion: Based on the results of our study, positive effects of mitoquinone were observed in Parkinson's disease model induced by rotenone in zebrafish.
Collapse
Affiliation(s)
- İsmail Ünal
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Esin Çalışkan-Ak
- Department of Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ünsal V Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - Perihan S Ateş
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ahmet A Alturfan
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Ilhan Elmaci
- Department of Neurosurgery, Acibadem University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Wu TS, Cheng YC, Chen PJ, Huang YT, Yu FY, Liu BH. Exposure to aflatoxin B 1 interferes with locomotion and neural development in zebrafish embryos and larvae. CHEMOSPHERE 2019; 217:905-913. [PMID: 30466059 DOI: 10.1016/j.chemosphere.2018.11.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Aflatoxin B1 (AFB1) is the major mycotoxin that contaminates aquafeeds and regarded as a causative agent in illnesses and the mortality of aquacultural species. However, the effects of AFB1 on developing fish and associated toxic mechanism are still unknown. This study examines the behavioral changes, neuronal morphology and gene expression in zebrafish embryos and larvae upon exposure to aflatoxin solutions. Treatment of 6 h post fertilization (hpf) embryos with AFB1 at 15-75 ng/mL significantly changed the swimming patterns of seven days post-fertilization (dpf) zebrafish larvae. Larvae in the 15 ng/mL group demonstrated a hypolocomotor activity in free swimming, but hyperlocomotion was observed in the larvae exposed to 30-75 ng/mL AFB1. AFB1 at 75 ng/mL also significantly reduced the startle response of 7 dpf larvae after tapping stimulus. Exposure to AFB1 resulted in an aberrant morphology of trigeminal ganglion and hindbrain neurons in transgenic embryos (HuC:eGFP); this finding was supported by acetylated alpha-tubulin staining in wild-type fish. Additionally, AFB1 altered the levels of neurotoxic markers, including gfap and huC. The transcriptomic profile of AFB1-treated embryos revealed several differentially expressed genes that are related to neuroactivity and neurogenesis. PCR analysis verified that AFB1 significantly down-regulated the expression of ngfa and atp1b1b genes and increased that of prtga gene. The results herein indicate the toxicological impacts of AFB1 on the behaviors and neurodevelopment of fish in the early embryonic stage. Disruption of neural formation and synapse dysfunction may be responsible for the behavioral alteration.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chih Cheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Ünal İ, Emekli-Alturfan E. Fishing for Parkinson's Disease: A review of the literature. J Clin Neurosci 2019; 62:1-6. [PMID: 30660479 DOI: 10.1016/j.jocn.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder in the world, is due to the damage or death of cells that produce dopamine in the region called the substantia nigra (SN). Model organisms are important tools in PD research. Zebrafish (Danio rerio), a small tropical freshwater fish, entered the scientific world through developmental biology studies and today has become a popular model organism for human diseases. This review will provide information on the current knowledge about the use of zebrafish in PD research.
Collapse
Affiliation(s)
- İsmail Ünal
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey.
| |
Collapse
|
8
|
Li Y, Yin A, Sun X, Zhang M, Zhang J, Wang P, Xie R, Li W, Fan Z, Zhu Y, Wang H, Dong H, Wu S, Xiong L. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. J Clin Invest 2017; 127:4270-4284. [PMID: 29058689 DOI: 10.1172/jci94455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children. Although an imbalance of excitatory and inhibitory inputs has been proposed as contributing to this disorder, the mechanisms underlying this highly heterogeneous disease remain largely unknown. Here, we show that N-myc downstream-regulated gene 2 (NDRG2) deficiency is involved in the development of ADHD in both mice and humans. Ndrg2-knockout (Ndrg2-/-) mice exhibited ADHD-like symptoms characterized by attention deficits, hyperactivity, impulsivity, and impaired memory. Furthermore, interstitial glutamate levels and excitatory transmission were markedly increased in the brains of Ndrg2-/- mice due to reduced astroglial glutamate clearance. We developed an NDRG2 peptide that rescued astroglial glutamate clearance and reduced excitatory glutamate transmission in NDRG2-deficient astrocytes. Additionally, NDRG2 peptide treatment rescued ADHD-like hyperactivity in the Ndrg2-/- mice, while routine methylphenidate treatment had no effect on hyperactivity in these animals. Finally, children who were heterozygous for rs1998848, a SNP in NDRG2, had a higher risk of ADHD than children who were homozygous for rs1998848. Our results indicate that NDRG2 deficiency leads to ADHD phenotypes and that impaired astroglial glutamate clearance, a mechanism distinct from the well-established dopamine deficit hypothesis for ADHD, underlies the resultant behavioral abnormalities.
Collapse
Affiliation(s)
- Yan Li
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience.,3, Department of Biochemistry and Molecular Biology, and
| | - Anqi Yin
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Xin Sun
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming Zhang
- 1, Department of Anesthesiology and Perioperative Medicine.,5, General Hospital of Chengdu Military Command, Chengdu, Sichuan, China
| | - Jianfang Zhang
- 6, Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ping Wang
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rougang Xie
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience
| | - Wen Li
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Ze Fan
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Han Wang
- 7, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Hailong Dong
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Lize Xiong
- 1, Department of Anesthesiology and Perioperative Medicine
| |
Collapse
|
9
|
Dolci GS, Rosa HZ, Vey LT, Pase CS, Barcelos RCS, Dias VT, Loebens L, Dalla Vecchia P, Bizzi CA, Baldisserotto B, Burger ME. Could hypoxia acclimation cause morphological changes and protect against Mn-induced oxidative injuries in silver catfish (Rhamdia quelen) even after reoxygenation? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:466-475. [PMID: 28238574 DOI: 10.1016/j.envpol.2017.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Exposure to hypoxia has shown beneficial adjustments in different species, including silver catfish (Rhamdia quelen), especially in situations of aquatic contamination with pollutants such as manganese (Mn). Considering that hypoxia is seasonal in the natural aquatic environment, we decided to assess whether these adaptive mechanisms could be maintained when reoxygenation is established. Silver catfish acclimated to moderate hypoxia (∼3 mg L-1, 41% O2 saturation) for 10 days and subsequently exposed to Mn (∼8.1 mg L-1) for additional 10 days displayed lower (47%) Mn accumulation in the gills, and it was maintained (62.6%) after reoxygenation, in comparison to normoxia. Oxidative status in the gills allowed us to observe increased reactive species (RS) generation and protein carbonyl (PC) level together with decreased mitochondrial viability induced by Mn under normoxia. Inversely, while hypoxia per se was beneficial on RS generation and PC level, this acclimation was able to minimize Mn toxicity, as observed by the minor increase of RS generation and the minor reduction of mitochondrial viability, together with decreased PC level. Interestingly, after reoxygenation, part of the protective influences observed during hypoxia against Mn toxicity were maintained, as observed through a lower level of PC and higher mitochondrial viability in relation to the group exposed to Mn under normoxia. Only groups exposed to Mn under hypoxia showed increased activity of both catalase (CAT) and Na+/K+-ATPase in the gills, but, while CAT activity remained increased after reoxygenation, Na+/K+-ATPase activity was decreased by Mn, regardless of the oxygen level. Based on these outcomes, it is possible to propose that environment events of moderate hypoxia are able to generate rearrangements in the gills of silver catfish exposed to Mn, whose influence persists after water reoxygenation. These responses may be related to the adaptive development, reducing Mn toxicity to silver catfish. Moderate hypoxia generates rearrangements in the gills of Silver catfish, exerting beneficial and persistent protection against Mn toxicity.
Collapse
Affiliation(s)
- G S Dolci
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - H Z Rosa
- Departamento de Fisiologia e Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - L T Vey
- Programa de Pós Graduação em Bioquímica Toxicológica - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - C S Pase
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - R C S Barcelos
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - V T Dias
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - L Loebens
- Programa de Pós-Graduação em Biodiversidade Animal - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - P Dalla Vecchia
- Programa de Pós-graduação em Química - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - C A Bizzi
- Programa de Pós-graduação em Química - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - B Baldisserotto
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - M E Burger
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil.
| |
Collapse
|
10
|
Abreu MS, Giacomini AC, Rodriguez R, Kalueff AV, Barcellos LJ. Effects of ZnSO 4 -induced peripheral anosmia on zebrafish behavior and physiology. Behav Brain Res 2017; 320:275-281. [DOI: 10.1016/j.bbr.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
11
|
Dolci GS, Rosa HZ, Barcelos RCS, Vey LT, Santos A, DallaVechia P, Bizzi C, Cunha MA, Baldisserotto B, Burger ME. Hypoxia acclimation and subsequent reoxygenation partially prevent Mn-induced damage in silver catfish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:52-62. [PMID: 27645230 DOI: 10.1016/j.cbpc.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/11/2016] [Accepted: 09/14/2016] [Indexed: 01/11/2023]
Abstract
This study investigated if hypoxia acclimation modifies the hematological and oxidative profiles in tissues of Mn-exposed silver catfish (Rhamdia quelen), and if such modifications persist upon subsequent reoxygenation. Silver catfish acclimated to hypoxia (~3mgL-1) for 10days and subsequently exposed to Mn (~8.1mgL-1) for additional 10days exhibited lower Mn accumulation in plasma, liver and kidney, even after reoxygenation, as compared to normoxia-acclimated fish. Hypoxia acclimation increased per se red blood cells count and hematocrit, suggesting adaptations under hypoxia, while the reoxygenation process was also related to increased hematocrit and hemoglobin per se. Fish exposed to Mn under normoxia for 20days showed decreased red blood cells count and hematocrit, while reoxygenation subsequent to hypoxia increased red blood cells count. Hypoxia acclimation also prevented Mn-induced oxidative damage, observed by increased reactive species generation and higher protein carbonyl levels in both liver and kidney under normoxia. Mn-exposed fish under hypoxia and after reoxygenation showed decreased plasma transaminases in relation to the normoxia group. Moreover, acclimation to hypoxia increased reduced glutathione levels, catalase activity and Na+/K+-ATPase activity in liver and kidney during Mn exposure, remaining increased even after reoxygenation. These findings show that previous acclimation to hypoxia generates physiological adjustments, which drive coordinated responses that ameliorate the antioxidant status even after reoxygenation. Such responses represent a physiological regulation of this teleost fish against oxygen restriction and/or Mn toxicity in order to preserve the stability of a particular tissue or system.
Collapse
Affiliation(s)
- G S Dolci
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - H Z Rosa
- Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - R C S Barcelos
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - L T Vey
- Programa de Pós Graduação em Bioquímica Toxicológica, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - A Santos
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - P DallaVechia
- Programa de Pós-graduação em Química, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - C Bizzi
- Programa de Pós-graduação em Química, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - M A Cunha
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - B Baldisserotto
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil
| | - M E Burger
- Programa de Pós Graduação em Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil; Programa de Pós Graduação em Bioquímica Toxicológica, UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Cidade Universitária, Camobi, Santa Maria 97105-900, RS, Brazil.
| |
Collapse
|
12
|
Pellacani S, Sicca F, Di Lorenzo C, Grieco GS, Valvo G, Cereda C, Rubegni A, Santorelli FM. The Revolution in Migraine Genetics: From Aching Channels Disorders to a Next-Generation Medicine. Front Cell Neurosci 2016; 10:156. [PMID: 27378853 PMCID: PMC4904011 DOI: 10.3389/fncel.2016.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
Channelopathies are a heterogeneous group of neurological disorders resulting from dysfunction of ion channels located in cell membranes and organelles. The clinical scenario is broad and symptoms such as generalized epilepsy (with or without fever), migraine (with or without aura), episodic ataxia and periodic muscle paralysis are some of the best known consequences of gain- or loss-of-function mutations in ion channels. We review the main clinical effects of ion channel mutations associated with a significant impact on migraine headache. Given the increasing and evolving use of genetic analysis in migraine research-greater emphasis is now placed on genetic markers of dysfunctional biological systems-we also show how novel information in rare monogenic forms of migraine might help to clarify the disease mechanisms in the general population of migraineurs. Next-generation sequencing (NGS) and more accurate and precise phenotyping strategies are expected to further increase understanding of migraine pathophysiology and genetics.
Collapse
Affiliation(s)
- Simona Pellacani
- Clinical Neurophysiology Laboratory, IRCCS Stella Maris FoundationPisa, Italy
| | - Federico Sicca
- Clinical Neurophysiology Laboratory, IRCCS Stella Maris FoundationPisa, Italy
- Molecular Medicine, IRCCS Stella Maris FoundationPisa, Italy
| | | | - Gaetano S. Grieco
- Genomic and Post-Genomic Center, C. Mondino National Institute of NeurologyPavia, Italy
| | - Giulia Valvo
- Clinical Neurophysiology Laboratory, IRCCS Stella Maris FoundationPisa, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, C. Mondino National Institute of NeurologyPavia, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Stella Maris FoundationPisa, Italy
| | | |
Collapse
|
13
|
Yoneda JS, Scanavachi G, Sebinelli HG, Borges JC, Barbosa LRS, Ciancaglini P, Itri R. Multimeric species in equilibrium in detergent-solubilized Na,K-ATPase. Int J Biol Macromol 2016; 89:238-45. [PMID: 27109755 DOI: 10.1016/j.ijbiomac.2016.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
In this work, we find an equilibrium between different Na,K-ATPase (NKA) oligomeric species solubilized in a non-ionic detergent C12E8 by means of Dynamic Light Scattering (DLS), Analytical Ultracentrifugation (AUC), Small Angle X-ray Scattering (SAXS), Spectrophotometry (absorption at 280/350nm) and enzymatic activity assay. The NKA sample after chromatography purification presented seven different populations as identified by AUC, with monomers and tetramers amounting to ∼55% of the total protein mass in solution. These two species constituted less than 40% of the total protein mass after increasing the NKA concentration. Removal of higher-order oligomer/aggregate species from the NKA solution using 220nm-pore filter resulted in an increase of the specific enzymatic activity. Nevertheless, the enzyme forms new large aggregates over an elapsed time of 20h. The results thus point out that C12E8-solubilized NKA is in a dynamic equilibrium of monomers, tetramers and high-order oligomers/subunit aggregates. These latter have low or null activity. High amount of detergent leads to the dissociation of NKA into smaller aggregates with no enzymatic activity.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil; Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Gustavo Scanavachi
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil
| | - Heitor Gobbi Sebinelli
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Júlio Cesar Borges
- Instituto de Química de São Carlos, IQSC-USP, 13560-970 São Carlos, SP, Brazil
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil.
| |
Collapse
|
14
|
Doganli C, Nyengaard JR, Lykke-Hartmann K. Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning. Methods Mol Biol 2016; 1377:353-363. [PMID: 26695046 DOI: 10.1007/978-1-4939-3179-8_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization protocol for whole-mount zebrafish embryos.
Collapse
Affiliation(s)
- Canan Doganli
- Smith Cardiovascular Research Institute, University of California, San Francisco, CA, 94158-9001, USA
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
15
|
Dolci GS, Vey LT, Schuster AJ, Roversi K, Roversi K, Dias VT, Pase CS, Barcelos RCS, Antoniazzi CTD, Golombieski JI, Glanzner WG, Anezi Junior PA, Gonçalves PBD, Nunes MAG, Dressler VL, Baldisserotto B, Burger ME. Hypoxia acclimation protects against oxidative damage and changes in prolactin and somatolactin expression in silver catfish (Rhamdia quelen) exposed to manganese. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:175-185. [PMID: 25456232 DOI: 10.1016/j.aquatox.2014.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to assess the Mn toxicity to silver catfish considering Mn accumulation and oxidative status in different tissues, as well as pituitary hormone expression after acclimation to hypoxia. Silver catfish acclimated to hypoxia for 10 days and successively exposed to Mn (9.8 mg L(-1)) for an additional 10 days exhibited lower Mn accumulation in plasma, liver, kidneys and brain and prevented the hematocrit decrease observed in the normoxia group. Hypoxia acclimation also modified Mn-induced oxidative damage, which was observed by lower reactive species (RS) generation in gills and kidneys, decreased lipid peroxidation (LP) levels in gills, liver and kidneys and decreased protein carbonyl (PC) levels in liver, kidneys and brain. Manganese accumulation showed positive correlations with LP levels in gills and kidneys, as well as with PC levels in gills, liver and brain. In addition, hypoxia acclimation and Mn exposure increased catalase (CAT) activity in gills and kidneys and Na(+)/K(+)-ATPase activity in gills, liver and brain. Silver catfish that were acclimated under normoxia and exposed to Mn displayed increased pituitary prolactin (PRL) and decreased somatolactin (SL) expression. Interestingly, hypoxia acclimation prevented hormonal fluctuation of PRL and SL in fish exposed to Mn. These findings indicate that while the exposure of silver catfish to Mn under normoxia was related to metal accumulation and oxidative damage in tissues together with endocrine axis disruption, as represented by PRL and SL, hypoxia acclimation reduced waterborne Mn uptake, thereby minimizing oxidative damage and changes in hormonal profile. We hypothesized that moderate hypoxia is able to generate adaptive responses, which may be related to hormesis, thereby ameliorating Mn toxicity to silver catfish.
Collapse
Affiliation(s)
- G S Dolci
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil
| | - L T Vey
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil
| | - A J Schuster
- Departamento de Fisiologia e Farmacologia - UFSM, Brazil
| | - Kr Roversi
- Departamento de Fisiologia e Farmacologia - UFSM, Brazil
| | - K Roversi
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil
| | - V T Dias
- Departamento de Fisiologia e Farmacologia - UFSM, Brazil
| | - C S Pase
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil
| | - R C S Barcelos
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil
| | | | | | - W G Glanzner
- Programa de Pós Graduação em Medicina Veterinária - UFSM, Brazil
| | - P A Anezi Junior
- Programa de Pós-Graduação em Química - UFSM, Brazil; Departamento de Clínica de Grandes Animais - UFSM, Brazil
| | - P B D Gonçalves
- Programa de Pós-Graduação em Química - UFSM, Brazil; Programa de Pós Graduação em Medicina Veterinária - UFSM, Brazil; Departamento de Clínica de Grandes Animais - UFSM, Brazil
| | - M A G Nunes
- Programa de Pós-Graduação em Química - UFSM, Brazil; Departamento de Clínica de Grandes Animais - UFSM, Brazil
| | - V L Dressler
- Programa de Pós-Graduação em Química - UFSM, Brazil; Departamento de Clínica de Grandes Animais - UFSM, Brazil
| | - B Baldisserotto
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil; Departamento de Fisiologia e Farmacologia - UFSM, Brazil
| | - M E Burger
- Programa de Pós Graduação em Farmacologia - UFSM, Brazil; Departamento de Fisiologia e Farmacologia - UFSM, Brazil.
| |
Collapse
|