1
|
Tang X, Liang Q, Li T, Ouyang Y, Huang ZX, Tang X, Jin J, Yu L, Wang X. Excessive Daytime Sleepiness as a Risk Factor for Impulse Control Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2024; 20:2517-2527. [PMID: 39691631 PMCID: PMC11651074 DOI: 10.2147/ndt.s485339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose Impulse control disorders (ICDs) and excessive daytime sleepiness (EDS) are common symptoms in Parkinson's disease (PD). Few longitudinal studies have focused on the association between EDS and ICDs. This longitudinal study aimed at assessing association between EDS and ICDs in PD. Patients and Methods Patients without ICDs were incorporated from the Parkinson's Progression Markers Initiative. All patients were followed until the onset of ICDs or the end of 4 years. A total of 260 PD patients were included. Univariable and multivariable logistic regression were used to explore association between EDS and ICDs. Results The overall frequency of ICDs at the end of follow-up was 23.8% (62 patients). The mean duration from dopamine replacement therapy to develop ICDs was 3.30 ± 2.42 years. Patients with ICDs had significantly higher Epworth Sleepiness Scale (ESS) score (P = 0.002) and higher proportion of EDS (P = 0.030) when compared to patients without ICDs. The multivariable logistic regression analysis indicated that high ESS (OR = 2.01, 95% CI 1.01-4.04, p = 0.049) score, high dopamine agonist equivalent daily dose (OR = 2.54, 95% CI 1.37-4.71, p = 0.003), high Geriatric Depression Scale (OR = 2.33, 95% CI 1.27-4.28, p = 0.006) score and postural instability (OR = 3.03, 95% CI 1.26-7.29, p = 0.013) were associated with ICDs occurrence. Conclusion Our results indicated that EDS acts as a risk for ICDs occurrence in PD. Clinicians should pay attention to EDS in clinical practice. This may be a promising new approach to better understand and therapy ICDs.
Collapse
Affiliation(s)
- Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Neurology, Zhabei Central Hospital, Shanghai, People’s Republic of China
| | - Qian Liang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Tao Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yetong Ouyang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhe Xue Huang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoshun Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiayi Jin
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Fusaroli M, Polizzi S, Menestrina L, Giunchi V, Pellegrini L, Raschi E, Weintraub D, Recanatini M, Castellani G, De Ponti F, Poluzzi E. Unveiling the Burden of Drug-Induced Impulsivity: A Network Analysis of the FDA Adverse Event Reporting System. Drug Saf 2024; 47:1275-1292. [PMID: 39147961 PMCID: PMC11554833 DOI: 10.1007/s40264-024-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Impulsivity induced by dopaminergic agents, like pramipexole and aripiprazole, can lead to behavioral addictions that impact on social functioning and quality of life of patients and families (e.g., resulting in unemployment, marital problems, anxiety). These secondary effects, interconnected in networks of signs and symptoms, are usually overlooked by clinical trials, not reported in package inserts, and neglected in clinical practice. OBJECTIVE This study explores the syndromic burden of impulsivity induced by pramipexole and aripiprazole, pinpointing key symptoms for targeted mitigation. METHODS An event-event Information Component (IC) on the FDA Adverse Event Reporting System (FAERS) (January 2004 to March 2022) identified the syndrome of events disproportionally co-reported with impulsivity, separately for pramipexole and aripiprazole. A greedy-modularity clustering on composite network analyses (positive pointwise mutual information [PPMI], Ising, Φ) identified sub-syndromes. Bayesian network modeling highlighted possible precipitating events. RESULTS Suspected drug-induced impulsivity was documented in 7.49% pramipexole and 4.50% aripiprazole recipients. The highest IC concerned obsessive-compulsive disorder (reporting rate = 26.77%; IC median = 3.47, 95% confidence interval [CI] = 3.33-3.57) and emotional distress (21.35%; 3.42, 3.26-3.54) for pramipexole, bankruptcy (10.58%; 4.43, 4.26-4.55) and divorce (7.59%; 4.38, 4.19-4.53) for aripiprazole. The network analysis identified delusional jealousy and dopamine dysregulation sub-syndromes for pramipexole, obesity-hypoventilation and social issues for aripiprazole. The Bayesian network highlighted anxiety and economic problems as potentially precipitating events. CONCLUSION The under-explored consequences of drug-induced impulsivity significantly burden patients and families. Network analyses, exploring syndromic reactions and potential precipitating events, complement traditional techniques and clinical judgment. Characterizing the secondary impact of reactions will support informed patient-centered decision making.
Collapse
Affiliation(s)
- Michele Fusaroli
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Stefano Polizzi
- Unit of Medical Physics, Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Luca Menestrina
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Valentina Giunchi
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luca Pellegrini
- Hertfordshire Partnership NHS University Foundation Trust, Highly Specialised OCD and BDD Service, Rosanne House, Parkway, Welwyn Garden City, Hertfordshire, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniel Weintraub
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Gastone Castellani
- Unit of Medical Physics, Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Carbone F, Djamshidian A. Impulse Control Disorders in Parkinson's Disease: An Overview of Risk Factors, Pathogenesis and Pharmacological Management. CNS Drugs 2024; 38:443-457. [PMID: 38613665 PMCID: PMC11098885 DOI: 10.1007/s40263-024-01087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/15/2024]
Abstract
Impulse control disorders in Parkinson's disease are relatively common drug-induced addictive behaviours that are usually triggered by the dopamine agonists pramipexole, ropinirole and rotigotine. This narrative review aimed to provide a comprehensive overview of the current knowledge of impulse control disorders in Parkinson's disease. We summarised the prevalence, clinical features, risk factors and potential underlying mechanisms of impulse control disorders in Parkinson's disease. Moreover, recent advances in behavioural and imaging characteristics and management strategies are discussed. Early detection as well as a tailored multidisciplinary approach, which typically includes careful adjustment of the dopaminergic therapy and the treatment of associated neuropsychiatric symptoms, are necessary. In some cases, a continuous delivery of levodopa via a pump or the dopamine D1 receptor agonist, apomorphine, can be considered. In selected patients without cognitive or speech impairment, deep brain stimulation of the subthalamic nucleus can also improve addictions. Finding the right balance of tapering dopaminergic dose (usually dopamine agonists) without worsening motor symptoms is essential for a beneficial long-term outcome.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Liu F, Tian Q, Tang HL, Cheng X, Zou W, Zhang P. Hydrogen sulfide attenuates depression-like behaviours in Parkinson's disease model rats by improving synaptic plasticity in a hippocampal Warburg effect-dependent manner. Pharmacol Biochem Behav 2024; 234:173677. [PMID: 37967673 DOI: 10.1016/j.pbb.2023.173677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Depression is a highly prevalent comorbidity arising in patients with Parkinson's disease (PD). However, depression in patients with PD is poorly treated. Hydrogen sulfide (H2S), a neuromodulator, has the potential to relieve depression. OBJECTIVE To investigate whether H2S attenuates depression-like behaviours in a rat model of PD and examine the underlying mechanisms. METHODS We utilised rotenone to develop a PD model with subcutaneous injections in the dorsal cervical region of Sprague-Dawley rats. The depression-like behaviours in the rotenone-induced PD model rats were assessed through forced swimming, tail suspension, open field, novelty-suppressed feeding, and elevated plus-maze tests. The expression of postsynaptic density protein-95 and synapsin-1, related to synaptic plasticity, was detected using Western blot in the hippocampus. The hippocampal ultrastructure, including the synaptic density, length of the synaptic active zone, postsynaptic density thickness, and synaptic gap width, was detected using transmission electron microscopy. RESULTS We proved that sodium hydrosulfide (NaHS; a donor of H2S) significantly attenuated the depression-like behaviours and disorders of hippocampal synaptic plasticity in rotenone-induced PD rats. Furthermore, inhibition of the hippocampal Warburg effect by 2-deoxyglucose abolished NaHS-enhanced hippocampal synaptic plasticity and reversed NaHS-attenuated depression-like behaviours in the rotenone-induced PD rats. CONCLUSION H2S attenuates PD-associated depression by improving the hippocampal synaptic plasticity in a hippocampal Warburg effect-dependent manner.
Collapse
Affiliation(s)
- Fen Liu
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Tian
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui-Ling Tang
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiang Cheng
- The First Affiliated Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zou
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China.
| | - Ping Zhang
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
5
|
van Wegen EEH, van Balkom TD, Hirsch MA, Rutten S, van den Heuvel OA. Non-Pharmacological Interventions for Depression and Anxiety in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S135-S146. [PMID: 38607762 PMCID: PMC11380297 DOI: 10.3233/jpd-230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Non-pharmacological interventions, including cognitive-behavioral therapy (CBT), non-invasive brain stimulation (NIBS), electroconvulsive therapy (ECT), light therapy (LT), and physical rehabilitation/exercise, have shown promise as effective approaches to treat symptoms of depression and anxiety in individuals with Parkinson's disease (PD). In this narrative literature overview, we discuss the state-of-the-art regarding these treatment options and address future perspectives for clinical practice and research. Non-pharmacological interventions hold promise to treat depression and anxiety in PD. There is meta-analytic evidence for the efficacy of CBT, NIBS, ECT, LT, and exercise on improving depressive symptoms. For the treatment of anxiety symptoms, CBT shows large effects but scientific evidence of other non-pharmacological interventions is limited. Importantly, these treatments are safe interventions with no or mild side-effects. More research is needed to tailor treatment to the individuals' needs and combined interventions may provide synergistic effects.We conclude that non-pharmacological interventions should be considered as alternative or augmentative treatments to pharmacological and neurosurgical approaches for the treatment of depression and anxiety in individuals with PD.
Collapse
Affiliation(s)
- Erwin E H van Wegen
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- i
| | - Tim D van Balkom
- Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention, Neurodegeneration, Amsterdam, The Netherlands
| | - Mark A Hirsch
- Department of Physical Medicine and Rehabilitation, Carolinas Medical Center, Atrium Health Carolinas Rehabilitation, Charlotte, NC, USA
- Department of Orthopedic Surgery and Rehabilitation, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sonja Rutten
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention, Neurodegeneration, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ricciardi L, Apps M, Little S. Uncovering the neurophysiology of mood, motivation and behavioral symptoms in Parkinson's disease through intracranial recordings. NPJ Parkinsons Dis 2023; 9:136. [PMID: 37735477 PMCID: PMC10514046 DOI: 10.1038/s41531-023-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
Neuropsychiatric mood and motivation symptoms (depression, anxiety, apathy, impulse control disorders) in Parkinson's disease (PD) are highly disabling, difficult to treat and exacerbated by current medications and deep brain stimulation therapies. High-resolution intracranial recording techniques have the potential to undercover the network dysfunction and cognitive processes that drive these symptoms, towards a principled re-tuning of circuits. We highlight intracranial recording as a valuable tool for mapping and desegregating neural networks and their contribution to mood, motivation and behavioral symptoms, via the ability to dissect multiplexed overlapping spatial and temporal neural components. This technique can be powerfully combined with behavioral paradigms and emerging computational techniques to model underlying latent behavioral states. We review the literature of intracranial recording studies investigating mood, motivation and behavioral symptomatology with reference to 1) emotional processing, 2) executive control 3) subjective valuation (reward & cost evaluation) 4) motor control and 5) learning and updating. This reveals associations between different frequency specific network activities and underlying cognitive processes of reward decision making and action control. If validated, these signals represent potential computational biomarkers of motivational and behavioural states and could lead to principled therapy development for mood, motivation and behavioral symptoms in PD.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| | - Matthew Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Tichelaar JG, Sayalı C, Helmich RC, Cools R. Impulse control disorder in Parkinson's disease is associated with abnormal frontal value signalling. Brain 2023; 146:3676-3689. [PMID: 37192341 PMCID: PMC10473575 DOI: 10.1093/brain/awad162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Dopaminergic medication is well established to boost reward- versus punishment-based learning in Parkinson's disease. However, there is tremendous variability in dopaminergic medication effects across different individuals, with some patients exhibiting much greater cognitive sensitivity to medication than others. We aimed to unravel the mechanisms underlying this individual variability in a large heterogeneous sample of early-stage patients with Parkinson's disease as a function of comorbid neuropsychiatric symptomatology, in particular impulse control disorders and depression. One hundred and ninety-nine patients with Parkinson's disease (138 ON medication and 61 OFF medication) and 59 healthy controls were scanned with functional MRI while they performed an established probabilistic instrumental learning task. Reinforcement learning model-based analyses revealed medication group differences in learning from gains versus losses, but only in patients with impulse control disorders. Furthermore, expected-value related brain signalling in the ventromedial prefrontal cortex was increased in patients with impulse control disorders ON medication compared with those OFF medication, while striatal reward prediction error signalling remained unaltered. These data substantiate the hypothesis that dopamine's effects on reinforcement learning in Parkinson's disease vary with individual differences in comorbid impulse control disorder and suggest they reflect deficient computation of value in medial frontal cortex, rather than deficient reward prediction error signalling in striatum. See Michael Browning (https://doi.org/10.1093/brain/awad248) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Jorryt G Tichelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, 6525EN Nijmegen, The Netherlands
- Radboud University Medical Center, Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, 6525GA Nijmegen, The Netherlands
| | - Ceyda Sayalı
- The Johns Hopkins University School of Medicine, Center for Psychedelic and Consciousness Research, Baltimore, MD 21224, USA
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, 6525EN Nijmegen, The Netherlands
- Radboud University Medical Center, Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, 6525GA Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, 6525EN Nijmegen, The Netherlands
- Radboud University Medical Center, Department of Psychiatry, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Jin H, Shen H, Liu C, Wang L, Mao C, Chen J, Liu CF, Zhang Y. Decreased serum BDNF contributes to the onset of REM sleep behavior disorder in Parkinson's disease patients. Neurosci Lett 2023; 812:137380. [PMID: 37423466 DOI: 10.1016/j.neulet.2023.137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. BDNF enhances the survival of dopaminergic neurons and improves dopaminergic neurotransmission and motor performance in patients with Parkinson's disease (PD). However, the association between BDNF levels and rapid eye movement (REM) sleep behavior disorder (RBD) in PD patients has received limited attention. METHODS We employed the Rapid Eye Movement Sleep Behavior Disorder Questionnaire-Hong Kong version (RBDQ-HK) and the Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire (RBDSQ) for RBD diagnosis. Patients were categorized into three groups: healthy controls (n = 53), PD patients without RBD (PD-nRBD; n = 56), and PD patients with RBD (PD-RBD; n = 45). Serum BDNF concentrations, demographic information, medical history, and motor/non-motor manifestations were compared between the three groups. Logistic regression analysis was performed to identify independent factors associated with PD and RBD. P-trend analysis was used to assess the relationship between BDNF levels and the risk of PD and RBD onset. Interaction effects were analyzed between BDNF, patients' age, and gender on the risk of RBD onset in PD patients. RESULTS Our findings indicate that serum BDNF levels were significantly lower in PD patients compared to healthy controls (p < 0.001). PD-RBD patients exhibited higher motor symptom scores (UPDRS III) than PD-nRBD patients (p = 0.021). Additionally, the PD-RBD group demonstrated lower cognitive function scores as measured by the Montreal Cognitive Assessment (MoCA) (p < 0.001) and Mini-Mental State Examination (MMSE) (p = 0.015). PD-RBD patients displayed significantly lower BDNF levels compared to both PD-nRBD and healthy control groups (p < 0.001). Univariate and multivariate logistic regression analyses showed that reduced BDNF levels were associated with an increased risk of RBD in PD patients (p = 0.005). P-trend analysis further confirmed the progressive relationship between decreased BDNF levels and the risk of PD and RBD onset. Furthermore, our interaction analysis highlighted the importance of monitoring younger PD patients with low serum BDNF levels for potential RBD onset. CONCLUSIONS This study illustrates that decreased serum BDNF levels may be linked to the development of RBD in PD patients, highlighting the potential utility of BDNF as a biomarker in clinical practice.
Collapse
Affiliation(s)
- Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Shen
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, China; Hengjie Community Health Service Center of Shuangta Street, Suzhou Gusu District, Suzhou, China
| | - Chang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lanxiang Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Ahmad MH, Rizvi MA, Ali M, Mondal AC. Neurobiology of depression in Parkinson's disease: Insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res Rev 2023; 85:101840. [PMID: 36603690 DOI: 10.1016/j.arr.2022.101840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is characterized mainly by motor dysfunctions due to the progressive loss of dopaminergic neurons. However, PD patients experience a multitude of debilitating non-motor symptoms, including depression, which may have deleteriously detrimental effects on life. Depression is multifactorial and exhibits a bimodal progression in PD, but its underlying molecular mechanisms are poorly understood. Studies demonstrating the pathophysiology of depression in PD and the specific treatment strategies for depression-like symptoms in PD patients are largely lacking, often underrated, under-recognized and, consequently, inadequately/under-treated. Nevertheless, reports suggest that the incidence of depression is approximately 20-30% of PD patients and may precede the onset of motor symptoms. Diagnosing depression in PD becomes difficult due to the clinical overlap in symptomatology between the two diseases, and the nigrostriatal dysfunction alone is insufficient to explain depressive symptoms in PD. Therefore, the current study provides an overview of the molecular mechanisms underlying the development of depression in PD and new insights into developing current antidepressant strategies to treat depression in PD. This review will identify and understand the molecular pathological mechanisms of depression in PD that will fundamentally help tailoring therapeutic interventions for depressive symptoms in PD.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
11
|
Crowley BZ, Patrie J, Sperling SA. Depression differentially affects patient and caregiver perceptions of neuropsychiatric symptoms in Parkinson's disease. Clin Neuropsychol 2022:1-16. [PMID: 35938748 DOI: 10.1080/13854046.2022.2106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The aims of this study were twofold. First, we examined the relationship between patient and caregiver ratings of neuropsychiatric symptoms in Parkinson's disease (PD). Second, we examined if the severity of depressive symptoms affects patient and caregiver perceptions of other neuropsychiatric symptoms and contributes to discrepancies between their perceptions. METHOD We examined data from a retrospective clinical cohort of 209 patients with PD and their caregivers. We used intra-class correlation coefficients and the Bland Altman method to assess intra-respondent (retrospective versus current) and inter-respondent (patient versus caregiver) agreement between Frontal Systems Behavior Scales (FrSBe) subscale scores. We then used generalized estimating equation models to examine FrSBe subscale scores and the magnitude of the intra- and inter-respondent discrepancies in FrSBe subscale scores, as a function of Beck Depression Inventory-2nd Edition scores, with patient demographic variable adjustments. RESULTS There was low agreement between patient and caregiver ratings on all three subscales, at both time points, and high response variability within and between raters. Patients generally reported more severe neuropsychiatric symptoms than caregivers. Depression severity predicted patients' perceptions at both time points, but was more strongly associated with current perceptions. Depression severity predicted caregivers' current perceptions only. The inter-respondent discrepancy in perceived apathy and disinhibition, but not executive dysfunction, increased as a function of depression severity. CONCLUSIONS There are differences in how patients with PD and caregivers perceive neuropsychiatric behaviors and the extent to which depressive symptoms influence their perceptions. Shared neuropathology and negative response biases likely contribute to these relationships.
Collapse
Affiliation(s)
- Brittany Z Crowley
- School of Education and Human Development, University of Virginia, Charlottesville, Virginia, USA
| | - James Patrie
- Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Scott A Sperling
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Wallert ED, van de Giessen E, Knol RJJ, Beudel M, de Bie RMA, Booij J. Imaging Dopaminergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:27S-32S. [PMID: 35649651 PMCID: PMC9165729 DOI: 10.2967/jnumed.121.263197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Imaging of dopaminergic transmission in neurodegenerative disorders such as Parkinson disease (PD) or dementia with Lewy bodies plays a major role in clinical practice and in clinical research. We here review the role of imaging of the nigrostriatal pathway, as well as of striatal receptors and dopamine release, in common neurodegenerative disorders in clinical practice and research. Imaging of the nigrostriatal pathway has a high diagnostic accuracy to detect nigrostriatal degeneration in disorders characterized by nigrostriatal degeneration, such as PD and dementia with Lewy bodies, and disorders of more clinical importance, namely in patients with clinically uncertain parkinsonism. Imaging of striatal dopamine D2/3 receptors is not recommended for the differential diagnosis of parkinsonian disorders in clinical practice anymore. Regarding research, recently the European Medicines Agency has qualified dopamine transporter imaging as an enrichment biomarker for clinical trials in early PD, which underlines the high diagnostic accuracy of this imaging tool and will be implemented in future trials. Also, imaging of the presynaptic dopaminergic system plays a major role in, for example, examining the extent of nigrostriatal degeneration in preclinical and premotor phases of neurodegenerative disorders and to examine subtypes of PD. Also, imaging of postsynaptic dopamine D2/3 receptors plays a role in studying, for example, the neuronal substrate of impulse control disorders in PD, as well as in measuring endogenous dopamine release to examine, for example, motor complications in the treatment of PD. Finally, novel MRI sequences as neuromelanin-sensitive MRI are promising new tools to study nigrostriatal degeneration in vivo.
Collapse
Affiliation(s)
- Elon D Wallert
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Remco J J Knol
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands; and
| | - Martijn Beudel
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
13
|
Hattori N, Kogo Y, Koebis M, Ishida T, Suzuki I, Tsuboi Y, Nomoto M. The Effects of Safinamide Adjunct Therapy on Depression and Apathy in Patients With Parkinson's Disease: Post-hoc Analysis of a Japanese Phase 2/3 Study. Front Neurol 2022; 12:752632. [PMID: 35222225 PMCID: PMC8869178 DOI: 10.3389/fneur.2021.752632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Neuropsychiatric symptoms in Parkinson's disease (PD) have been shown to significantly affect quality of life (QOL). We investigated the impact of safinamide on depression and apathy when administered as an adjunct to levodopa in Japanese patients with PD. Methods This was a post-hoc analysis of data from a phase 2/3 clinical study of safinamide in Japanese patients with PD experiencing wearing-off (JapicCTI-153056; https://www.clinicaltrials.jp/cti-user/trial/ShowDirect.jsp?japicId=JapicCTI-153056). Patients received placebo, safinamide 50 mg, or safinamide 100 mg as an adjunct therapy. The endpoints for this analysis were changes from baseline to Week 24 in the Unified Parkinson's Disease Rating Scale (UPDRS) Part I item 3 (depression) and item 4 (apathy) scores and the Parkinson's Disease Questionnaire (PDQ-39) “emotional well-being” domain score. Subgroup analyses investigated the relationship between neuropsychologic symptoms and improvements in motor fluctuation and assessed which patient populations might be expected to obtain neuropsychologic benefit from safinamide. Results Compared with placebo, safinamide (both doses) significantly improved UPDRS Part I item 3 scores in the overall analysis population, and the 100-mg dose improved UPDRS Part I item 4 scores in the population with apathy at baseline. Changes in the PDQ-39 “emotional well-being” score showed numerical, but not significant, dose-related improvements. Notable reductions in depression were associated with a change in daily ON-time ≥1 h, pain during OFF-time at baseline, and female sex. Conclusions The results from this post-hoc analysis of the Japanese phase 2/3 study suggest that safinamide could bring benefits to patients with PD who have mild depression, pain during the OFF phase. In addition, safinamide might provide particular benefits for patients with PD who have mild apathy and female.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., Tokyo, Japan
| | | | | | - Ippei Suzuki
- Medicine Development Center, Eisai Co., Ltd., Tokyo, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Masahiro Nomoto
- Department of Neurology, Saiseikai Imabari Center for Health and Welfare, Ehime, Japan
| |
Collapse
|
14
|
Pluim CF, Nakhla MZ, Split M, Filoteo JV, Litvan I, Moore RC, Lessig S, Schiehser DM. Changes in Self- and Informant-Reported Frontal Behaviors in Parkinson's Disease: A Longitudinal Study. J Geriatr Psychiatry Neurol 2022; 35:89-101. [PMID: 33030110 DOI: 10.1177/0891988720964257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Frontal behaviors (i.e., executive dysfunction, disinhibition, apathy) are common in Parkinson's disease (PD). However, it is unclear if patient and informant reports of patient frontal behaviors are in agreement over time. METHOD Sixty-two PD patients without dementia and their informants (87% spouses/partners) completed the self- and informant-versions of the Frontal Systems Behavior Scale at baseline and 2-year follow-up. Dyad ratings were compared and predictors of behavior ratings were examined. RESULTS Patient and informant reports at baseline and follow-up were in agreement, with significant increases in overall frontal behaviors, executive dysfunction, and apathy. Higher levels of baseline patient depression and caregiver burden predicted decrements in patient-reported executive function; worse patient cognition at baseline predicted worsening apathy as rated by informants. CONCLUSIONS PD patients and their informants are concordant in their ratings of worsening frontal behaviors over time. Targeting patient depression, cognition, and caregiver burden may improve decrements in frontal behaviors (executive dysfunction and apathy) in PD.
Collapse
Affiliation(s)
- Celina F Pluim
- Research and Psychology Services, 19979VA San Diego Healthcare System, San Diego, CA, USA
| | - Marina Z Nakhla
- Research and Psychology Services, 19979VA San Diego Healthcare System, San Diego, CA, USA.,464916SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Molly Split
- Research and Psychology Services, 19979VA San Diego Healthcare System, San Diego, CA, USA
| | - J Vincent Filoteo
- Research and Psychology Services, 19979VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, 8784University of California San Diego, La Jolla, CA, USA.,Department of Neurosciences, Parkinson and Other Movement Disorders Center, 8784University of California San Diego, La Jolla, CA, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, 8784University of California San Diego, La Jolla, CA, USA
| | - Raeanne C Moore
- Department of Psychiatry, 8784University of California San Diego, La Jolla, CA, USA
| | - Stephanie Lessig
- Research and Psychology Services, 19979VA San Diego Healthcare System, San Diego, CA, USA.,Department of Neurosciences, Parkinson and Other Movement Disorders Center, 8784University of California San Diego, La Jolla, CA, USA
| | - Dawn M Schiehser
- Research and Psychology Services, 19979VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, 8784University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Raval NR, Gudmundsen F, Juhl M, Andersen IV, Speth N, Videbæk A, Petersen IN, Mikkelsen JD, Fisher PM, Herth MM, Plavén-Sigray P, Knudsen GM, Palner M. Synaptic Density and Neuronal Metabolic Function Measured by Positron Emission Tomography in the Unilateral 6-OHDA Rat Model of Parkinson's Disease. Front Synaptic Neurosci 2021; 13:715811. [PMID: 34867258 PMCID: PMC8636601 DOI: 10.3389/fnsyn.2021.715811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration and characterised by motor dysfunction. Neurodegeneration of dopaminergic neurons also causes aberrations within the cortico-striato-thalamo-cortical (CSTC) circuit, which has been hypothesised to lead to non-motor symptoms such as depression. Individuals with PD have both lower synaptic density and changes in neuronal metabolic function in the basal ganglia, as measured using [11C]UCB-J and [18F]FDG positron emission tomography (PET), respectively. However, the two radioligands have not been directly compared in the same PD subject or in neurodegeneration animal models. Here, we investigate [11C]UCB-J binding and [18F]FDG uptake in the CSTC circuit following a unilateral dopaminergic lesion in rats and compare it to sham lesioned rats. Rats received either a unilateral injection of 6-hydroxydopamine (6-OHDA) or saline in the medial forebrain bundle and rostral substantia nigra (n = 4/group). After 3 weeks, all rats underwent two PET scans using [18F]FDG, followed by [11C]UCB-J on a separate day. [18F]FDG uptake and [11C]UCB-J binding were both lower in the ipsilateral striatal regions compared to the contralateral regions. Using [11C]UCB-J, we could detect an 8.7% decrease in the ipsilateral ventral midbrain, compared to a 2.9% decrease in ventral midbrain using [18F]FDG. Differential changes between hemispheres for [11C]UCB-J and [18F]FDG outcomes were also evident in the CSTC circuit’s cortical regions, especially in the orbitofrontal cortex and medial prefrontal cortex where higher synaptic density yet lower neuronal metabolic function was observed, following lesioning. In conclusion, [11C]UCB-J and [18F]FDG PET can detect divergent changes following a dopaminergic lesion in rats, especially in cortical regions that are not directly affected by the neurotoxin. These results suggest that combined [11C]UCB-J and [18F]FDG scans could yield a better picture of the heterogeneous cerebral changes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Gudmundsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Vang Andersen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annesofie Videbæk
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ida Nymann Petersen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Somensi N, Lopes SC, Gasparotto J, Mayer Gonçalves R, Tiefensee-Ribeiro C, Oppermann Peixoto D, Ozorio Brum P, Pinho CM, Agnes JP, Santos L, de Oliveira J, Spiller F, Fonseca Moreira JC, Zanotto-Filho A, Prediger RD, Pens Gelain D. Role of toll-like receptor 4 and sex in 6-hydroxydopamine-induced behavioral impairments and neurodegeneration in mice. Neurochem Int 2021; 151:105215. [PMID: 34710535 DOI: 10.1016/j.neuint.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.
Collapse
Affiliation(s)
- Nauana Somensi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Samantha Cristiane Lopes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas - Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700. CEP: 37130-001. Centro - Alfenas/MG, Alfenas, Minas Gerais, Brazil
| | - Rosângela Mayer Gonçalves
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Camila Tiefensee-Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Martins Pinho
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Jonathan Paulo Agnes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Lucas Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Spiller
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
18
|
Mori Y, Miura I, Nozaki M, Osakabe Y, Izumi R, Akama T, Kimura S, Yabe H. Electroconvulsive Therapy for Parkinson's Disease with Depression and Neuroleptic Malignant Syndrome: A Case Report. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:572-575. [PMID: 34294629 PMCID: PMC8316652 DOI: 10.9758/cpn.2021.19.3.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
Parkinson's disease is often complicated by psychiatric symptoms. Psychiatrists are caught in a dilemma between such symptoms and physical treatment since Parkinson's disease sometimes shows treatment resistance based on pharmacological treatment-induced dopamine dysfunction. Here, we report on a 64-year-old woman with a 15-year history of Parkinson's disease with stage IV severity based on the Hoehn and Yahr scale. She was admitted to our hospital with a diagnosis of major depressive disorder with psychotic features. Unfortunately, her treatment course for depression was complicated by neuroleptic malignant syndrome. Because we were concerned about the persistence of her depressive symptoms, the risk of psychotropic drugs causing adverse effects, and progressive disuse syndrome, we administered modified electroconvulsive therapy. Her symptoms of neuroleptic malignant syndrome and depression sufficiently improved after five sessions of modified electroconvulsive therapy. Additionally, the primary motor symptoms of her Parkinson's disease also markedly improved. The improvement of neuroleptic malignant syndrome and her motor symptoms based on dopamine dysfunction can be explained by electroconvulsive therapy's effectiveness in activating dopamine neurotransmission. Besides, the marked improvement of her depressive episode with psychotic features was presumed to involve dopamine receptor activation and regulation. Because advanced Parkinson's disease can sometimes be refractory to treatment based on pharmacological treatment-induced dopamine dysfunction, psychiatrists often have difficulty treating psychiatric symptoms; electroconvulsive therapy may stabilize the dopaminergic system in such cases, presenting a possible non-pharmacologic treatment option for Parkinson's disease.
Collapse
Affiliation(s)
- Yuhei Mori
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Michinari Nozaki
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yusuke Osakabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takahiro Akama
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - So Kimura
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
19
|
Murayama T, Kobayashi S, Matsuoka T, Kigawa Y, Ishida T, Hyakumachi K, Utsumi K, Kawanishi C. Effectiveness of Electroconvulsive Therapy in Patients With Advanced Parkinson Disease. J ECT 2021; 37:88-93. [PMID: 33337651 DOI: 10.1097/yct.0000000000000732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In addition to motor symptoms, patients with Parkinson disease (PD) experience various psychiatric comorbidities, including impulse control disorders (ICDs). Moreover, antiparkinsonian drugs sometimes cause psychiatric symptoms. Antiparkinsonian and antipsychotic drugs are competitive in pharmacodynamics, and psychotropic drugs, including antidepressants, may worsen motor symptoms or induce adverse reactions. Considering this conflicting situation, we examined the effectiveness of electroconvulsive therapy (ECT) on both motor and psychiatric symptoms in PD. METHODS We retrospectively examined 12 PD patients with advanced motor symptoms and drug-resistant psychiatric symptoms, including ICDs, who had undergone ECT. Both before and after ECT, the severity of PD motor symptoms were evaluated using Hoehn and Yahr staging, while psychiatric symptoms were evaluated using the Neuropsychiatric Inventory. The patients' doses of antiparkinsonian and antipsychotic drugs were also assessed before and after ECT. RESULTS Both the mean Hoehn and Yahr and Neuropsychiatric Inventory scores were significantly decreased after ECT. The symptoms of ICDs, which were observed in 5 patients, disappeared following ECT. Improvements in motor symptoms and psychiatric symptoms lasted for more than 1 year in 5 cases and 9 cases, respectively. Furthermore, the daily dose of antiparkinsonian drugs was significantly decreased in 6 cases. CONCLUSIONS Our results demonstrated that ECT was effective for both severe motor symptoms and psychiatric symptoms in advanced PD patients. ECT might be a solution for the conflicting problem of treating both motor and psychiatric symptoms in PD.
Collapse
Affiliation(s)
| | | | - Takeshi Matsuoka
- Department of Neurology, Date Red Cross Hospital, Date, Hokkaido
| | - Yoshiyasu Kigawa
- Department of Neuropsychiatry, Sapporo Medical University, Sapporo
| | - Tomotaka Ishida
- Department of Psychiatry, Sunagawa City Medical Center, Sunagawa
| | - Kengo Hyakumachi
- Department of Psychiatry, Iwamizawa Asuka Hospital, Iwamizawa, Hokkaido, Japan
| | - Kumiko Utsumi
- Department of Psychiatry, Sunagawa City Medical Center, Sunagawa
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Sapporo Medical University, Sapporo
| |
Collapse
|
20
|
|
21
|
Carey G, Görmezoğlu M, de Jong JJ, Hofman PA, Backes WH, Dujardin K, Leentjens AF. Neuroimaging of Anxiety in Parkinson's Disease: A Systematic Review. Mov Disord 2021; 36:327-339. [PMID: 33289195 PMCID: PMC7984351 DOI: 10.1002/mds.28404] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this systematic review was (1) to identify the brain regions involved in anxiety in Parkinson's disease (PD) based on neuroimaging studies and (2) to interpret the findings against the background of dysfunction of the fear circuit and limbic cortico-striato-thalamocortical circuit. METHODS Studies assessing anxiety symptoms in PD patients and studies using magnetic resonance imaging, positron emission tomography, or single-photon emission computed tomography were included. RESULTS The severity of anxiety was associated with changes in the fear circuit and the cortico-striato-thalamocortical limbic circuit. In the fear circuit, a reduced gray-matter volume of the amygdala and the anterior cingulate cortex (ACC); an increased functional connectivity (FC) between the amygdala and orbitofrontal cortex (OFC) and hippocampus and between the striatum and the medial prefrontal cortex (PFC), temporal cortex, and insula; and a reduced FC between the lateral PFC and the OFC, hippocampus, and amygdala were reported. In the cortico-striato-thalamocortical limbic circuit, a reduced FC between the striatum and ACC; a reduced dopaminergic and noradrenergic activity in striatum, thalamus, and locus coeruleus; and a reduced serotoninergic activity in the thalamus were reported. CONCLUSION To conclude, anxiety is associated with structural and functional changes in both the hypothesized fear and the limbic cortico-striato-thalamocortical circuits. These circuits overlap and may well constitute parts of a more extensive pathway, of which different parts play different roles in anxiety. The neuropathology of PD may affect these circuits in different ways, explaining the high prevalence of anxiety in PD and also the associated cognitive, motor, and psychiatric symptoms. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Guillaume Carey
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Université de Lille, Inserm, CHU Lille, Lille Neurosciences and CognitionLilleFrance
| | - Meltem Görmezoğlu
- Department of PsychiatryMaastricht University Medical CenterMaastrichtthe Netherlands
- Department of Psychiatry, Ondokuz Mayis University HospitalOndokuz Mayıs UniversitySamsunTurkey
| | - Joost J.A. de Jong
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Paul A.M. Hofman
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Walter H. Backes
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Kathy Dujardin
- Université de Lille, Inserm, CHU Lille, Lille Neurosciences and CognitionLilleFrance
| | - Albert F.G. Leentjens
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of PsychiatryMaastricht University Medical CenterMaastrichtthe Netherlands
| |
Collapse
|
22
|
Santos-García D, de Deus Fonticoba T, Cores Bartolomé C, Suárez Castro E, Jesús S, Mir P, Pascual-Sedano B, Pagonabarraga J, Kulisevsky J, Hernández-Vara J, Planellas LL, Cabo-López I, Seijo-Martínez M, Legarda I, Carrillo Padilla F, Caballol N, Cubo E, Nogueira V, Alonso Losada MG, López Ariztegui N, González Aramburu I, García Caldentey J, Borrue C, Valero C, Sánchez Alonso P. Depression is Associated with Impulse-compulsive Behaviors in Parkinson's disease. J Affect Disord 2021; 280:77-89. [PMID: 33242731 DOI: 10.1016/j.jad.2020.11.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/26/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Depression and impulse control disorders (ICDs) are both common in Parkinson's disease (PD) patients and their coexistence is frequent. Our aim was to determine the relationship between depression and impulsive-compulsive behaviors (ICBs) in a large cohort of PD patients. METHODS PD patients recruited from 35 centers of Spain from the COPPADIS cohort from January 2016 to November 2017 were included in the study. The QUIP-RS (Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale) was used for screening ICDs (cutoff points: gambling ≥6, buying ≥8, sex≥8, eating≥7) and compulsive behaviors (CBs) (cutoff points: hobbyism-punding ≥7). Mood was assessed with the BDI-II (Beck Depression Inventory - II) and major, minor, and subthreshold depression were defined. RESULTS Depression was more frequent in PD patients with ICBs than in those without: 66.3% (69/104) vs 47.5% (242/509); p<0.0001. Major depression was more frequent in this group as well: 22.1% [23/104] vs 14.5% [74/509]; p=0.041. Considering types of ICBs individually, depression was more frequent in patients with pathological gambling (88.9% [8/9] vs 50.2% [303/603]; p=0.021), compulsive eating behavior (65.9% [27/41] vs 49.7% [284/572]; p=0.032), and hobbyism-punding (69% [29/42] vs 49.4% [282/571]; p=0.010) than in those without, respectively. The presence of ICBs was also associated with depression (OR=1.831; 95%CI 1.048-3.201; p=0.034) after adjusting for age, sex, civil status, disease duration, equivalent daily levodopa dose, antidepressant treatment, Hoehn&Yahr stage, non-motor symptoms burden, autonomy for activities of daily living, and global perception of QoL. LIMITATIONS Cross-sectional design. CONCLUSIONS Depression is associated with ICBs in PD. Specifically, with pathological gambling, compulsive eating behavior, and hobbyism-punding.
Collapse
Affiliation(s)
- D Santos-García
- Complejo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain.
| | - T de Deus Fonticoba
- Hospital Arquitecto Marcide y Hospital Naval, Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain
| | - C Cores Bartolomé
- Complejo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - E Suárez Castro
- Hospital Arquitecto Marcide y Hospital Naval, Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain
| | - S Jesús
- Hospital Universitario Virgen del Rocío, Sevilla, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - P Mir
- Hospital Universitario Virgen del Rocío, Sevilla, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - B Pascual-Sedano
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Hospital de la Santa Creu i Sant Pau, Barcelona; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - J Pagonabarraga
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Hospital de la Santa Creu i Sant Pau, Barcelona
| | - J Kulisevsky
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Hospital de la Santa Creu i Sant Pau, Barcelona; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - J Hernández-Vara
- Hospital Universitario Vall d'Hebron and Neurodegenerative Diseases Research Group, Vall D Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - I Cabo-López
- Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain
| | - M Seijo-Martínez
- Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain
| | - I Legarda
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - F Carrillo Padilla
- Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - N Caballol
- Consorci Sanitari Integral, Hospital Moisés Broggi, Sant Joan Despí, Barcelona, Spain
| | - E Cubo
- Complejo Asistencial Universitario de Burgos, Burgos, Spain
| | - V Nogueira
- Hospital Da Costa de Burela, Lugo, Spain
| | - M G Alonso Losada
- Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
| | | | - I González Aramburu
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | - C Borrue
- Hospital Infanta Sofía, Madrid, Spain
| | - C Valero
- Hospital Arnau de Vilanova, Valencia, Spain
| | - P Sánchez Alonso
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Hospital Universitario Puerta de Hierro, Madrid, Spain
| |
Collapse
|
23
|
Jesús S, Labrador-Espinosa MA, Adarmes AD, Méndel-Del Barrio C, Martínez-Castrillo JC, Alonso-Cánovas A, Sánchez Alonso P, Novo-Ponte S, Alonso-Losada MG, López Ariztegui N, Segundo Rodríguez JC, Morales MI, Gastón I, Lacruz Bescos F, Clavero Ibarra P, Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, Martínez-Martín P, Santos-García D, Mir P. Non-motor symptom burden in patients with Parkinson's disease with impulse control disorders and compulsive behaviours: results from the COPPADIS cohort. Sci Rep 2020; 10:16893. [PMID: 33037247 PMCID: PMC7547680 DOI: 10.1038/s41598-020-73756-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
The study was aimed at analysing the frequency of impulse control disorders (ICDs) and compulsive behaviours (CBs) in patients with Parkinson's disease (PD) and in control subjects (CS) as well as the relationship between ICDs/CBs and motor, nonmotor features and dopaminergic treatment in PD patients. Data came from COPPADIS-2015, an observational, descriptive, nationwide (Spain) study. We used the validated Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) for ICD/CB screening. The association between demographic data and ICDs/CBs was analyzed in both groups. In PD, this relationship was evaluated using clinical features and treatment-related data. As result, 613 PD patients (mean age 62.47 ± 9.09 years, 59.87% men) and 179 CS (mean age 60.84 ± 8.33 years, 47.48% men) were included. ICDs and CBs were more frequent in PD (ICDs 12.7% vs. 1.6%, p < 0.001; CBs 7.18% vs. 1.67%, p = 0.01). PD patients had more frequent previous ICDs history, premorbid impulsive personality and antidepressant treatment (p < 0.05) compared with CS. In PD, patients with ICDs/CBs presented younger age at disease onset, more frequent history of previous ICDs and premorbid personality (p < 0.05), as well as higher comorbidity with nonmotor symptoms, including depression and poor quality of life. Treatment with dopamine agonists increased the risk of ICDs/CBs, being dose dependent (p < 0.05). As conclusions, ICDs and CBs were more frequent in patients with PD than in CS. More nonmotor symptoms were present in patients with PD who had ICDs/CBs compared with those without. Dopamine agonists have a prominent effect on ICDs/CBs, which could be influenced by dose.
Collapse
Affiliation(s)
- S Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n. 41013, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - M A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n. 41013, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - A D Adarmes
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n. 41013, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - C Méndel-Del Barrio
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n. 41013, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | | | | | - S Novo-Ponte
- Hospital Universitario Puerta del Hierro, Madrid, Spain
| | - M G Alonso-Losada
- Hospital Meixoeiro, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | | | | | - M I Morales
- Complejo Hospitalario de Toledo, Toledo, Spain
| | - I Gastón
- Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | | | | | - J Kulisevsky
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - J Pagonabarraga
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - B Pascual-Sedano
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - P Martínez-Martín
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - D Santos-García
- Complejo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - P Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n. 41013, Seville, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | | |
Collapse
|
24
|
Drew DS, Muhammed K, Baig F, Kelly M, Saleh Y, Sarangmat N, Okai D, Hu M, Manohar S, Husain M. Dopamine and reward hypersensitivity in Parkinson's disease with impulse control disorder. Brain 2020; 143:2502-2518. [PMID: 32761061 PMCID: PMC7447523 DOI: 10.1093/brain/awaa198] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Impulse control disorders in Parkinson's disease are common neuropsychiatric complications associated with dopamine replacement therapy. Some patients treated with dopamine agonists develop pathological behaviours, such as gambling, compulsive eating, shopping, or disinhibited sexual behaviours, which can have a severe impact on their lives and that of their families. In this study we investigated whether hypersensitivity to reward might contribute to these pathological behaviours and how this is influenced by dopaminergic medication. We asked participants to shift their gaze to a visual target as quickly as possible, in order to obtain reward. Critically, the reward incentive on offer varied over trials. Motivational effects were indexed by pupillometry and saccadic velocity, and patients were tested ON and OFF dopaminergic medication, allowing us to measure the effect of dopaminergic medication changes on reward sensitivity. Twenty-three Parkinson's disease patients with a history of impulse control disorders were compared to 26 patients without such behaviours, and 31 elderly healthy controls. Intriguingly, behavioural apathy was reported alongside impulsivity in the majority of patients with impulse control disorders. Individuals with impulse control disorders also exhibited heightened sensitivity to exogenous monetary rewards cues both ON and OFF (overnight withdrawal) dopamine medication, as indexed by pupillary dilation in anticipation of reward. Being OFF dopaminergic medication overnight did not modulate pupillary reward sensitivity in impulse control disorder patients, whereas in control patients reward sensitivity was significantly reduced when OFF dopamine. These effects were independent of cognitive impairment or total levodopa equivalent dose. Although dopamine agonist dose did modulate pupillary responses to reward, the pattern of results was replicated even when patients with impulse control disorders on dopamine agonists were excluded from the analysis. The findings suggest that hypersensitivity to rewards might be a contributing factor to the development of impulse control disorders in Parkinson's disease. However, there was no difference in reward sensitivity between patient groups when ON dopamine medication, suggesting that impulse control disorders may not emerge simply because of a direct effect of dopaminergic drug level on reward sensitivity. The pupillary reward sensitivity measure described here provides a means to differentiate, using a physiological measure, Parkinson's disease patients with impulse control disorder from those who do not experience such symptoms. Moreover, follow-up of control patients indicated that increased pupillary modulation by reward can be predictive of the risk of future emergence of impulse control disorders and may thereby provide the potential for early identification of patients who are more likely to develop these symptoms.
Collapse
Affiliation(s)
- Daniel S Drew
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Kinan Muhammed
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Fahd Baig
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Oxford Parkinson’s Disease Centre, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Institute of Molecular and Clinical Sciences, St. George’s University London, Blackshaw Road, Tooting, London, SW17 0QT, UK
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Oxford Parkinson’s Disease Centre, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Nagaraja Sarangmat
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Okai
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Department of Neuropsychiatry, Maudsley Outpatients, Denmark Hill, Maudsley Hospital, London, SE5 8AZ, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Michele Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Oxford Parkinson’s Disease Centre, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
- Oxford Parkinson’s Disease Centre, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
25
|
Impulsive and compulsive behaviors in Parkinson's disease: Impact on quality of and satisfaction with life, and caregiver burden. Parkinsonism Relat Disord 2020; 78:27-30. [PMID: 32679528 DOI: 10.1016/j.parkreldis.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION To disentangle the association between impulsive and compulsive behaviors (ICBs), health-related quality of life (HRQOL), satisfaction with life (SwL), and caregiver distress in dyads of people with Parkinson's disease (PwP) and caregivers. METHODS Data used in this study were obtained from the ongoing Norwegian ParkWest study, a population-based longitudinal cohort study of the incidence, neurobiology and prognosis of PD in Western Norway. One hundred and one dyads of PwP free of dementia and their caregivers were included 5 years after PD diagnosis and inclusion in the ParkWest study. Standardized clinical rating scales were used to evaluate ICBs, HRQOL, SwL and caregiver distress. RESULTS Of 101 PwP-caregiver dyads, self-reported ICBs were seen in 33% of PwP and only caregiver-reported ICBs in 12% of PwP. PwP-reported ICBs were associated with poorer HRQOL and SwL, whereas ICBs reported by caregivers only were associated with increased caregiver distress, but not poorer HRQOL or SwL in PwP. CONCLUSIONS ICBs have adverse effects on HRQOL, SwL and caregiver distress. These findings underpin the need for proper identification and management of ICBs in PwP.
Collapse
|
26
|
Barbosa P, Hapuarachchi B, Djamshidian A, Strand K, Lees AJ, de Silva R, Holton JL, Warner TT. Lower nucleus accumbens α-synuclein load and D3 receptor levels in Parkinson's disease with impulsive compulsive behaviours. Brain 2020; 142:3580-3591. [PMID: 31603207 DOI: 10.1093/brain/awz298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022] Open
Abstract
Impulsive compulsive behaviours in Parkinson's disease have been linked to increased dopaminergic release in the ventral striatum and excessive stimulation of dopamine D3 receptors. Thirty-one patients with impulsive compulsive behaviours and Parkinson's disease who donated their brains to the Queen Square Brain Bank for Neurological Disorders were assessed for α-synuclein neuropathological load and tyrosine hydroxylase levels in the nucleus accumbens, dorsal putamen and caudate using immunohistochemistry. Dopamine D2 and dopamine D3 receptors protein levels in the nucleus accumbens, frontal cortex and putamen were determined using western blotting. Results were compared to 29 Parkinson's disease cases without impulsive compulsive behaviours matched by age, sex, disease duration, age at Parkinson's disease onset and disease duration. The majority of patients with impulsive compulsive behaviours had dopamine dysregulation syndrome. Patients with Parkinson's disease and impulsive compulsive behaviours had lower α-synuclein load and dopamine D3 receptor levels in the nucleus accumbens. No differences were seen between groups in the other brain areas and in the analysis of tyrosine hydroxylase and dopamine D2 receptor levels. Lower α-synuclein load in the nucleus accumbens of individuals with Parkinson's disease and impulsive compulsive behaviours was confirmed on western blotting. Downregulation of the dopamine D3 receptor levels may have occurred either as a consequence of the degenerative process or of a pre-morbid trait. The lower levels of α-synuclein may have contributed to an excessive stimulation of the ventral striatum resulting in impulsive compulsive behaviours.
Collapse
Affiliation(s)
- Pedro Barbosa
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Bimali Hapuarachchi
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Atbin Djamshidian
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.,Department of Neurology, Innsbruck Medical University, Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - Kate Strand
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical Movement Disorder and Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| |
Collapse
|
27
|
Vriend C, van Balkom TD, van Druningen C, Klein M, van der Werf YD, Berendse HW, van den Heuvel OA. Processing speed is related to striatal dopamine transporter availability in Parkinson's disease. Neuroimage Clin 2020; 26:102257. [PMID: 32344372 PMCID: PMC7186552 DOI: 10.1016/j.nicl.2020.102257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) affects the integrity of the dopamine and serotonin system, and is characterized by a plethora of different symptoms, including cognitive impairments of which the pathophysiology is not yet fully elucidated. OBJECTIVES Investigate the role of the integrity of the dopaminergic and serotonergic system in cognitive functioning in early-stage PD using Single Photon Emission Computed Tomography (SPECT) combined with the radiotracer 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT). METHODS We studied the association between cognitive functions and dopamine transporter (DAT) availability in the caudate nucleus and putamen - as a proxy for striatal dopaminergic integrity - and serotonin transporter (SERT) availability as a proxy for serotonergic integrity in the thalamus and hippocampus using bootstrapped multiple regression. One-hundred-and-twenty-nine (129) PD patients underwent a 123I-FP-CIT SPECT scan and a neuropsychological assessment. RESULTS We showed a positive association between DAT availability in the head of the caudate nucleus and the Stroop Color Word Task - card I (reading words; β = 0.32, P = 0.001) and a positive association between DAT availability in the anterior putamen and the Trail Making Test part A (connecting consecutively numbered circles; β = 0.25, P = 0.02). These associations remained after adjusting for motor symptom severity or volume of the region-of-interest and were most pronounced in medication-naïve PD patients. There were no associations between cognitive performance and SERT availability in the thalamus or hippocampus. CONCLUSIONS We interpret these results as a role for striatal dopamine - and its PD-related decline - in aspects of processing speed.
Collapse
Affiliation(s)
- Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1007 MB, the Netherlands.
| | - Tim D van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Corné van Druningen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Martin Klein
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Psychology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1007 MB, the Netherlands
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1007 MB, the Netherlands
| |
Collapse
|
28
|
Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. HANDBOOK OF CLINICAL NEUROLOGY 2020; 165:83-121. [PMID: 31727232 DOI: 10.1016/b978-0-444-64012-3.00007-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder with a complex pathophysiology characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Persons with PD experience several motoric and neuropsychiatric symptoms. Neuropsychiatric features of PD include depression, anxiety, psychosis, impulse control disorders, and apathy. In this chapter, we will utilize the National Institutes of Mental Health Research Domain Criteria (RDoC) to frame and integrate observations from two prevailing disease constructions: neurotransmitter anomalies and circuit physiology. When there is available evidence, we posit how unified translational observations may have clinical relevance and postulate importance outside of PD. Finally, we review the limited evidence available for pharmacologic management of these symptoms.
Collapse
|
29
|
Nguyen AA, Maia PD, Gao X, Damasceno PF, Raj A. Dynamical Role of Pivotal Brain Regions in Parkinson Symptomatology Uncovered with Deep Learning. Brain Sci 2020; 10:E73. [PMID: 32019067 PMCID: PMC7071401 DOI: 10.3390/brainsci10020073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The release of a broad, longitudinal anatomical dataset by the Parkinson's Progression Markers Initiative promoted a surge of machine-learning studies aimed at predicting disease onset and progression. However, the excessive number of features used in these models often conceals their relationship to the Parkinsonian symptomatology. OBJECTIVES The aim of this study is two-fold: (i) to predict future motor and cognitive impairments up to four years from brain features acquired at baseline; and (ii) to interpret the role of pivotal brain regions responsible for different symptoms from a neurological viewpoint. METHODS We test several deep-learning neural network configurations, and report our best results obtained with an autoencoder deep-learning model, run on a 5-fold cross-validation set. Comparison with Existing Methods: Our approach improves upon results from standard regression and others. It also includes neuroimaging biomarkers as features. RESULTS The relative contributions of pivotal brain regions to each impairment change over time, suggesting a dynamical reordering of culprits as the disease progresses. Specifically, the Putamen is initially the most critical region accounting for the overall cognitive state, only being surpassed by the Substantia Nigra in later years. The Pallidum is the first region to influence motor scores, followed by the parahippocampal and ambient gyri, and the anterior orbital gyrus. CONCLUSIONS While the causal link between regional brain atrophy and Parkinson symptomatology is poorly understood, our methods demonstrate that the contributions of pivotal regions to cognitive and motor impairments are more dynamical than generally appreciated.
Collapse
Affiliation(s)
- Alex A. Nguyen
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94107, USA; (A.A.N.); (X.G.); (P.F.D.)
| | - Pedro D. Maia
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94107, USA; (A.A.N.); (X.G.); (P.F.D.)
| | - Xiao Gao
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94107, USA; (A.A.N.); (X.G.); (P.F.D.)
| | - Pablo F. Damasceno
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94107, USA; (A.A.N.); (X.G.); (P.F.D.)
- Bakar Computational Health Sciences Institute, UC San Francisco, San Francisco, CA 94158, USA
- Center for Intelligent Imaging, UC San Francisco, San Francisco, CA 94107, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA 94107, USA; (A.A.N.); (X.G.); (P.F.D.)
- Bakar Computational Health Sciences Institute, UC San Francisco, San Francisco, CA 94158, USA
- Center for Intelligent Imaging, UC San Francisco, San Francisco, CA 94107, USA
| |
Collapse
|
30
|
Dujardin K, Sgambato V. Neuropsychiatric Disorders in Parkinson's Disease: What Do We Know About the Role of Dopaminergic and Non-dopaminergic Systems? Front Neurosci 2020; 14:25. [PMID: 32063833 PMCID: PMC7000525 DOI: 10.3389/fnins.2020.00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Besides the hallmark motor symptoms (rest tremor, hypokinesia, rigidity, and postural instability), patients with Parkinson’s disease (PD) have non-motor symptoms, namely neuropsychiatric disorders. They are frequent and may influence the other symptoms of the disease. They have also a negative impact on the quality of life of patients and their caregivers. In this article, we will describe the clinical manifestations of the main PD-related behavioral disorders (depression, anxiety disorders, apathy, psychosis, and impulse control disorders). We will also provide an overview of the clinical and preclinical literature regarding the underlying mechanisms with a focus on the role of the dopaminergic and non-dopaminergic systems.
Collapse
Affiliation(s)
- Kathy Dujardin
- Inserm U1171 Degenerative and Vascular Cognitive Disorders, Lille University Medical Center, Lille, France
| | - Véronique Sgambato
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Lyon University, Bron, France
| |
Collapse
|
31
|
Neuropsychiatric aspects of Parkinson’s disease. J Neural Transm (Vienna) 2019; 126:889-896. [DOI: 10.1007/s00702-019-02019-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
|
32
|
Gatto EM, Aldinio V. Impulse Control Disorders in Parkinson's Disease. A Brief and Comprehensive Review. Front Neurol 2019; 10:351. [PMID: 31057473 PMCID: PMC6481351 DOI: 10.3389/fneur.2019.00351] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Impulse control and related disorders (ICDs-RD) encompasses a heterogeneous group of disorders that involve pleasurable behaviors performed repetitively, excessively, and compulsively. The key common symptom in all these disorders is the failure to resist an impulse or temptation to control an act or specific behavior, which is ultimately harmful to oneself or others and interferes in major areas of life. The major symptoms of ICDs include pathological gambling (PG), hypersexualtiy (HS), compulsive buying/shopping (CB) and binge eating (BE) functioning. ICDs and ICDs-RD have been included in the behavioral spectrum of non-motor symptoms in Parkinson's disease (PD) leading, in some cases, to serious financial, legal and psychosocial devastating consequences. Herein we present the prevalence of ICDs, the risk factors, its pathophysiological mechanisms, the link with agonist dopaminergic therapies and therapeutic managements.
Collapse
Affiliation(s)
- Emilia M Gatto
- Department of Neurology, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina.,Instituto de Neurociencias Buenos Aires, Ineba, Buenos Aires, Argentina
| | - Victoria Aldinio
- Department of Neurology, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina
| |
Collapse
|
33
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
34
|
Meyer GM, Spay C, Laurencin C, Ballanger B, Sescousse G, Boulinguez P. Functional imaging studies of Impulse Control Disorders in Parkinson's disease need a stronger neurocognitive footing. Neurosci Biobehav Rev 2019; 98:164-176. [PMID: 30639672 DOI: 10.1016/j.neubiorev.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Impulse control disorders (ICDs) in Parkinson's disease (PD) are associated with dopaminergic dysfunction and treatment, but have no satisfactory therapeutic solution. While studies assessing the neurofunctional bases of ICDs are important for advancing our understanding and management of ICDs, they remain sparse and inconsistent. Based on a systematic analysis of the neuroimaging literature, the present review pinpoints various abnormalities beyond the mesocorticolimbic circuit that supports reward processing, suggesting possible dysfunction at the sensorimotor, executive and affective levels. We advocate that: 1) Future studies should use more sophisticated psychological models and behavioral designs that take into account the potentially multifaceted aspect of ICDs; this would allow a more accurate assessment of the underlying neurocognitive processes, which are not all dependent on the dopaminergic system. 2) Future neuroimaging studies should rely more strongly on task-based, event-related analyses to disentangle the various mechanisms that can be dysfunctional in ICDs. We believe these guidelines constitute a prerequisite towards distinguishing causes, correlates and individual susceptibility factors of PD patients with ICDs.
Collapse
Affiliation(s)
- Garance M Meyer
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, Action Control and Related Disorders team, F-69000, Lyon, France
| | - Charlotte Spay
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, Action Control and Related Disorders team, F-69000, Lyon, France
| | - Chloé Laurencin
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, Neuroplasticity and Neuropathology of Olfactory Perception team, F-69000, Lyon, France; Service de Neurologie C, Centre Expert Parkinson, Hôpital Neurologique Pierre, Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, Neuroplasticity and Neuropathology of Olfactory Perception team, F-69000, Lyon, France
| | - Guillaume Sescousse
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, PsyR2 team, F-69000, Lyon, France
| | - Philippe Boulinguez
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, U 1028, CNRS, UMR 5292, Action Control and Related Disorders team, F-69000, Lyon, France.
| |
Collapse
|
35
|
Oosterwijk CS, Vriend C, Berendse HW, van der Werf YD, van den Heuvel OA. Anxiety in Parkinson's disease is associated with reduced structural covariance of the striatum. J Affect Disord 2018; 240:113-120. [PMID: 30059937 DOI: 10.1016/j.jad.2018.07.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Anxiety is highly prevalent in Parkinson's disease (PD) and has great negative impact on quality of life. Functional and structural neuroimaging studies have contributed to our understanding of the symptomatology of PD but still little is known about the pathophysiology of PD-related anxiety. METHODS We used seed-based structural covariance analysis to study the anatomical network correlates of anxiety in PD. Structural covariance analysis is based on the statistical correlation between regional brain volumes measured on T1-weighted magnetic resonance images. We investigated the association between anxiety symptoms, as measured by the Beck Anxiety Inventory (BAI), and seed-to-whole-brain structural covariance networks in 115 patients with idiopathic PD using five bilateral seeds: basolateral amygdala, centromedial-superficial amygdala, dorsal caudate nucleus, dorsal-caudal putamen, and nucleus accumbens. RESULTS Severity of anxiety correlated negatively with structural covariance between the left striatal sub-regions and the contralateral caudate nucleus. Moreover, severity of anxiety was associated with reduced structural covariance between the right dorsal caudate nucleus and ipsilateral ventrolateral prefrontal cortex and between the left nucleus accumbens and ipsilateral dorsolateral prefrontal cortex. Structural covariance of the amygdalar seeds did not correlate with anxiety. CONCLUSIONS We interpret these findings as a reduced interhemispheric cooperation between the left and right striatum and reduced prefrontal-striatal connectivity, possibly related to impaired 'top-down' regulation of emotions. These findings shed more light on the pathophysiology of PD-related anxiety LIMITATIONS: This study did not include PD patients with an anxiety disorder.
Collapse
Affiliation(s)
- Caroline S Oosterwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Kingston DA, Walters GD, Olver ME, Levaque E, Sawatsky M, Lalumière ML. Understanding the Latent Structure of Hypersexuality: A Taxometric Investigation. ARCHIVES OF SEXUAL BEHAVIOR 2018; 47:2207-2221. [PMID: 30229520 DOI: 10.1007/s10508-018-1273-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/26/2018] [Accepted: 07/05/2018] [Indexed: 05/25/2023]
Abstract
We examined the latent structure and taxonicity of hypersexuality in large university and community samples of male and female respondents. Participants completed the Hypersexual Behavior Inventory (HBI) and Sexual Compulsivity Scale (SCS), each as part of larger anonymous online surveys of sexual behavior. Exploratory factor analyses (EFA) were performed in part to prepare the data for taxometric analysis and also to identify the putative dimensions underpinning each measure. Three latent dimensions were identified from each of the Sexual Compulsivity Scale (dyscontrol, consequences, and preoccupation) and Hypersexual Behavior Inventory (coping, dyscontrol, and consequences). Taxometric analyses of the generated factors using mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode) broadly supported a dimensional latent structure for hypersexuality, particularly in female participants. Implications pertaining to the assessment of hypersexuality are discussed.
Collapse
Affiliation(s)
- Drew A Kingston
- HOPE Program, 208-995 Gateway Center Way, San Diego, CA, 92102, USA.
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Glenn D Walters
- Department of Criminal Justice, Kutztown University, Kutztown, PA, USA
| | - Mark E Olver
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Enya Levaque
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Megan Sawatsky
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Martin L Lalumière
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Grall-Bronnec M, Victorri-Vigneau C, Donnio Y, Leboucher J, Rousselet M, Thiabaud E, Zreika N, Derkinderen P, Challet-Bouju G. Dopamine Agonists and Impulse Control Disorders: A Complex Association. Drug Saf 2018; 41:19-75. [PMID: 28861870 PMCID: PMC5762774 DOI: 10.1007/s40264-017-0590-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Impulse control disorders (ICDs) are a well-known adverse effect of dopamine agonists (DAAs). This critical review aims to summarize data on the prevalence and factors associated with the development of an ICD simultaneous to DAA use. A search of two electronic databases was completed from inception to July 2017. The search terms were medical subject headings (MeSH) terms including “dopamine agonists” AND “disruptive disorders”, “impulse control disorders”, or “conduct disorders”. Articles had to fulfill the following criteria to be included: (i) the target problem was an ICD; (ii) the medication was a dopaminergic drug; and (iii) the article was an original article. Of the potential 584 articles, 90 met the criteria for inclusion. DAAs were used in Parkinson’s disease (PD), restless legs syndrome (RLS) or prolactinoma. The prevalence of ICDs ranged from 2.6 to 34.8% in PD patients, reaching higher rates in specific PD populations; a lower prevalence was found in RLS patients. We found only two studies about prolactinoma. The most robust findings relative to the factors associated with the development of an ICD included the type of DAA, the dosage, male gender, a younger age, a history of psychiatric symptoms, an earlier onset of disease, a longer disease duration, and motor complications in PD. This review suggests that DAA use is associated with an increased risk in the occurrence of an ICD, under the combined influence of various factors. Guidelines to help prevent and to treat ICDs when required do exist, although further studies are required to better identify patients with a predisposition.
Collapse
Affiliation(s)
- Marie Grall-Bronnec
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France.
- Université de Nantes, Université de Tours, Inserm U1246, Nantes, France.
| | - Caroline Victorri-Vigneau
- Université de Nantes, Université de Tours, Inserm U1246, Nantes, France
- Department of Pharmacology, CHU Nantes, Center for Evaluation and Information on Pharmacodependence, Nantes, France
| | - Yann Donnio
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France
| | - Juliette Leboucher
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France
| | - Morgane Rousselet
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France
- Université de Nantes, Université de Tours, Inserm U1246, Nantes, France
| | - Elsa Thiabaud
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France
| | - Nicolas Zreika
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France
| | - Pascal Derkinderen
- Department of Neurology, CHU Nantes, Nantes, France
- Université de Nantes, Inserm U913, Nantes, France
| | - Gaëlle Challet-Bouju
- Clinical Investigation Unit "Behavioral Addictions/Complex Affective Disorders", Addictology and Psychiatry Department, CHU Nantes, Hospital Saint Jacques, 85, rue Saint Jacques, 44093, Nantes Cedex 1, France
- Université de Nantes, Université de Tours, Inserm U1246, Nantes, France
| |
Collapse
|
38
|
Wang HT, Wang L, He Y, Yu G. Rotigotine transdermal patch for the treatment of neuropsychiatric symptoms in Parkinson's disease: A meta-analysis of randomized placebo-controlled trials. J Neurol Sci 2018; 393:31-38. [DOI: 10.1016/j.jns.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
|
39
|
Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse Control Disorder in Parkinson's Disease: A Meta-Analysis of Cognitive, Affective, and Motivational Correlates. Front Neurol 2018; 9:654. [PMID: 30233478 PMCID: PMC6127647 DOI: 10.3389/fneur.2018.00654] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Background: In Parkinson's disease (PD), impulse control disorders (ICDs) develop as side-effect of dopaminergic replacement therapy (DRT). Cognitive, affective, and motivational correlates of ICD in medicated PD patients are debated. Here, we systematically reviewed and meta-analyzed the evidence for an association between ICD in PD and cognitive, affective, and motivational abnormalities. Methods: A systematic review and meta-analysis was performed on PubMed, Science Direct, ISI Web of Science, Cochrane, EBSCO for studies published between 1-1-2000 and 8-3-2017 comparing cognitive, affective, and motivational measures in PD patients with ICD (ICD+) vs. those without ICD (ICD-). Exclusion criteria were conditions other than PD, substance and/or alcohol abuse, dementia, drug naïve patients, cognition assessed by self-report tools. Standardized mean difference (SMD) was used, and random-effect model applied. Results: 10,200 studies were screened (title, abstract), 79 full-texts were assessed, and 25 were included (ICD+: 625 patients; ICD-: 938). Compared to ICD-, ICD+ showed worse performance reward-related decision-making (0.42 [0.02, 0.82], p = 0.04) and set-shifting tasks (SMD = -0.49 [95% CI -0.78, -0.21], p = 0.0008). ICD in PD was also related to higher self-reported rate of depression (0.35 [0.16, 0.54], p = 0.0004), anxiety (0.43 [0.18, 0.68], p = 0.0007), anhedonia (0.26 [0.01, 0.50], p = 0.04), and impulsivity (0.79 [0.50, 1.09], p < 0.00001). Heterogeneity was low to moderate, except for depression (I2 = 61%) and anxiety (I2 = 58%). Conclusions: ICD in PD is associated with worse set-shifting and reward-related decision-making, and increased depression, anxiety, anhedonia, and impulsivity. This is an important area for further studies as ICDs have negative impact on the quality of life of patients and their caregivers.
Collapse
Affiliation(s)
- Alice Martini
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Denise Dal Lago
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Nicola M J Edelstyn
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - James A Grange
- School of Psychology, Keele University, Newcastle-under-Lyme, United Kingdom
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Randver R. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex to alleviate depression and cognitive impairment associated with Parkinson's disease: A review and clinical implications. J Neurol Sci 2018; 393:88-99. [PMID: 30149227 DOI: 10.1016/j.jns.2018.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/20/2018] [Accepted: 08/12/2018] [Indexed: 12/18/2022]
Abstract
The rapid methodological development and growing availability of neuromodulation techniques have spurred myriad studies investigating their clinical effectiveness. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) has in many instances been proven to exert antidepressant-like effects superior to placebo and equivalent to standard psychopharmacological treatment. Due to the similar neuroanatomy and neurophysiology of executive and affective control processes, rTMS to the DLPFC may be able to address multiple issues simultaneously. This review pools available literature on the therapeutic usage of rTMS on non-motor symptoms of Parkinson's disease associated with the DLPFC (i.e. mood disturbance and cognitive impairment). To the best of the author's knowledge, it is one of the few available of its' kind, up to this date. Most studies included in the review found beneficial effects of high frequency prefrontal rTMS on PD-related depression. In regard to the usability of rTMS to alleviate cognitive impairment associated with PD, definitive claims are yet to be established.
Collapse
Affiliation(s)
- René Randver
- Institute of Psychology, University of Tartu, Näituse 2-211, 50409 Tartu, Estonia; Neurology Center, East Tallinn Central Hospital, Ravi 18, 10138 Tallinn, Estonia.
| |
Collapse
|
41
|
Foley JA, Foltynie T, Limousin P, Cipolotti L. Standardised Neuropsychological Assessment for the Selection of Patients Undergoing DBS for Parkinson's Disease. PARKINSON'S DISEASE 2018; 2018:4328371. [PMID: 29971141 PMCID: PMC6009029 DOI: 10.1155/2018/4328371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
DBS is an increasingly offered advanced treatment for Parkinson's disease (PD). Neuropsychological assessment is considered to be an important part of the screening for selection of candidates for this treatment. However, no standardised screening procedure currently exists. In this study, we examined the use of our standardised neuropsychological assessment for the evaluation of surgical candidates and to identify risk factors for subsequent decline in cognition and mood. A total of 40 patients were assessed before and after DBS. Evaluation of mood and case notes review was also undertaken. Before DBS, patients with PD demonstrated frequent impairments in intellectual functioning, memory, attention, and executive function, as well as high rates of mood disorder. Post-DBS, there was a general decline in verbal fluency only, and in one patient, we documented an immediate and irreversible global cognitive decline, which was associated with older age and more encompassing cognitive deficits at baseline. Case note review revealed that a high proportion of patients developed mood disorder, which was associated with higher levels of depression at baseline and greater reduction in levodopa medication. We conclude that our neuropsychological assessment is suitable for the screening of candidates and can identify baseline risk factors, which requires careful consideration before and after surgery.
Collapse
Affiliation(s)
- Jennifer A. Foley
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Lisa Cipolotti
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
42
|
Reward sensitivity in Parkinson's patients with binge eating. Parkinsonism Relat Disord 2018; 51:79-84. [DOI: 10.1016/j.parkreldis.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 11/17/2022]
|
43
|
Molde H, Moussavi Y, Kopperud ST, Erga AH, Hansen AL, Pallesen S. Impulse-Control Disorders in Parkinson's Disease: A Meta-Analysis and Review of Case-Control Studies. Front Neurol 2018; 9:330. [PMID: 29872418 PMCID: PMC5972311 DOI: 10.3389/fneur.2018.00330] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although several case-control studies on the prevalence of Impulse-Control Disorders (ICDs) in Parkinson's Disease (PD) have been conducted, no meta-analytic study on this topic has previously been published. Thus, knowledge about the overall prevalence rate of ICD in PD and factors that might moderate this relationship is lacking. METHOD Prevalence studies of ICDs in PD were identified by computer searches in the MEDLINE, PsycINFO, and Web of Science databases, covering the period from January 2000 to February 2017. Data for N = 4,539, consisting of 2,371 PD patients and 2,168 healthy controls, representing 14 case-control studies were included. Estimation of the odds ratio (OR) of ICDs in PD compared to healthy controls was conducted using random-effects models. Mixed-effects models were applied in the moderator analysis of heterogeneity. Publication bias was estimated using a contour-enhanced funnel plot, the Rüker's test, and fail-safe N test for estimating the number of potential missing studies. RESULTS Overall, the results showed significantly higher ratios for several ICDs in PD compared to healthy controls with the estimated overall ORs ranging between 2.07, 95% CI [1.26, 3.48], for having any ICDs, and 4.26, 95% CI [2.17, 8.36], for hypersexuality. However, the random-effects results for shopping were non-significant, though the fixed-effects model was significant (OR = 1.66, 95%CI [1.21, 2.27]). The testing of potential moderator variables of heterogeneity identified the following two variables that were both associated with increased risk: being medically treated for PD and disease duration. The results must be interpreted with some caution due to possible small-studies effect or publication bias. CONCLUSION Individuals with PD seem to have a significantly greater risk of suffering from ICDs compared to healthy controls. Gambling, hypersexuality, eating, punding, and hobbying are all ICDs significantly associated with PDs being medically treated for PD.
Collapse
Affiliation(s)
- Helge Molde
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Yasaman Moussavi
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | | | - Aleksander Hagen Erga
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Anita Lill Hansen
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| |
Collapse
|
44
|
The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks. Cell Tissue Res 2018; 373:327-336. [PMID: 29383446 PMCID: PMC6015621 DOI: 10.1007/s00441-017-2771-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023]
Abstract
Impulse control disorders (ICD) are common neuropsychiatric disorders that can arise in Parkinson’s disease (PD) patients after commencing dopamine replacement therapy. Approximately 15% of all patients develop these disorders and many more exhibit subclinical symptoms of impulsivity. ICD is thought to develop due to an interaction between the use of dopaminergic medication and an as yet unknown neurobiological vulnerability that either pre-existed before PD onset (possibly genetic) or is associated with neural alterations due to the PD pathology. This review discusses genes, neurotransmitters and neural networks that have been implicated in the pathophysiology of ICD in PD. Although dopamine and the related reward system have been the main focus of research, recently, studies have started to look beyond those systems to find new clues to the neurobiological underpinnings of ICD and come up with possible new targets for treatment. Studies on the whole-brain connectome to investigate the global alterations due to ICD development are currently lacking. In addition, there is a dire need for longitudinal studies that are able to disentangle the contributions of individual (genetic) traits and secondary effects of the PD pathology and chronic dopamine replacement therapy to the development of ICD in PD.
Collapse
|
45
|
Erga AH, Alves G, Larsen JP, Tysnes OBR, Pedersen KF. Impulsive and Compulsive Behaviors in Parkinson's Disease: The Norwegian ParkWest Study. JOURNAL OF PARKINSONS DISEASE 2017; 7:183-191. [PMID: 27911342 PMCID: PMC5302042 DOI: 10.3233/jpd-160977] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Impulsive and compulsive behaviors (ICBs) are frequent in Parkinson's disease (PD), but data from population-based cohorts is lacking. OBJECTIVES To determine the frequency and associated demographic, clinical, neuropsychiatric and cognitive features of ICBs in a population-based PD cohort. METHODS This cross-sectional study included 125 patients with PD and 159 age- and gender-matched normal controls recruited from the Norwegian ParkWest study. Participants underwent comprehensive neurological, neuropsychiatric and neuropsychological assessments. ICBs were assessed using the Questionnaire for Impulsive-Compulsive Disorders in PD short form. Multiple logistic regression analyses were performed to compare the odds of ICBs between groups and to identify independent correlates of ICBs in PD. RESULTS 30.4% of patients reported at least one ICB, with an odds ratio (OR) of 3.2 (95% confidence interval [CI] 1.8-5.9) compared with controls. Multiple ICBs were experienced by 8.8% of patients vs 1.3% of controls (OR 7.6, 95% CI 1.7-34.8). Compared to controls, the ORs of having an ICB were 7.4 (95% CI 2.6-20.9) in patients taking DA without levodopa, 4.6 (95% CI 2.3-9.3) in those treated with both DA and levodopa, and 1.2 (95% CI 0.5-3.2) in patients using levodopa but not DA. In multivariate models, ICB status in patients was independently associated with DA treatment and depressive symptoms, but not with other dopaminergic medications, motor function, or cognitive performance. CONCLUSIONS Patients with PD treated with DA, but not other dopaminergic medications, have increased odds of having ICBs compared with age- and gender-matched controls. This has implications for individualized patient management and follow-up.
Collapse
Affiliation(s)
- Aleksander H Erga
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jan Petter Larsen
- Network for Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Ole Bj Rn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kenn Freddy Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
46
|
Risky decision-making and affective features of impulse control disorders in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:131-143. [PMID: 29119257 PMCID: PMC5775350 DOI: 10.1007/s00702-017-1807-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/01/2017] [Indexed: 11/21/2022]
Abstract
Impulse control disorders (ICDs) in Parkinson’s disease (PD) are considered dopaminergic treatment side effects. Cognitive and affective factors may increase the risk of ICD in PD. The aim is to investigate risky decision-making and associated cognitive processes in PD patients with ICDs within a four-stage conceptual framework. Relationship between ICDs and affective factors was explored. Thirteen PD patients with ICD (ICD+), 12 PD patients without ICD (ICD−), and 17 healthy controls were recruited. Overall risky decision-making and negative feedback effect were examined with the Balloon Analogue Risk Task (BART). A cognitive battery dissected decision-making processes according to the four-stage conceptual framework. Affective and motivational factors were measured. ANOVA showed no effect of group on overall risky decision-making. However, there was a group × feedback interaction [F (2, 39) = 3.31, p = 0.047]. ICD+, unlike ICD− and healthy controls, failed to reduce risky behaviour following negative feedback. A main effect of group was found for anxiety and depression [F(2, 38) = 8.31, p = 0.001], with higher symptoms in ICD+ vs. healthy controls. Groups did not differ in cognitive outcomes or affective and motivational metrics. ICD+ may show relatively preserved cognitive function, but reduced sensitivity to negative feedback during risky decision-making and higher symptoms of depression and anxiety.
Collapse
|
47
|
Biundo R, Weis L, Abbruzzese G, Calandra-Buonaura G, Cortelli P, Jori MC, Lopiano L, Marconi R, Matinella A, Morgante F, Nicoletti A, Tamburini T, Tinazzi M, Zappia M, Vorovenci RJ, Antonini A. Impulse control disorders in advanced Parkinson's disease with dyskinesia: The ALTHEA study. Mov Disord 2017; 32:1557-1565. [PMID: 28960475 DOI: 10.1002/mds.27181] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Impulse control disorders and dyskinesia are common and disabling complications of dopaminergic treatment in Parkinson's disease. They may coexist and are possibly related. The objectives of this study were to assess the frequency and severity of impulse control disorders in Parkinson's disease patients with dyskinesia. METHODS The ALTHEA study enrolled 251 Parkinson's disease patients with various degrees of dyskinesia severity from 11 movement disorders centers in Italy. Each patient underwent a comprehensive assessment including Unified Dyskinesia Rating Scale and the Questionnaire for Impulsive Compulsive Disorders in Parkinson Disease-Rating Scale. RESULTS There was an overall 55% frequency of impulse control disorder and related behaviors (36% were clinically significant). The positive patients were younger at disease diagnosis and onset and had higher Unified Dyskinesia Rating Scale historical and total score (P = 0.001 and P = 0.02, respectively, vs negative). There was an increased frequency of clinically significant impulse control disorders in patients with severe dyskinesia (P = 0.013), a positive correlation between the questionnaire total score and dopamine agonist dose (P = 0.018), and a trend with levodopa dose. CONCLUSIONS More than half of Parkinson's disease patients with dyskinesia have impulse control disorders and related behaviors, which are frequently clinically significant. Dopaminergic therapy total dose is associated with their severity. Clinicians should carefully assess patients with maladaptive behaviors and dyskinesia because they do not properly evaluate their motor and nonmotor status. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberta Biundo
- Parkinson and Movement Disorders Unit, IRCCS Hospital San Camillo, Venice, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, IRCCS Hospital San Camillo, Venice, Italy
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa Genoa, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,I.R.C.C.S. Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,I.R.C.C.S. Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | | | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Torino, Italy
| | - Roberto Marconi
- Unità Operativa Complessa di Neurologia, Ospedale Misericordia, Grosseto, Italy
| | - Angela Matinella
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Italy
| | - Francesca Morgante
- Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Alessandra Nicoletti
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | | | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Motor Sciences, University of Verona, Italy
| | - Mario Zappia
- Clinica Neurologica I Policlinico Universitario, Catania, Italy
| | - Ruxandra Julia Vorovenci
- University of Medicine and Pharmacy "Victor Babes"; County Hospital, Department of Neurology, Timisoara, Romania
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, IRCCS Hospital San Camillo, Venice, Italy.,Department of Neuroscience (DNS), University of Padua, Padua, Italy
| |
Collapse
|
48
|
Timmer MHM, van Beek MHCT, Bloem BR, Esselink RAJ. What a neurologist should know about depression in Parkinson's disease. Pract Neurol 2017; 17:359-368. [PMID: 28739866 DOI: 10.1136/practneurol-2017-001650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2017] [Indexed: 11/03/2022]
Abstract
Depression is a frequent non-motor symptom of Parkinson's disease. Its prevalence varies widely across studies (between 2.7% and 90%); around 35% have clinically significant depressive symptoms. Although depression can have an immense impact on the quality of life of affected patients and their caregivers, depressive symptoms in Parkinson's disease frequently remain unrecognised and, as a result, remain untreated. Here we overview the diagnostic challenges and pitfalls, including the factors contributing to the underdiagnosis of depression. We also discuss current ideas on the underlying pathophysiology. Finally, we offer a treatment approach based on currently available evidence.
Collapse
Affiliation(s)
- Monique H M Timmer
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria H C T van Beek
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas R Bloem
- Department of Neurology and Parkinson Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Department of Neurology and Parkinson Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Williams NR, Bentzley BS, Sahlem GL, Pannu J, Korte JE, Revuelta G, Short EB, George MS. Unilateral ultra-brief pulse electroconvulsive therapy for depression in Parkinson's disease. Acta Neurol Scand 2017; 135:407-411. [PMID: 27241213 DOI: 10.1111/ane.12614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) has demonstrated efficacy in treating core symptoms of Parkinson's disease (PD); however, widespread use of ECT in PD has been limited due to concern over cognitive burden. We investigated the use of a newer ECT technology known to have fewer cognitive side effects (right unilateral [RUL] ultra-brief pulse [UBP]) for the treatment of medically refractory psychiatric dysfunction in PD. MATERIALS AND METHODS This open-label pilot study included 6 patients who were assessed in the motoric, cognitive, and neuropsychiatric domains prior to and after RUL UBP ECT. Primary endpoints were changes in total score on the HAM-D-17 and GDS-30 rating scales. RESULTS Patients were found to improve in motoric and psychiatric domains following RUL UBP ECT without cognitive side effects, both immediately following ECT and at 1-month follow-up. CONCLUSIONS This study demonstrates that RUL UBP ECT is safe, feasible, and potentially efficacious in treating multiple domains of PD, including motor and mood, without clear cognitive side effects.
Collapse
Affiliation(s)
- N. R. Williams
- Department of Psychiatry & Behavioral Sciences; Stanford University; Stanford CA USA
| | - B. S. Bentzley
- Department of Psychiatry & Behavioral Sciences; Stanford University; Stanford CA USA
| | - G. L. Sahlem
- Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - J. Pannu
- Department of Psychiatry & Behavioral Sciences; Stanford University; Stanford CA USA
| | - J. E. Korte
- Department of Public Health Sciences; Medical University of South Carolina; Charleston SC USA
| | - G. Revuelta
- Department of Neurology; Medical University of South Carolina; Charleston SC USA
| | - E. B. Short
- Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - M. S. George
- Department of Neurology; Medical University of South Carolina; Charleston SC USA
- Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
- Ralph H. Johnson VA Medical Center; Charleston SC USA
| |
Collapse
|
50
|
Sierra M, Carnicella S, Strafella AP, Bichon A, Lhommée E, Castrioto A, Chabardes S, Thobois S, Krack P. Apathy and Impulse Control Disorders: Yin & Yang of Dopamine Dependent Behaviors. JOURNAL OF PARKINSONS DISEASE 2016; 5:625-36. [PMID: 25870025 DOI: 10.3233/jpd-150535] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuropsychiatric symptoms are common non-motor symptoms in Parkinson's disease (PD). Apathy and impulse control disorders (ICD) are two opposite motivational expressions of a continuous behavioural spectrum involving hypo- and hyperdopaminergia. Both syndromes share pathological (decreased vs increased) dopamine receptor stimulation states. Apathy belongs to the spectrum of hypodopaminergic symptoms together with anhedonia, anxiety and depression. Apathy is a key symptom of PD which worsens with disease progression. Animal models, imaging and pharmacological studies concur in pointing out dopaminergic denervation in the aetiology of parkinsonian apathy with a cardinal role of decreased tonic D2/D3 receptor stimulation. ICDs are part of the hyperdopaminergic behavioural spectrum, which also includes punding, and dopamine dysregulation syndrome (DDS), which are all related to non-physiological dopaminergic stimulation induced by antiparkinsonian drugs. According to clinical data tonic D2/D3 receptor stimulation can be sufficient to induce ICDs. Clinical observations in drug addiction and PD as well as data from studies in dopamine depleted rodents provide hints allowing to argue that both pulsatile D1 and D2 receptor stimulation and the severity of dopaminergic denervation are risk factors to develop punding behavior and DDS. Imaging studies have shown that the brain structures involved in drug addiction are also involved in hyperdopaminergic behaviours with increase of bottom-up appetitive drive and decrease in prefrontal top down behavioural control.
Collapse
Affiliation(s)
- María Sierra
- Service of Neurology, University Hospital "Marqués de Valdecilla (IFIMAV)", University of Cantabria and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | | | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit - E.J. Safra Parkinson Disease Program, Toronto Western Hospital and Research Institute, UHN & Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | - Amélie Bichon
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Eugénie Lhommée
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Anna Castrioto
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Department of Neurosurgery CHU de Grenoble, Joseph Fourier University, Grenoble, France and INSERM, Unité 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Stéphane Thobois
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5229, Centre de Neuroscience Cognitive, Bron, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|