1
|
Cofresí RU, Upton S, Brown AA, Piasecki TM, Bartholow BD, Froeliger B. Mesocorticolimbic system reactivity to alcohol use-related visual cues as a function of alcohol sensitivity phenotype: A pilot fMRI study. ADDICTION NEUROSCIENCE 2024; 11:100156. [PMID: 38938269 PMCID: PMC11209874 DOI: 10.1016/j.addicn.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Low sensitivity (LS) to alcohol is a risk factor for alcohol use disorder (AUD). Compared to peers with high sensitivity (HS), LS individuals drink more, report more problems, and exhibit potentiated alcohol cue reactivity (ACR). Heightened ACR suggests LS confers AUD risk via incentive sensitization, which is thought to take place in the mesocorticolimbic system. This study examined neural ACR in LS and HS individuals. Young adults (N = 32, M age=20.3) were recruited based on the Alcohol Sensitivity Questionnaire (HS: n = 16; LS: n = 16; 9 females/group). Participants completed an event-related fMRI ACR task. Group LS had higher ACR in left ventrolateral prefrontal cortex than group HS. In group LS, ACR in left caudomedial orbitofrontal cortex or left putamen was low at low alcohol use levels and high at heavier or more problematic alcohol use levels, whereas the opposite was true in group HS. Alcohol use level also was associated with the level of ACR in left substantia nigra among males in group LS. Taken together, results suggest elevated mesocorticolimbic ACR among LS individuals, especially those using alcohol at hazardous levels. Future studies with larger samples are warranted to determine the neurobiological loci underlying LS-based amplified ACR and AUD risk.
Collapse
Affiliation(s)
- Roberto U. Cofresí
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Spencer Upton
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Alexander A. Brown
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Thomas M. Piasecki
- Center for Tobacco Research and Intervention and Department of Medicine, University of Wisconsin - Madison, USA
| | | | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri - Columbia, USA
- Department of Psychiatry, University of Missouri - Columbia, USA
| |
Collapse
|
2
|
Heinzel A, Mauler J, Herzog H, Boers F, Mottaghy FM, Langen KJ, Scheins J, Lerche C, Neumaier B, Northoff G, Shah NJ. GABA A receptor availability relates to emotion-induced BOLD responses in the medial prefrontal cortex: simultaneous fMRI/PET with [ 11C]flumazenil. Front Neurosci 2023; 17:1027697. [PMID: 37766785 PMCID: PMC10520870 DOI: 10.3389/fnins.2023.1027697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The fMRI BOLD response to emotional stimuli highlighting the role of the medial prefrontal cortex (MPFC) has been thoroughly investigated. Recently, the relationship between emotion processing and GABA levels has been studied using MPFC proton magnetic resonance spectroscopy (1H-MRS). However, the role of GABAA receptors in the MPFC during emotion processing remains unexplored. Methods Using [11C]flumazenil PET, we investigated the relationship between the binding potential of GABAA receptors and emotion processing as measured using simultaneous fMRI BOLD. We hypothesized a correlation between the percent signal change in the BOLD signal and the binding potential of GABAA receptors in the MPFC. In a combined simultaneous fMRI and [11C]flumazenil-PET study, we analyzed the data from 15 healthy subjects using visual emotional stimuli. Our task comprised two types of emotional processing: passive viewing and appraisal. Following the administration of a bolus plus infusion protocol, PET and fMRI data were simultaneously acquired in a hybrid 3 T MR-BrainPET. Results We found a differential correlation of BOLD percent signal change with [11C]flumazenil binding potential in the MPFC. Specifically, [11C]flumazenil binding potential in the ventromedial prefrontal cortex (vMPFC) correlated with passive viewing of emotionally valenced pictures. In contrast, the [11C]flumazenil binding potential and the BOLD signal induced by picture appraisal did show a correlation in the paracingulate gyrus. Conclusion Our data deliver first evidence for a relationship between MPFC GABAA receptors and emotion processing in the same region. Moreover, we observed that GABAA receptors appear to play different roles in emotion processing in the vMPFC (passive viewing) and paracingulate gyrus (appraisal).
Collapse
Affiliation(s)
- Alexander Heinzel
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Nuclear Medicine, Medical Faculty RWTH Aachen, Aachen, Germany
- Department of Nuclear medicine, University Hospital Halle, Halle (Saale), Germany
| | - Jörg Mauler
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Hans Herzog
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Frank Boers
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, Medical Faculty RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Nuclear Medicine, Medical Faculty RWTH Aachen, Aachen, Germany
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine – 5, Forschungszentrum Jülich, Jülich, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, ON, Canada
| | - N. Jon Shah
- Institute of Neuroscience and Medicine – 4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine – 11, Forschungszentrum Jülich, Jülich, Germany
- JARA – BRAIN – Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Dorofeikova M, Stelly CE, Duong A, Basavanhalli S, Bean E, Weissmuller K, Sifnugel N, Resendez A, Corey DM, Tasker JG, Fadok JP. The Role of Genetically Distinct Central Amygdala Neurons in Appetitive and Aversive Responding Assayed with a Novel Dual Valence Operant Conditioning Paradigm. eNeuro 2023; 10:ENEURO.0319-22.2023. [PMID: 37640541 PMCID: PMC10488222 DOI: 10.1523/eneuro.0319-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Jikomes et al., 2016; Heinz et al., 2017), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nose poke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within-subject and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Wilensky et al., 2006; Haubensak et al., 2010) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Sinha, 2008; Bolton et al., 2009). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - Claire E Stelly
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Anh Duong
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | | | - Erin Bean
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | | | - Natalia Sifnugel
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - David M Corey
- Department of Psychology, Tulane University, New Orleans, LA 70118
| | - Jeffrey G Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
4
|
Starski PA, De Oliveira Sergio T, Hopf FW. Using lickometry to infer differential contributions of salience network regions during compulsion-like alcohol drinking. ADDICTION NEUROSCIENCE 2023; 7:100102. [PMID: 38736902 PMCID: PMC11086682 DOI: 10.1016/j.addicn.2023.100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Alcohol use disorder extracts substantial personal, social and clinical costs, and continued intake despite negative consequences (compulsion-like consumption) can contribute strongly. Here we discuss lickometry, a simple method where lick times are determined across a session, while analysis across many aspects of licking can offer important insights into underlying psychological and action strategies, including their brain mechanisms. We first describe studies implicating anterior insula (AIC) and dorsal medial prefrontal cortex (dMPF) in compulsion-like responding for alcohol, then review work suggesting that AIC/ventral frontal cortex versus dMPF regulate different aspects of behavior (oral control and overall response strategy, versus moment-to-moment action organization). We then detail our lickometer work comparing alcohol-only drinking (AOD) and compulsion-like drinking under moderate- or higher-challenge (ModChD or HiChD, using quinine-alcohol). Many studies have suggested utilization of one of two main strategies, with higher motivation indicated by more bouts, and greater palatability suggested by longer, faster bouts. Instead, ModChD shows decreased variability in many lick measures, which is unexpected but consistent with the suggested importance of automaticity for addiction. Also surprising is that HiChD retains several behavior changes seen with ModChD, reduced tongue variability and earlier bout start, even though intake is otherwise disrupted. Since AIC-related measures are retained under both moderate- and higher-challenge, we propose a novel hypothesis that AIC sustains overall commitment regardless of challenge level, while disordered licking during HiChD mirrors the effects of dMPF inhibition. Thus, while AIC provides overall drive despite challenge, the ability to act is ultimately determined within the dMPF.
Collapse
Affiliation(s)
- Phillip A. Starski
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
| | | | - Frederic W. Hopf
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
- Stark Neurosciences Research Institute, Indianapolis IN, USA
| |
Collapse
|
5
|
Dorofeikova M, Stelly CE, Duong A, Basavanhalli S, Bean E, Weissmuller K, Sifnugel N, Resendez A, Corey DM, Tasker JG, Fadok JP. The role of genetically distinct central amygdala neurons in appetitive and aversive responding assayed with a novel dual valence operant conditioning paradigm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547979. [PMID: 37461627 PMCID: PMC10350072 DOI: 10.1101/2023.07.07.547979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Heinz et al., 2017; Jikomes et al., 2016), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nosepoke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within- and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Haubensak et al., 2010; Wilensky et al., 2006) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Bolton et al., 2009; Sinha, 2008). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences. Significance Statement It is unclear how different neuronal populations contribute to reward- and aversion-driven behaviors within a subject. To address this question, we developed a novel behavioral paradigm in which mice obtain food and avoid footshocks via the same operant response. We then use this paradigm to test how the central amygdala coordinates appetitive and aversive behavioral responses. By testing somatostatin-IRES-Cre and CRF-IRES-Cre transgenic lines, we found significant differences between strains on task acquisition and performance. Using chemogenetics, we demonstrate that CeA SOM+ neurons regulate motivation for reward, while manipulation of CeA CRF+ neurons had no effect on task performance. Future studies investigating the interaction between positive and negative motivation circuits should benefit from the use of this dual valence paradigm.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E. Stelly
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Anh Duong
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | - Erin Bean
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | - Natalia Sifnugel
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - David M. Corey
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jonathan P. Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
6
|
Murty DVPS, Song S, Surampudi SG, Pessoa L. Threat and Reward Imminence Processing in the Human Brain. J Neurosci 2023; 43:2973-2987. [PMID: 36927571 PMCID: PMC10124955 DOI: 10.1523/jneurosci.1778-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. In addition, the extent to which aversive-related and appetitive-related processing engage distinct or overlapping circuits remains poorly understood. Here, we sought to investigate the dynamics of aversive and appetitive processing while male and female participants engaged in comparable trials involving threat avoidance or reward seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence. For example, in the aversive domain, we predicted that the bed nucleus of the stria terminalis (BST), but not the amygdala, would exhibit anticipatory responses given the role of the former in anxious apprehension. We also predicted that the periaqueductal gray (PAG) would exhibit threat-proximity responses based on its involvement in proximal-threat processes, and that the ventral striatum would exhibit threat-imminence responses given its role in threat escape in rodents. Overall, we uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the BST, PAG, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Whereas the ventral striatum generated anticipatory responses in the proximity of reward as expected, it also exhibited threat-related imminence responses. In fact, across multiple brain regions, we observed a main effect of arousal. In other words, we uncovered extensive temporally evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information regardless of valence, findings further supported by network analysis.SIGNIFICANCE STATEMENT In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. Here, we sought to investigate the dynamics of aversive/appetitive processing while participants engaged in trials involving threat avoidance or reward seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence. We uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the bed nucleus of the stria terminalis, periaqueductal gray, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Overall, we uncovered extensive temporally evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information regardless of valence.
Collapse
Affiliation(s)
| | - Songtao Song
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
7
|
Arioli M, Basso G, Baud-Bovy G, Mattioni L, Poggi P, Canessa N. Neural bases of loss aversion when choosing for oneself versus known or unknown others. Cereb Cortex 2023:7030624. [PMID: 36748997 DOI: 10.1093/cercor/bhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Despite the ubiquitous interdependence between one's own decisions and others' welfare, and the controversial evidence on the behavioral effect of choosing for others, the neural bases of making decisions for another versus oneself remain unexplored. We investigated whether loss aversion (LA; the tendency to avoid losses over approaching equivalent gains) is modulated by (i) choosing for oneself, other individuals, or both; (ii) knowing or not knowing the other recipients; or (iii) an interaction between these factors. We used fMRI to assess the brain activations associated with choosing whether to accept or reject mixed gambles, either for oneself, for another player, or both, in 2 groups of 28 participants who had or had not briefly interacted with the other players before scanning. Participants displayed higher LA for choices involving their payoff compared with those affecting only the payoff of other, known, players. This "social" modulation of decision-making was found to engage the dorsomedial prefrontal cortex and its inhibitory connectivity to the middle cingulate cortex. This pattern might underpin decision-making for known others via self-other distinction processes associated with dorsomedial prefrontal areas, with this in turn promoting the inhibition of socially oriented responses through the downregulation of the midcingulate node of the empathy network.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino 2, Bergamo 24129, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza (MB) 20900, Italy
| | - Gabriel Baud-Bovy
- Robotics, Brain and Cognitive Sciences Unit, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, Milan 20132, Italy
| | - Lorenzo Mattioni
- Scuola Universitaria Superiore IUSS, IUSS Cognitive Neuroscience (ICoN) Center, Piazza della Vittoria 15, Pavia 27100, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Via Maugeri 10, Pavia 27100, Italy
| | - Paolo Poggi
- Istituti Clinici Scientifici Maugeri IRCCS, Radiology Unit of Pavia Institute, Via Maugeri 10, Pavia 27100, Italy
| | - Nicola Canessa
- Scuola Universitaria Superiore IUSS, IUSS Cognitive Neuroscience (ICoN) Center, Piazza della Vittoria 15, Pavia 27100, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Via Maugeri 10, Pavia 27100, Italy
| |
Collapse
|
8
|
Murty DVPS, Song S, Surampudi SG, Pessoa L. Threat and reward imminence processing in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524987. [PMID: 36711746 PMCID: PMC9882302 DOI: 10.1101/2023.01.20.524987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. In addition, the extent to which aversive- and appetitive-related processing engage distinct or overlapping circuits remains poorly understood. Here, we sought to investigate the dynamics of aversive and appetitive processing while male and female participants engaged in comparable trials involving threat-avoidance or reward-seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence . For example, in the aversive domain, we predicted that the bed nucleus of the stria terminalis (BST), but not the amygdala, would exhibit anticipatory responses given the role of the former in anxious apprehension. We also predicted that the periaqueductal gray (PAG) would exhibit threat-proximity responses based on its involvement in proximal-threat processes, and that the ventral striatum would exhibit threat-imminence responses given its role in threat escape in rodents. Overall, we uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the BST, PAG, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Whereas the ventral striatum generated anticipatory responses in the proximity of reward as expected, it also exhibited threat-related imminence responses. In fact, across multiple brain regions, we observed a main effect of arousal. In other words, we uncovered extensive temporally-evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information irrespective of valence, findings further supported by network analysis. Significance Statement In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. Here, we sought to investigate the dynamics of aversive/appetitive processing while participants engaged in trials involving threat-avoidance or reward-seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence . We uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the bed nucleus of the stria terminalis, periaqueductal gray, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Overall, we uncovered extensive temporally-evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information irrespective of valence.
Collapse
|
9
|
Frot M, Mauguière F, Garcia-Larrea L. Insular Dichotomy in the Implicit Detection of Emotions in Human Faces. Cereb Cortex 2022; 32:4215-4228. [PMID: 35029677 DOI: 10.1093/cercor/bhab477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
The functional roles of the insula diverge between its posterior portion (PI), mainly connected with somato-sensory and motor areas, and its anterior section (AI) connected with the frontal, limbic, and cingulate regions. We report intracranial recordings of local field evoked potentials from PI, AI, and the visual fusiform gyrus to a full array of emotional faces including pain while the individuals' attention was diverted from emotions. The fusiform gyrus and PI responded equally to all types of faces, including neutrals. Conversely, the AI responded only to emotional faces, maximally to pain and fear, while remaining insensitive to neutrals. The two insular sectors reacted with almost identical latency suggesting their parallel initial activation via distinct functional routes. The consistent responses to all emotions, together with the absence of response to neutral faces, suggest that early responses in the AI reflect the immediate arousal value and behavioral relevance of emotional stimuli, which may be subserved by "fast track" routes conveying coarse-spatial-frequency information via the superior colliculus and dorsal pulvinar. Such responses precede the conscious detection of the stimulus' precise signification and valence, which need network interaction and information exchange with other brain areas, for which the AI is an essentialhub.
Collapse
Affiliation(s)
- Maud Frot
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron 69677, France
| | - François Mauguière
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron 69677, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron 69677, France
- Centre d'Evaluation et de Traitement de la Douleur, Hospices Civils de Lyon, Lyon 69003, France
| |
Collapse
|
10
|
Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021; 125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress has been made in understanding the behavioral and brain mechanisms for motivational systems, much less is known about competition between motivational states or motivational conflict (e.g., approach - avoidance conflict). Despite being produced under diverse conditions, behavior during motivational competition has two signatures: bistability and metastability. These signatures reveal the operation of positive feedback mechanisms in behavioral selection. Different neuronal architectures can instantiate this selection to achieve bistability and metastability in behavior, but each relies on circuit-level inhibition to achieve rapid and stable selection between competing tendencies. Paraventricular thalamus (PVT) is identified as critical to this circuit level inhibition, resolving motivational competition via its extensive projections to local inhibitory networks in the ventral striatum and extended amygdala, enabling adaptive responding under motivational conflict.
Collapse
|
11
|
Wang KS, Delgado MR. The Protective Effects of Perceived Control During Repeated Exposure to Aversive Stimuli. Front Neurosci 2021; 15:625816. [PMID: 33613186 PMCID: PMC7887306 DOI: 10.3389/fnins.2021.625816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
The ability to perceive and exercise control is a major contributor to our mental and physical wellbeing. When faced with uncontrollable aversive stimuli, organisms develop heightened anxiety and become unwilling to exert effort to avoid the stimuli. In contrast, when faced with controllable aversive stimuli, organisms demonstrate behavioral vigor via avoidance attempts toward trying to seek and exercise control over the environment. As such, controllability confers protective effects against reduced avoidance motivation trigged by aversive environments. These observations beg the question of whether controllability can be potent enough to reverse passivity following repeated exposure to uncontrollable aversive stimuli and how this protective effect is encoded neurally. Human participants performed a Control in Aversive Domain (CAD) task where they were first subjected to a series of repeated uncontrollable aversive stimuli (i.e., aversive tones) across several contexts that were followed by a series of controllable aversive stimuli in a novel context. Faced with persistent uncontrollability, participants significantly reduced their avoidance attempts over time and biased toward giving up. However, the subsequent presence of controllability rescued participants' avoidance behavior. Strikingly, participants who responded more strongly to the protective effects of control also had greater ventromedial prefrontal cortical (vmPFC) activation-a region previously observed to be associated with encoding the subjective value of control. Taken together, these findings highlighted the protective effect conferred by perceived control against passivity and offered insights into the potential role of the vmPFC in controllable environments, with implications for understanding the beneficial influence of perceived control on adaptive behavior.
Collapse
Affiliation(s)
- Kainan S. Wang
- McLean Imaging Center, McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
12
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
13
|
Du Y, Wang Y, Yu M, Tian X, Liu J. Resting-State Functional Connectivity of the Punishment Network Associated With Conformity. Front Behav Neurosci 2021; 14:617402. [PMID: 33390913 PMCID: PMC7772235 DOI: 10.3389/fnbeh.2020.617402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Fear of punishment prompts individuals to conform. However, why some people are more inclined than others to conform despite being unaware of any obvious punishment remains unclear, which means the dispositional determinants of individual differences in conformity propensity are poorly understood. Here, we explored whether such individual differences might be explained by individuals' stable neural markers to potential punishment. To do this, we first defined the punishment network (PN) by combining all potential brain regions involved in punishment processing. We subsequently used a voxel-based global brain connectivity (GBC) method based on resting-state functional connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-network connectivity (WNC) of each voxel in the PN of 264 participants to explain their tendency to conform by using a conformity scale. We found that a stronger WNC in the right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-phase ascending pathway, contributing to conformity propensity at every phase. Thus, our results suggest that task-independent spontaneous connectivity in the PN could predispose individuals to conform.
Collapse
Affiliation(s)
- Yin Du
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yinan Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengxia Yu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xue Tian
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Kaminska B, Caballero JP, Moorman DE. Integration of value and action in medial prefrontal neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:57-82. [PMID: 33785156 DOI: 10.1016/bs.irn.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rodent medial prefrontal cortex (mPFC) plays a key role in regulating cognition, emotion, and behavior. mPFC neurons are activated in diverse experimental paradigms, raising the questions of whether there are specific task elements or dimensions encoded by mPFC neurons, and whether these encoded parameters are selective to neurons in particular mPFC subregions or networks. Here, we consider the role of mPFC neurons in processing appetitive and aversive cues, outcomes, and related behaviors. mPFC neurons are strongly activated in tasks probing value and outcome-associated actions, but these responses vary across experimental paradigms. Can we identify specific categories of responses (e.g., positive or negative value), or do mPFC neurons exhibit response properties that are too heterogeneous/complex to cluster into distinct conceptual groups? Based on a review of relevant studies, we consider what has been done and what needs to be further explored in order to address these questions.
Collapse
Affiliation(s)
- Beata Kaminska
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica P Caballero
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States; Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
15
|
Ide JS, Li HT, Chen Y, Le TM, Li CSP, Zhornitsky S, Li CSR. Gray matter volumetric correlates of behavioral activation and inhibition system traits in children: An exploratory voxel-based morphometry study of the ABCD project data. Neuroimage 2020; 220:117085. [PMID: 32592852 DOI: 10.1016/j.neuroimage.2020.117085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022] Open
Abstract
Approach and avoidance represent two fundamental behavioral traits that develop early in life. Previous studies have examined the neural correlates of approach and avoidance traits in adults and adolescents. Here, using the data set of the Adolescent Brain Cognition Development project, we investigated the structural cerebral bases of behavioral activation system (BAS) and behavioral inhibition system (BIS) in children. We employed voxel-based morphometry to examine how gray matter volumes (GMV) related specifically to BAS and BIS traits in 11,542 children (5491 girls, age 9-10 years) with 648 and 2697 identified as monozygotic twins (MZ) and dizygotic twins/siblings (DZ), respectively. After accounting for the BIS score, higher BAS scores (residuals) were positively correlated with the GMV of the ventral striatum (VS), and the correlation was stronger in MZ than in DZ and unrelated children, with a heritability (h2) of 0.8463. Higher BAS scores were negatively correlated with the GMV of bilateral visual, lateral orbitofrontal, temporal, and inferior frontal cortex, as well as the precuneus. Higher BIS (after accounting for BAS) scores were negatively correlated with the GMVs of the ventral caudate and bilateral putamen/pallidum, hypothalamus, and right anterior insula, and the correlation was stronger in MZ than in DZ and unrelated children, with a heritability of 0.8848. A cluster in the VS showed positive and negative correlation with the BAS and BIS scores, respectively. These findings suggest shared and distinct cerebral volumetric bases of the BAS and BIS traits in children. Whereas both traits have a strong genetic basis, the BAS relative to BIS appears to be more amenable to environmental influences. These findings add to the literature of developmental neuroscience and may help identify genetic risk factors of externalizing and internalizing psychopathology.
Collapse
Affiliation(s)
- Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Huey-Ting Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA; Choate Rosemary Hall, Wallingford, CT, 06492, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Clara S P Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA; Smith College, Northampton, MA, 06492, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
Reward network connectivity "at rest" is associated with reward sensitivity in healthy adults: A resting-state fMRI study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:726-736. [PMID: 30680664 DOI: 10.3758/s13415-019-00688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The behavioral approach system (BAS), based on reinforcement sensitivity theory (RST), is a neurobehavioral system responsible for detecting and promoting motivated behaviors towards appetitive stimuli. Anatomically, the frontostriatal system has been proposed as the core of the BAS, mainly the ventral tegmental area and the ventral striatum and their dopaminergic connections with medial prefrontal structures. The RST also proposes the personality trait of reward sensitivity as a measurable construct of stable individual differences in BAS activity. However, the relationship between this trait and brain connectivity "at rest" has been poorly studied, mainly because previous investigations have focused on studying brain activity under reward-related contingency paradigms. Here, we analyzed the influence of reward sensitivity on the resting-state functional connectivity (rs-FC) between BAS-related areas by correlating the BOLD time series with the scores on the Sensitivity to Reward (SR) scale in a sample of 89 healthy young adults. Rs-FC between regions of interest were all significant. Results also revealed a positive association between SR scores and the rs-FC between the VTA and the ventromedial prefrontal cortex, and between the latter structure and the anterior cingulate cortex. These results suggest that reward sensitivity could be associated with different resting-state activity in the mesocortical pathway.
Collapse
|
17
|
Endendijk JJ, Bos PA, Smit AK, van Baar AL. Pictures of preterm infants elicit increased affective responses and reduced reward-motivation or perspective taking in the maternal brain. Behav Brain Res 2020; 390:112677. [PMID: 32407823 DOI: 10.1016/j.bbr.2020.112677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/01/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Preterm-birth increases the risk of several physical, cognitive, neuromotor, and psychosocial problems in children, and is also related to difficulties in the parent-child relationship. Research suggests that the development of early parent-child interactions in general is affected by deviations from typical infant facial characteristics, which may also be important in the case of small, preterm born infants. Therefore, we examined mothers' (N = 22, of whom 17 had no direct experience with preterm birth) neural responses to pictures of preterm and full-term infants using functional magnetic resonance imaging (fMRI). We also explored whether neural responses to preterm and full-term infants correlated with mothers' self-reported tendencies to be nurturing and protective with children, and with mothers' ratings of affection or aversion toward pictures of preterm infants. Results revealed that, compared to pictures of full-term infants, those of preterm infants elicited more activity in specific areas of the brain (dmPFC, right insula, left caudate, hippocampi, parahippocampi, and PAG), that have previously been associated with processing of negative emotions and with empathy. In addition, less activity was seen in one area of the brain (vmPFC) known to be associated with reward-motivation or mental state understanding and perspective-taking. Higher self-reported maternal nurturance was associated with increased activity to pictures of preterm infants vs full-term infants in the caudate, which might reflect approach- or reward-related processing. To conclude, neural responses to preterm infants are related to reward-motivation, mentalizing, negative emotions, and empathy. Future studies should examine whether such neural processing of preterm infant stimuli might underlie difficulties in the parent-child relationship of parents with a preterm child.
Collapse
Affiliation(s)
- Joyce J Endendijk
- Child and Adolescent Studies, Utrecht University, Heidelberglaan 1, 3548 CS Utrecht, the Netherlands.
| | - Peter A Bos
- Institute of Education and Child Studies, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, the Netherlands; Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3548 CS Utrecht, the Netherlands
| | - Anne K Smit
- Department of Child and Adolescent Psychiatry, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Anneloes L van Baar
- Child and Adolescent Studies, Utrecht University, Heidelberglaan 1, 3548 CS Utrecht, the Netherlands
| |
Collapse
|
18
|
Biased belief updating and suboptimal choice in foraging decisions. Nat Commun 2020; 11:3417. [PMID: 32647271 PMCID: PMC7347922 DOI: 10.1038/s41467-020-16964-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/27/2020] [Indexed: 11/08/2022] Open
Abstract
Deciding which options to engage, and which to forego, requires developing accurate beliefs about the overall distribution of prospects. Here we adapt a classic prey selection task from foraging theory to examine how individuals keep track of an environment’s reward rate and adjust choices in response to its fluctuations. Preference shifts were most pronounced when the environment improved compared to when it deteriorated. This is best explained by a trial-by-trial learning model in which participants estimate the reward rate with upward vs. downward changes controlled by separate learning rates. A failure to adjust expectations sufficiently when an environment becomes worse leads to suboptimal choices: options that are valuable given the environmental conditions are rejected in the false expectation that better options will materialize. These findings offer a previously unappreciated parallel in the serial choice setting of observations of asymmetric updating and resulting biased (often overoptimistic) estimates in other domains. In some types of decision-making, people must accept or forego an option without knowing what prospects might later be available. Here, the authors reveal how a key bias– asymmetric learning from negative versus positive outcomes – emerges in this type of decision.
Collapse
|
19
|
Adrián-Ventura J, Costumero V, Parcet MA, Ávila C. Linking personality and brain anatomy: a structural MRI approach to Reinforcement Sensitivity Theory. Soc Cogn Affect Neurosci 2020; 14:329-338. [PMID: 30753654 PMCID: PMC6399605 DOI: 10.1093/scan/nsz011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Reinforcement Sensitivity Theory (RST) proposes a widely used taxonomy of human personality linked to individual differences at both behavioral and neuropsychological levels that describe a predisposition to psychopathology. However, the body of RST research was based on animal findings, and little is known about their anatomical correspondence in humans. Here we set out to investigate MRI structural correlates (i.e. voxel-based morphometry) of the main personality dimensions proposed by the RST in a group of 400 healthy young adults who completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). Sensitivity to punishment scores correlated positively with the gray matter volume in the amygdala, whereas sensitivity to reward scores correlated negatively with the volume in the left lateral and medial prefrontal cortex. Moreover, a negative relationship was found between the striatal volume and the reward sensitivity trait, but only for male participants. The present results support the neuropsychological basis of the RST by linking punishment and reward sensitivity to anatomical differences in limbic and frontostriatal regions, respectively. These results are interpreted based on previous literature related to externalizing and internalizing disorders, and they highlight the possible role of SPSRQ as a measure of proneness to these disorders.
Collapse
Affiliation(s)
- Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain
| | - Víctor Costumero
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain.,Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain.,ERI Lectura, University of Valencia, Valencia, Spain
| | - Maria Antònia Parcet
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain
| |
Collapse
|
20
|
Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation. Brain Struct Funct 2019; 225:345-363. [PMID: 31863185 DOI: 10.1007/s00429-019-02007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023]
Abstract
Anatomically interconnected, the ventromedial prefrontal cortex (vmPFC) and amygdala interact in emotion processing. However, no meta-analyses have focused on studies that reported concurrent vmPFC and amygdala activities. With activation likelihood estimation (ALE) we examined 100 experiments that reported concurrent vmPFC and amygdala activities, and distinguished responses to positive vs. negative emotions and to passive exposure to vs. active regulation of emotions. We also investigated whole-brain experiments for other regional activities. ALE and contrast analyses identified convergent anterior and posterior vmPFC response to passive positive and negative emotions, respectively, and a subregion in between to mixed emotions. A smaller area in the posterior ventral vmPFC is specifically involved in regulation of negative emotion. Whereas bilateral amygdala was involved during emotional exposure, only the left amygdala showed convergent activities during active regulation of negative emotions. Whole-brain analysis showed convergent activity in left ventral striatum for passive exposure to positive emotions and downregulation of negative emotions, and in the posterior cingulate cortex and ventral precuneus for passive exposure to negative emotions. These findings highlight contrasting, valence-specific subregional vmPFC as well as other regional responses during passive exposure to emotions. The findings also suggest that hyperactivation of the vmPFC is associated with diminished right amygdala activities during regulation of negative emotions. Together, the findings extend the literature by specifying the roles of subregional vmPFC and amygdala activities in emotion processing.
Collapse
|
21
|
Altered anticipation and processing of aversive interoceptive experience among women remitted from bulimia nervosa. Neuropsychopharmacology 2019; 44:1265-1273. [PMID: 30840983 PMCID: PMC6785154 DOI: 10.1038/s41386-019-0361-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 11/08/2022]
Abstract
Bulimia nervosa (BN) is characterized by dysregulated intake of food, which may indicate homeostatic imbalance. Critically important for homeostatic regulation is interoception, or the sensing and processing of body-relevant information. A well-documented link between avoidance of unpleasant body sensations and BN symptoms suggests that aversive interoceptive experiences may be particularly relevant to BN pathophysiology. This study examined whether individuals with a history of BN show aberrant neural processing of aversive interoceptive stimuli. Using a cued inspiratory breathing load paradigm, we compared women remitted from BN (RBN; n = 24; to reduce the confounding effects of active bulimic symptoms) and control women (CW; n = 25). During breathing load anticipation, the RBN group, relative to CW, showed increased activation in mid-insula, superior frontal gyrus, putamen, dorsal anterior cingulate, posterior cingulate, and amygdala. However, over the course of the aversive experience, neural activation in RBN relative to CW showed an aberrant decline in most of these regions. Exploratory analyses indicated that greater activation during breathing load anticipation was associated with past bulimic symptom severity and the duration of symptom remission. An exaggerated anticipatory response and an abnormally decreasing response during aversive homeostatic perturbations may promote hallmark bulimic behaviors-binge eating, dietary restriction, and purging. Our findings support a role for homeostatic instability in BN, and these altered patterns of brain activation may serve as novel targets for pharmacological, neuromodulatory, and behavioral interventions.
Collapse
|
22
|
Gerber B, König C, Fendt M, Andreatta M, Romanos M, Pauli P, Yarali A. Timing-dependent valence reversal: a principle of reinforcement processing and its possible implications. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
The impact of successful learning of self-regulation on reward processing in children with ADHD using fMRI. ATTENTION DEFICIT AND HYPERACTIVITY DISORDERS 2019; 11:31-45. [PMID: 30225805 DOI: 10.1007/s12402-018-0269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Neurofeedback (NF) is a non-pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) that is targeting self-regulation, is efficacious when standard protocols are used and induces partly specific neurophysiological changes in the inhibitory network. However, its effects on reward processing, which is also considered an important aspect of ADHD and has been linked to neurophysiological deficits, remain unknown. Children with ADHD (N = 15, mean age 11.8, SD 1.52) were randomly assigned to either slow cortical potential NF (n = 8) or EMG biofeedback control training (n = 7) and received 20 sessions of training under comparable conditions. Learning was defined as the slope of successful training runs across all transfer sessions. Whole brain analysis, region-of-interest analysis of anticipatory ventral striatal (VS) activation, and analysis of behavioral data were performed. Clinically, the NF group improved more than the EMG group. Whole brain analysis indicated increased activation in the left superior frontal gyrus in the control group only, and in medial prefrontal cortex and dorsolateral prefrontal gyrus (DLPFC) after treatment across all groups. Only successful learners of self-regulation (n = 8) showed increased left inferior frontal gyrus and DLPFC activation after treatment. Left VS activation was increased after treatment and showed a significant time*medication-status interaction. Specific treatment effects were found in left frontal regions for the control treatment and successful learners. Also, unmedicated participants, irrespective of treatment type or successful learning, showed treatment-induced improvement in reward processing. The results suggest no prominent specific effect of NF on reward processing. However, cautious interpretation is warranted due to the small sample.
Collapse
|
24
|
Lieberman MD, Straccia MA, Meyer ML, Du M, Tan KM. Social, self, (situational), and affective processes in medial prefrontal cortex (MPFC): Causal, multivariate, and reverse inference evidence. Neurosci Biobehav Rev 2019; 99:311-328. [PMID: 30610911 DOI: 10.1016/j.neubiorev.2018.12.021] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/20/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
The medial prefrontal cortex (MPFC) has been posited to serve a variety of social, affective, and cognitive functions. These conclusions have largely been driven by forward inference analyses (e.g. GLM fMRI studies and meta-analyses) that indicate where domain-specific tasks tend to produce activity but tell us little about what those regions do. Here, we take a multi-method, multi-domain approach to the functionality of MPFC subdivisions within Brodmann areas 9-11. We consider four methods that each have reverse inference or causal inference value: lesion work, transcranial magnetic stimulation, multivariate pattern analysis, and Neurosynth analyses. The Neurosynth analyses include multi-term reverse inference analyses that compare several domains of interest to one another at once. We examine the evidence supporting structure-function links in five domains: social cognition, self, value, emotional experience, and mental time travel. The evidence is considered for each of three MPFC subdivisions: dorsomedial prefrontal cortex (DMPFC), anteromedial prefrontal cortex (AMPFC), and ventromedial prefrontal cortex (VMPFC). Although there is evidentiary variability across methods, the results suggest that social processes are functionally linked to DMPFC (and somewhat surprisingly in VMPFC), self processes are linked to AMPFC, and affective processes are linked to AMPFC and VMPFC. There is also a relatively non-selective region of VMPFC that may support situational processing, a process key to each domain, but also independent of each.
Collapse
Affiliation(s)
- Matthew D Lieberman
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States.
| | - Mark A Straccia
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States
| | - Meghan L Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Meng Du
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States
| | - Kevin M Tan
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States
| |
Collapse
|
25
|
Dalenberg JR, Weitkamp L, Renken RJ, ter Horst GJ. Valence processing differs across stimulus modalities. Neuroimage 2018; 183:734-744. [DOI: 10.1016/j.neuroimage.2018.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
|
26
|
Karle KN, Ethofer T, Jacob H, Brück C, Erb M, Lotze M, Nizielski S, Schütz A, Wildgruber D, Kreifelts B. Neurobiological correlates of emotional intelligence in voice and face perception networks. Soc Cogn Affect Neurosci 2018; 13:233-244. [PMID: 29365199 PMCID: PMC5827352 DOI: 10.1093/scan/nsy001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/07/2018] [Indexed: 01/27/2023] Open
Abstract
Facial expressions and voice modulations are among the most important communicational signals to convey emotional information. The ability to correctly interpret this information is highly relevant for successful social interaction and represents an integral component of emotional competencies that have been conceptualized under the term emotional intelligence. Here, we investigated the relationship of emotional intelligence as measured with the Salovey-Caruso-Emotional-Intelligence-Test (MSCEIT) with cerebral voice and face processing using functional and structural magnetic resonance imaging. MSCEIT scores were positively correlated with increased voice-sensitivity and gray matter volume of the insula accompanied by voice-sensitivity enhanced connectivity between the insula and the temporal voice area, indicating generally increased salience of voices. Conversely, in the face processing system, higher MSCEIT scores were associated with decreased face-sensitivity and gray matter volume of the fusiform face area. Taken together, these findings point to an alteration in the balance of cerebral voice and face processing systems in the form of an attenuated face-vs-voice bias as one potential factor underpinning emotional intelligence.
Collapse
Affiliation(s)
- Kathrin N Karle
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Heike Jacob
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Brück
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Erb
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Martin Lotze
- Functional Imaging Group, Department for Diagnostic Radiology and Neuroradiology, University of Greifswald, 17475 Greifswald, Germany
| | - Sophia Nizielski
- Department of Psychology, Technical University Chemnitz, 09111 Chemnitz, Germany
| | - Astrid Schütz
- Department of Psychology, University of Bamberg, 96045 Bamberg, Germany
| | - Dirk Wildgruber
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Hangen EJ, Elliot AJ, Jamieson JP. Lay conceptions of norm-based approach and avoidance motivation: Implications for the performance-approach and performance-avoidance goal relation. J Pers 2018; 87:737-749. [PMID: 30230550 DOI: 10.1111/jopy.12429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/27/2017] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Performance-approach goals and performance-avoidance goals are conceptually distinct, but they are often moderately or even highly positively correlated. The present research examines lay conceptions of approach and avoidance motivation as a moderator of this intergoal relation. METHOD Study 1 (N = 281) assessed whether participants considered norm-based approach motivation as being the same or different from norm-based avoidance motivation and tested these conceptions as a moderator of the performance goal correlation. Study 2 (N = 990) measured and experimentally manipulated lay conceptions. RESULTS In both studies, individuals who viewed approach and avoidance motivation as different exhibited a smaller performance goal correlation and lower performance-based goal adoption than those who viewed approach and avoidance goals as the same. Findings from experimentally manipulated conceptions provided further clarity regarding the precise nature of the relations and mean differences observed. Specifically, moderation was driven by the different condition (where the differences between approach and avoidance were highlighted). CONCLUSIONS This research sheds light on the nature and magnitude of the focal performance-based goal correlation and highlights the value of attending to lay conceptions of approach and avoidance motivation as well as lay conceptions of ability.
Collapse
Affiliation(s)
- Emily J Hangen
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, New York
| | - Andrew J Elliot
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, New York
| | - Jeremy P Jamieson
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, New York
| |
Collapse
|
28
|
Zebrowitz LA, Boshyan J, Ward N, Hanlin L, Wolf JM, Hadjikhani N. Dietary dopamine depletion blunts reward network sensitivity to face trustworthiness. J Psychopharmacol 2018; 32:965-978. [PMID: 29620428 DOI: 10.1177/0269881118758303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Research demonstrating responsiveness of the neural reward network to face trustworthiness has not assessed whether the effects are mediated by dopaminergic function. We filled this gap in the literature by investigating whether dietary dopamine depletion would blunt the sensitivity of neural activation to faces varying in trustworthiness across reward regions as well as the sensitivity of behavioral responses to those faces. As prolactin release is negatively regulated by dopamine, peripheral prolactin levels confirmed the efficacy of our manipulation. The dopamine depletion manipulation moderated neural activation to face trustworthiness in the amygdala, medial orbital frontal cortex, and ventral medial prefrontal cortex. Control participants ( n=20) showed nonlinear and linear neural activation to face trustworthiness in the amygdala and ventral medial prefrontal cortex, and nonlinear activation in the medial orbital frontal cortex, while depleted participants ( n=20) showed only a linear effect in the amygdala. Controls also showed stronger amygdala activation to high trustworthy faces than depleted participants. In contrast to effects on neural activation, dopamine depletion did not blunt the sensitivity of behavioral ratings. While this is the first study to demonstrate that dopamine depletion blunts the sensitivity of the neural reward system to social stimuli, namely faces varying in trustworthiness, future research should investigate behavioral measures that may be more responsive to dopaminergic effects than face ratings. Such research would shed further light on the possibility that individual differences in dopaminergic function that were simulated by our manipulation influence social interactions with people who vary in facial trustworthiness.
Collapse
Affiliation(s)
| | - Jasmine Boshyan
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA.,3 Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Noreen Ward
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Luke Hanlin
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Jutta M Wolf
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Nouchine Hadjikhani
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA.,4 Gillberg Neuropsychiatry Center, University of Gothenburg, Sweden
| |
Collapse
|
29
|
The relationship between responsiveness to social and monetary rewards and ADHD symptoms. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:857-868. [PMID: 29943173 DOI: 10.3758/s13415-018-0609-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alterations in reward processing are frequently reported in attention deficit hyperactivity disorder (ADHD). One important factor affecting reward processing is the quality of reward as social and monetary rewards are processed by different neural networks. However, the effect of reward type on reward processing in ADHD has not been extensively studied. Hence, in the current study, an exploratory research was conducted to investigate the effect of reward type (i.e., social or monetary) on different phases of reward processing. We recorded event-related potentials (ERPs) during a spatial attention paradigm in which cues heralded availability and type of the upcoming reward and feedbacks informed about the reward earned. Thirty-nine (19 males) healthy individuals (age range: 19-27 years) participated in the study. ADHD symptoms were assessed by using ADHD self-report scale (ASRS). Our results revealed a consistent negative correlation between the hyperactivity subscale of ASRS and almost all social-feedback related ERPs (P2, P3, and FRN). ERP amplitudes after social feedbacks were less positive for P2 and P3 and more negative for FRN for individuals with greater hyperactivity levels. Our findings suggest that hyporesponsiveness to social feedbacks may be associated with hyperactivity. However, the results have to be confirmed with clinical populations.
Collapse
|
30
|
Fradkin Y, Khadka S, Bessette KL, Stevens MC. The relationship of impulsivity and cortical thickness in depressed and non-depressed adolescents. Brain Imaging Behav 2018; 11:1515-1525. [PMID: 27738995 DOI: 10.1007/s11682-016-9612-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major Depressive Disorder (MDD) is recognized to be heterogeneous in terms of brain structure abnormality findings across studies, which might reflect previously unstudied traits that confer variability to neuroimaging measurements. The purpose of this study was to examine the relationships between different types of trait impulsivity and MDD diagnosis on adolescent brain structure. We predicted that adolescents with depression who were high on trait impulsivity would have more abnormal cortical structure than depressed patients or non-MDD who were low on impulsivity. We recruited 58 subjects, including 29 adolescents (ages 12-19) with a primary DSM-IV diagnosis of MDD and a history of suicide attempt and 29 demographically-matched healthy control participants. Our GLM-based analyses sought to describe differences in the linear relationships between cortical thickness and impulsivity trait levels. As hypothesized, we found significant moderation effects in rostral middle frontal gyrus and right paracentral lobule cortical thickness for different subscales of the Barratt Impulsiveness Scale. However, although these brain-behavior relationships differed between diagnostic study groups, they were not simple additive effects as we had predicted. For the middle frontal gyrus, non-MDD participants showed a strong positive association between cortical thickness and BIS-11 Motor scores, while MDD-diagnosed participants showed a negative association. For Non-Planning Impulsiveness, paracentral lobule cortical thickness was observed with greater impulsivity in MDD, but no association was found for controls. In conclusion, the findings confirm that dimensions of impulsivity have discrete neural correlates, and show that relationships between impulsivity and brain structure are expressed differently in adolescents with MDD compared to non-MDD.
Collapse
Affiliation(s)
- Yuli Fradkin
- Department of Psychiatry, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Ln W, Piscataway, NJ, 08854, USA
| | - Sabin Khadka
- Olin Neuropsychiatry Research Center, Hartford Hospital / The Institute of Living, 200 Retreat Avenue, Whitehall Building, Hartford, CT, 06106, USA
| | - Katie L Bessette
- Olin Neuropsychiatry Research Center, Hartford Hospital / The Institute of Living, 200 Retreat Avenue, Whitehall Building, Hartford, CT, 06106, USA
| | - Michael C Stevens
- Olin Neuropsychiatry Research Center, Hartford Hospital / The Institute of Living, 200 Retreat Avenue, Whitehall Building, Hartford, CT, 06106, USA. .,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Kuniecki M, Wołoszyn K, Domagalik A, Pilarczyk J. Disentangling brain activity related to the processing of emotional visual information and emotional arousal. Brain Struct Funct 2018; 223:1589-1597. [PMID: 29181589 PMCID: PMC5884919 DOI: 10.1007/s00429-017-1576-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/19/2017] [Indexed: 01/09/2023]
Abstract
Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.
Collapse
Affiliation(s)
- Michał Kuniecki
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland.
| | - Kinga Wołoszyn
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
| | - Aleksandra Domagalik
- Neurobiology Department, The Małopolska Centre of Biotechnology, Jagiellonian University, Ul. Gronostajowa 7A, 30-387, Kraków, Poland
| | - Joanna Pilarczyk
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
32
|
Moeller SJ, Zilverstand A, Konova AB, Kundu P, Parvaz MA, Preston-Campbell R, Bachi K, Alia-Klein N, Goldstein RZ. Neural Correlates of Drug-Biased Choice in Currently Using and Abstinent Individuals With Cocaine Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:485-494. [PMID: 29735157 PMCID: PMC5944613 DOI: 10.1016/j.bpsc.2017.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The choice for drugs over alternative reinforcers is a translational hallmark feature of drug addiction. The neural basis of such drug-biased choice is not well understood, particularly in individuals with protracted drug abstinence who cannot ethically participate in studies that offer drug-using opportunities. METHODS We developed a functional magnetic resonance imaging drug-choice task to examine the choice for viewing drug-related images, rather than for actually consuming a drug. Actively using (n = 18) and abstaining (n = 19) individuals with a history of cocaine use disorder (CUD: dependence or abuse) and matched healthy control subjects (n = 26) participated. RESULTS Individuals with CUD, especially those actively using cocaine outside the laboratory, made more choices than control subjects to view images depicting cocaine (especially when directly compared against images depicting an alternative appetitive reinforcer [food]). Functional magnetic resonance imaging data revealed that in individuals with CUD, the act of making drug-related choices engaged brain regions implicated in choice difficulty or ambivalence (i.e., dorsal anterior cingulate cortex, which was higher in all individuals with CUD than control subjects). Drug-related choices in CUD also engaged brain regions implicated in reward (e.g., midbrain/ventral tegmental area, which was most activated in active users, although this region was not hypothesized a priori). CONCLUSIONS These results help clarify the neural mechanisms underlying drug-biased choice in human addiction, which, beyond mechanisms involved in value assignment or reward, may critically involve mechanisms that contribute to resolving difficult decisions. Future studies are needed to validate these behavioral and neural abnormalities as markers of drug seeking and relapse in treatment contexts.
Collapse
Affiliation(s)
- Scott J Moeller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York.
| | - Anna Zilverstand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna B Konova
- Center for Neural Science, New York University, New York, New York
| | - Prantik Kundu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Muhammad A Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Keren Bachi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Altered orbitofrontal activity and dorsal striatal connectivity during emotion processing in dependent marijuana users after 28 days of abstinence. Psychopharmacology (Berl) 2018; 235:849-859. [PMID: 29197984 DOI: 10.1007/s00213-017-4803-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/26/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE Intact cognitive and emotional functioning is vital for the long-term success of addiction treatment strategies. Accumulating evidence suggests an association between chronic marijuana use and lasting alterations in cognitive brain function. Despite initial evidence for altered emotion processing in dependent marijuana users after short abstinence periods, adaptations in the domain of emotion processing after longer abstinence remain to be determined. OBJECTIVE AND METHODS Using task-based and resting state fMRI, the present study investigated emotion processing in 19 dependent marijuana users and 18 matched non-using controls after an abstinence period of > 28 days. RESULTS Relative to the control subjects, negative emotional stimuli elicited increased medial orbitofrontal cortex (mOFC) activity and stronger mOFC-dorsal striatal and mOFC-amygdala functional coupling in dependent marijuana users (p < 0.022, FWE-corrected). Furthermore, mOFC-dorsal striatal functional connectivity was increased at rest in marijuana users (p < 0.03, FWE-corrected). Yet, processing of positive stimuli and subjective ratings of valence and arousal were comparable in both groups. CONCLUSIONS Together, the present findings provide the first evidence for persisting emotion processing alterations in dependent marijuana users. Alterations might reflect long-term neural adaptations as a consequence of chronic marijuana use or predisposing risk factors for the development of marijuana dependence.
Collapse
|
34
|
Duarte IC, Afonso S, Jorge H, Cayolla R, Ferreira C, Castelo-Branco M. Tribal love: the neural correlates of passionate engagement in football fans. Soc Cogn Affect Neurosci 2018; 12:718-728. [PMID: 28338882 PMCID: PMC5460049 DOI: 10.1093/scan/nsx003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
The tribal character of the affective link between football fans and their teams is a well-recognized phenomenon. Other forms of love such as romantic or maternal attachment have previously been studied from a neuroimaging point of view. Here we aimed to investigate the neural basis of this tribal form of love, which implies both the feeling of belongingness and rivalry against opposing teams. A pool of 56 participants was submitted to an fMRI experimental design involving the presentation of winning and losing football moments of their loved, rival or neutral teams. We found recruitment of amygdala and reward regions, including the ventral tegmental area (VTA) and substantia nigra (SN), as well as other limbic regions involved in emotional cognition, for ‘positive vs neutral’ and ‘positive vs negative’ conditions. The latter contrast was correlated with neuropsychological scores of fanaticism in the amygdala and regions within the reward system, as the VTA and SN. The observation of increased response patterns in critical components of the reward system, in particular for positive content related to the loved team, suggests that this kind of non-romantic love reflects a specific arousal and motivational state, which is biased for emotional learning of positive outcomes.
Collapse
Affiliation(s)
- Isabel C Duarte
- ICNAS, Institute for Nuclear Sciences Applied to Health, Universidade de Coimbra, Coimbra, Portugal.,CNC.IBILI, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sónia Afonso
- ICNAS, Institute for Nuclear Sciences Applied to Health, Universidade de Coimbra, Coimbra, Portugal.,CNC.IBILI, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Helena Jorge
- CNC.IBILI, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ricardo Cayolla
- DEGEIT, Department of Economics, Management, Industrial Engineering and Tourism, University of Aveiro, Aveiro, Portugal
| | - Carlos Ferreira
- ICNAS, Institute for Nuclear Sciences Applied to Health, Universidade de Coimbra, Coimbra, Portugal.,CNC.IBILI, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- ICNAS, Institute for Nuclear Sciences Applied to Health, Universidade de Coimbra, Coimbra, Portugal.,CNC.IBILI, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Dissociation of immediate and delayed effects of emotional arousal on episodic memory. Neurobiol Learn Mem 2018; 148:11-19. [DOI: 10.1016/j.nlm.2017.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 12/06/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022]
|
36
|
Zebrowitz LA, Ward N, Boshyan J, Gutchess A, Hadjikhani N. Older adults' neural activation in the reward circuit is sensitive to face trustworthiness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:21-34. [PMID: 29214437 PMCID: PMC7598091 DOI: 10.3758/s13415-017-0549-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined older adult (OA) and younger adult (YA) neural sensitivity to face trustworthiness in reward circuit regions, previously found to respond to trustworthiness in YA. Interactions of face trustworthiness with age revealed effects exclusive to OA in the amygdala and caudate, and an effect that was not moderated by age in the dorsal anterior cingulate cortex (dACC). OA, but not YA, showed a nonlinear amygdala response to face trustworthiness, with significantly stronger activation response to high than to medium trustworthy faces, and no difference between low and medium or high. This may explain why an earlier study investigating OA amygdala activation to trustworthiness failed to find a significant effect, since only the linear low versus high trustworthiness difference was assessed. OA, but not YA, also showed significantly stronger activation to high than to low trustworthy faces in the right caudate, indicating a positive linear effect, consistent with previous YA research, as well as significantly stronger activation to high than to medium but not low trustworthy faces in the left caudate, indicating a nonlinear effect. Activation in dACC across both age groups showed a positive linear effect consistent with previous YA research. Finally, OA rated the faces as more trustworthy than did YA across all levels of trustworthiness. Future research should examine whether the null effects for YA were due to our inclusion of older faces. Research also should investigate possible implications of our findings for more ecologically valid OA responses to people who vary in facial trustworthiness.
Collapse
Affiliation(s)
- Leslie A Zebrowitz
- Department of Psychology, MS 062, Brandeis University, Waltham, MA, 02453, USA.
| | - Noreen Ward
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jasmine Boshyan
- Department of Psychology, MS 062, Brandeis University, Waltham, MA, 02453, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02129, USA
| | - Angela Gutchess
- Department of Psychology, MS 062, Brandeis University, Waltham, MA, 02453, USA
| | - Nouchine Hadjikhani
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Gillberg Neuropsychiatry Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Schafer M, Kim JW, Joseph J, Xu J, Frangou S, Doucet GE. Imaging Habenula Volume in Schizophrenia and Bipolar Disorder. Front Psychiatry 2018; 9:456. [PMID: 30319463 PMCID: PMC6165901 DOI: 10.3389/fpsyt.2018.00456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/03/2018] [Indexed: 02/01/2023] Open
Abstract
The habenula (Hb), a bilateral nucleus located next to the dorsomedial thalamus, is of particular relevance to psychiatric disorders based on preclinical evidence linking the Hb to depressive and amotivational states. However, studies in clinical samples are scant because segmentation of the Hb in neuroimaging data is challenging due to its small size and low contrast from the surrounding tissues. Negative affective states dominate the clinical course of schizophrenia and bipolar disorder and represent a major cause of disability. Diagnosis-related alterations in the volume of Hb in these disorders have therefore been hypothesized but remain largely untested. To probe this question, we used a recently developed objective and reliable semi-automated Hb segmentation method based on myelin-sensitive magnetic resonance imaging (MRI) data. We ascertained case-control differences in Hb volume from high resolution structural MRI data obtained from patients with schizophrenia (n = 95), bipolar disorder (n = 44) and demographically matched healthy individuals (n = 52). Following strict quality control of the MRI data, the final sample comprised 68 patients with schizophrenia, 32 with bipolar disorder and 40 healthy individuals. Regardless of diagnosis, age, sex, and IQ were not correlated with Hb volume. This was also the case for age of illness onset and medication (i.e., antipsychotic dose and lithium-treatment status). Case-control differences in Hb volume did not reach statistical significance; their effect size (Cohen's d) was negligible on the left (schizophrenia: 0.14; bipolar disorder: -0.03) and small on the right (schizophrenia: 0.34; bipolar disorder: 0.26). Nevertheless, variability in the volume of the right Hb was associated with suicidality in the entire patient sample (ρ = 0.29, p = 0.004) as well as in each patient group (bipolar disorder: ρ = 0.34, p = 0.04; schizophrenia: ρ = 0.25, p = 0.04). These findings warrant replication in larger samples and longitudinal designs and encourage more comprehensive characterization of Hb connectivity and function in clinical populations.
Collapse
Affiliation(s)
- Matthew Schafer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joo-Won Kim
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshmi Joseph
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Junqian Xu
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gaelle E Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
38
|
BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations. Brain Imaging Behav 2017; 10:869-79. [PMID: 26489979 DOI: 10.1007/s11682-015-9466-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.
Collapse
|
39
|
Bolders AC, Tops M, Band GPH, Stallen PJM. Perceptual Sensitivity and Response to Strong Stimuli Are Related. Front Psychol 2017; 8:1642. [PMID: 29018377 PMCID: PMC5615480 DOI: 10.3389/fpsyg.2017.01642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
To shed new light on the long-standing debate about the (in)dependence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS) theory (Tops et al., 2010, 2014). Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity) resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity) resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid). PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007). Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed) was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account.
Collapse
Affiliation(s)
- Anna C Bolders
- Cognitive Psychology Unit, Institute of Psychology, Leiden UniversityLeiden, Netherlands
| | - Mattie Tops
- Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands.,Department of Clinical, Neuro- and Developmental Psychology, VU University AmsterdamAmsterdam, Netherlands
| | - Guido P H Band
- Cognitive Psychology Unit, Institute of Psychology, Leiden UniversityLeiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| | - Pieter Jan M Stallen
- Cognitive Psychology Unit, Institute of Psychology, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
40
|
Hayes DJ, Chen DQ, Zhong J, Lin A, Behan B, Walker M, Hodaie M. Affective Circuitry Alterations in Patients with Trigeminal Neuralgia. Front Neuroanat 2017; 11:73. [PMID: 28928638 PMCID: PMC5591854 DOI: 10.3389/fnana.2017.00073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/11/2017] [Indexed: 11/24/2022] Open
Abstract
Trigeminal neuralgia (TN) is a severe chronic neuropathic facial pain disorder. Affect-related behavioral and structural brain changes have been noted across chronic pain disorders, but have not been well-studied in TN. We examined the potential impact of TN (37 patients: 23 with right-sided TN, 14 with left-sided TN), compared to age- and sex-matched healthy controls, on three major white matter tracts responsible for carrying affect-related signals—i.e., cingulum, fornix, and medial forebrain bundle. Diffusion magnetic resonance imaging (dMRI), deterministic multi-tensor tractography for tract modeling, and a model-driven region-of-interest approach was used. We also used volumetric gray matter analysis on key targets of these pathways (i.e., hippocampus, cingulate cortex subregions, nucleus accumbens, and ventral diencephalon). Hypotheses included: (1) successful modeling of tracts; (2) altered white matter microstructure of the cingulum and medial forebrain bundle (via changes in dMRI metrics such as fractional anisotropy, and mean, axial, and radial diffusivities) compared to controls; (3) no alterations in the control region of the fornix; (4) corresponding decreases in gray matter volumes. Results showed (1) all 325 tracts were successfully modeled, although 11 were partially complete; (2) The cingulum and medial forebrain bundle (MFB) were altered in those with TN, with dMRI metric changes in the middle (p = 0.001) and posterior cingulum (p < 0.0001), and the MFB near the ventral tegmental area (MFB-VTA) (p = 0.001). The posterior cingulum and MFB-VTA also showed unilateral differences between right- and left-sided TN patients; (3) No differences were noted at any fornix subdivision; (4) decreased volumes were noted for the hippocampus, posterior cingulate, nucleus accumbens, and ventral diencephalon. Together, these results support the notion of selectively altered affective circuits in patients with TN, which may be related to the experience of negative affect and the increased comorbidity of mood and anxiety disorders in this population.
Collapse
Affiliation(s)
- Dave J Hayes
- Psychology Department and Neuroscience Program, Union CollegeSchenectady, NY, United States.,Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - David Q Chen
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Jidan Zhong
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Ariel Lin
- Psychology Department and Neuroscience Program, Union CollegeSchenectady, NY, United States
| | - Brendan Behan
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Matthew Walker
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour Systems Neuroscience and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| |
Collapse
|
41
|
Bublatzky F, Alpers GW, Pittig A. From avoidance to approach: The influence of threat-of-shock on reward-based decision making. Behav Res Ther 2017; 96:47-56. [DOI: 10.1016/j.brat.2017.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
|
42
|
Pessoa L. Cognitive-motivational interactions: beyond boxes-and-arrows models of the mind-brain. MOTIVATION SCIENCE 2017; 3:287-303. [PMID: 29399604 PMCID: PMC5793941 DOI: 10.1037/mot0000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How do motivation and cognitive control interact in brain and behavior? The past decade has witnessed a steady growth in studies investigating both the behavioral and the brain basis of these interactions. In this paper, I describe such interactions in the context of the dual completion model, which proposes that motivational significance influences both perceptual and executive competition. Embracing a research agenda that attempts to understand cognition-motivation interactions highlights considerable challenges faced by investigators. For example, even the standard language utilized, with terms such as "perception," "attention," "cognition," and "motivation," encourages a modular-like conceptualization of the underlying processes and mechanisms. I propose that large-scale interactions involving both task-related and valuation-related networks help understand how motivation shapes executive function. I argue that, ultimately, the mind and brain sciences need to move beyond "boxes and arrows" and fully embrace the richness and complexity of the interactions between motivation and cognition. In the last 10 years, the study in humans of the interactions of motivation with perception and cognition has grown at a fast pace. The growth has included behavioral studies characterizing the processes involved, and neuroimaging studies investigating the regions and circuits underlying the behaviors in question. This literature acknowledges the fact that perception and cognition do not happen in a vacuum but are, instead, situated in contexts that feature value. Although this assertion is uncontroversial, the mind and brain sciences have studied perception and cognition for many decades by largely extricating value from them. Fortunately, this state of affairs has now changed and the field has a newfound vigor in attempting to understand the impact of motivation on these mental functions.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park
| |
Collapse
|
43
|
Abstract
OBJECTIVE The aim of the study was to determine how visceral sensations affect responses to food stimuli in anorexia nervosa (AN). METHODS Twenty weight-restored, unmedicated adolescent and young adult women with AN and twenty healthy control participants completed an interoceptive attention task during which they focused on sensations from the heart, stomach, and bladder and made ratings of these sensations. They then underwent functional magnetic resonance imaging scanning while viewing pictures of food and nonfood objects. Between-groups t tests were employed to investigate group differences in the relationship between interoceptive sensation ratings and brain hemodynamic response to food pictures and, specifically, to highly palatable foods. RESULTS In response to food pictures, AN participants exhibited a positive relationship between stomach sensation ratings and posterior insula activation (peak t = 4.30). AN participants displayed negative relationships between stomach sensation ratings and amygdala activation (peak t = -4.05) and heart sensation ratings and ventromedial prefrontal cortex activation (peak t = -3.52). In response to highly palatable foods, AN was associated with positive relationships between stomach sensation ratings and activity in the subgenual anterior cingulate (peak t = 3.88) and amygdala (peak t = 4.83), and negative relationships in the ventral pallidum (peak t = -3.99) and ventral tegmental area (peak t = -4.03). AN participants also exhibited negative relationships between cardiac sensations and activation in response to highly palatable foods in the putamen (peak t = -3.41) and ventromedial prefrontal cortex (peak t = -3.61). Healthy participants exhibited the opposite pattern in all of these regions. CONCLUSIONS Hedonic and interoceptive inferences made by individuals with AN at the sight of food may be influenced by atypical visceral interoceptive experience, which could contribute to restrictive eating.
Collapse
|
44
|
Dal Mas DE, Wittmann BC. Avoiding boredom: Caudate and insula activity reflects boredom-elicited purchase bias. Cortex 2017; 92:57-69. [DOI: 10.1016/j.cortex.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
45
|
McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of Common Neural Circuit Disruptions in Cognitive Control Across Psychiatric Disorders. Am J Psychiatry 2017; 174:676-685. [PMID: 28320224 PMCID: PMC5543416 DOI: 10.1176/appi.ajp.2017.16040400] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cognitive deficits are a common feature of psychiatric disorders. The authors investigated the nature of disruptions in neural circuitry underlying cognitive control capacities across psychiatric disorders through a transdiagnostic neuroimaging meta-analysis. METHOD A PubMed search was conducted for whole-brain functional neuroimaging articles published through June 2015 that compared activation in patients with axis I disorders and matched healthy control participants during cognitive control tasks. Tasks that probed performance or conflict monitoring, response inhibition or selection, set shifting, verbal fluency, and recognition or working memory were included. Activation likelihood estimation meta-analyses were conducted on peak voxel coordinates. RESULTS The 283 experiments submitted to meta-analysis included 5,728 control participants and 5,493 patients with various disorders (schizophrenia, bipolar or unipolar depression, anxiety disorders, and substance use disorders). Transdiagnostically abnormal activation was evident in the left prefrontal cortex as well as the anterior insula, the right ventrolateral prefrontal cortex, the right intraparietal sulcus, and the midcingulate/presupplementary motor area. Disruption was also observed in a more anterior cluster in the dorsal cingulate cortex, which overlapped with a network of structural perturbation that the authors previously reported in a transdiagnostic meta-analysis of gray matter volume. CONCLUSIONS These findings demonstrate a common pattern of disruption across major psychiatric disorders that parallels the "multiple-demand network" observed in intact cognition. This network interfaces with the anterior-cingulo-insular or "salience network" demonstrated to be transdiagnostically vulnerable to gray matter reduction. Thus, networks intrinsic to adaptive, flexible cognition are vulnerable to broad-spectrum psychopathology. Dysfunction in these networks may reflect an intermediate transdiagnostic phenotype, which could be leveraged to advance therapeutics.
Collapse
Affiliation(s)
- Lisa M. McTeague
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Julia Huemer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA,Stanford Neurosciences Institute, Stanford University, Stanford, CA USA,Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA,Medical University of Vienna, Vienna, Austria
| | - David M. Carreon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA,Stanford Neurosciences Institute, Stanford University, Stanford, CA USA,Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Ying Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA,Stanford Neurosciences Institute, Stanford University, Stanford, CA USA,Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Simon B. Eickhoff
- Institute for Neuroscience and Medicine (INM-1); Research Center Jülich, Jülich, Germany,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Düsseldorf, Germany,Institute for Systems Neuroscience, School of Medicine, Heinrich-Heine University, Düsseldorf, Düsseldorf, Germany
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA,Stanford Neurosciences Institute, Stanford University, Stanford, CA USA,Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| |
Collapse
|
46
|
Fernandez B, Leuchs L, Sämann PG, Czisch M, Spoormaker VI. Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. Neuroimage 2017; 156:65-77. [PMID: 28483719 DOI: 10.1016/j.neuroimage.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Standard T2* weighted functional magnetic resonance imaging (fMRI) performed with echo-planar imaging (EPI) suffers from signal loss in the ventromedial prefrontal cortex (vmPFC) due to macroscopic field inhomogeneity. However, this region is of special interest to affective neuroscience and psychiatry. The Multi-echo EPI (MEPI) approach has several advantages over EPI but its performance against EPI in the vmPFC has not yet been examined in a study with sufficient statistical power using a task specifically eliciting activity in this region. We used a fear conditioning task with MEPI to compare the performance of MEPI and EPI in vmPFC and control regions in 32 healthy young subjects. We analyzed activity associated with short (12ms), standard (29ms) and long (46ms) echo times, and a voxel-wise combination of these three echo times. Behavioral data revealed successful differentiation of the conditioned versus safety stimulus; activity in the vmPFC was shown by the contrast "safety stimulus > conditioned stimulus" as in previous research and proved significantly stronger with the combined MEPI than standard single-echo EPI. Then, we aimed to demonstrate that the additional cluster extent (ventral extension) detected in the vmPFC with MEPI reflects activation in a relevant cluster (i.e., not just non-neuronal noise). To do this, we used resting state data from the same subjects to show that the time-course of this region was both connected to bilateral amygdala and the default mode network. Overall, we demonstrate that MEPI (by means of the weighted sum combination approach) outperforms standard EPI in vmPFC; MEPI performs always at least as good as the best echo time for a given brain region but provides all necessary echo times for an optimal BOLD sensitivity for the whole brain. This is relevant for affective neuroscience and psychiatry given the critical role of the vmPFC in emotion regulation.
Collapse
Affiliation(s)
- Brice Fernandez
- Applications & Workflow, GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany.
| | - Laura Leuchs
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Philipp G Sämann
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Michael Czisch
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Victor I Spoormaker
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
47
|
Gröger N, Mannewitz A, Bock J, de Schultz TF, Guttmann K, Poeggel G, Braun K. Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: I. Cellular imaging of neurons expressing the synaptic plasticity early growth response protein 1 (Egr1). Brain Struct Funct 2017; 222:3639-3651. [DOI: 10.1007/s00429-017-1423-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022]
|
48
|
Dejean C, Sitko M, Girardeau P, Bennabi A, Caillé S, Cador M, Boraud T, Le Moine C. Memories of Opiate Withdrawal Emotional States Correlate with Specific Gamma Oscillations in the Nucleus Accumbens. Neuropsychopharmacology 2017; 42:1157-1168. [PMID: 27922595 PMCID: PMC5506790 DOI: 10.1038/npp.2016.272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/14/2023]
Abstract
Affective memories associated with the negative emotional state experienced during opiate withdrawal are central in maintaining drug taking, seeking, and relapse. Nucleus accumbens (NAC) is a key structure for both acute withdrawal and withdrawal memories reactivation, but the NAC neuron coding properties underpinning the expression of these memories remain largely unknown. Here we aimed at deciphering the role of NAC neurons in the encoding and retrieval of opiate withdrawal memory. Chronic single neuron and local field potentials recordings were performed in morphine-dependent rats and placebo controls. Animals were subjected to an unbiased conditioned placed aversion protocol with one compartment (CS+) paired with naloxone-precipitated withdrawal, a second compartment with saline injection (CS-), and a third being neutral (no pairing). After conditioning, animals displayed a typical place aversion for CS+ and developed a preference for CS- characteristic of safety learning. We found that distinct NAC neurons code for CS+ or CS-. Both populations also displayed highly specific oscillatory dynamics, CS+ and CS- neurons, respectively, following 80 Hz (G80) and 60 Hz (G60) local field potential gamma rhythms. Finally, we found that the balance between G60 and G80 rhythms strongly correlated both with the ongoing behavior of the animal and the strength of the conditioning. We demonstrate here that the aversive and preferred environments are underpinned by distinct groups of NAC neurons as well as specific oscillatory dynamics. This suggest that G60/G80 interplay-established through the conditioning process-serves as a robust and versatile mechanism for a fine coding of the environment emotional weight.
Collapse
Affiliation(s)
- Cyril Dejean
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Mathieu Sitko
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Paul Girardeau
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Amine Bennabi
- Université de Bordeaux, I2M, UMR 5295, Bordeaux, France,CNRS, I2M, UMR 5295, Bordeaux, France
| | - Stéphanie Caillé
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Martine Cador
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Thomas Boraud
- Université de Bordeaux, IMN, UMR 5293, Bordeaux, France,CNRS, IMN, UMR 5293, Bordeaux, France
| | - Catherine Le Moine
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France,Université de Bordeaux, INCIA ‘Institut de Neurosciences Cognitives et Intégratives d'Aquitaine’, CNRS UMR 5287, Equipe ‘Neuropsychopharmacologie de l'Addiction’, BP31, 146 rue Léo Saignat, Bordeaux, Cedex 33076, France, Tel: +33 5 57 57 15 44, Fax: +33 5 56 90 02 78, E-mail:
| |
Collapse
|
49
|
Pessoa L. A Network Model of the Emotional Brain. Trends Cogn Sci 2017; 21:357-371. [PMID: 28363681 DOI: 10.1016/j.tics.2017.03.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 01/13/2023]
Abstract
Emotion is often understood in terms of a circumscribed set of cortical and subcortical brain regions. I propose, instead, that emotion should be understood in terms of large-scale network interactions spanning the entire neuroaxis. I describe multiple anatomical and functional principles of brain organization that lead to the concept of 'functionally integrated systems', cortical-subcortical systems that anchor the organization of emotion in the brain. The proposal is illustrated by describing the cortex-amygdala integrated system and how it intersects with systems involving the ventral striatum/accumbens, septum, hippocampus, hypothalamus, and brainstem. The important role of the thalamus is also highlighted. Overall, the model clarifies why the impact of emotion is wide-ranging, and how emotion is interlocked with perception, cognition, motivation, and action.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Dalenberg JR, Weitkamp L, Renken RJ, Nanetti L, ter Horst GJ. Flavor pleasantness processing in the ventral emotion network. PLoS One 2017; 12:e0170310. [PMID: 28207751 PMCID: PMC5312947 DOI: 10.1371/journal.pone.0170310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/02/2017] [Indexed: 11/28/2022] Open
Abstract
The ventral emotion network-encompassing the amygdala, insula, ventral striatum, and ventral regions of the prefrontal cortex-has been associated with the identification of emotional significance of perceived external stimuli and the production of affective states. Functional magnetic resonance imaging (fMRI) studies investigating chemosensory stimuli have associated parts of this network with pleasantness coding. In the current study, we independently analyzed two datasets in which we measured brain responses to flavor stimuli in young adult men. In the first dataset, participants evaluated eight regular off the shelf drinking products while participants evaluated six less familiar oral nutritional supplements (ONS) in the second dataset. Participants provided pleasantness ratings 20 seconds after tasting. Using independent component analysis (ICA) and mixed effect models, we identified one brain network in the regular products dataset that was associated with flavor pleasantness. This network was very similar to the ventral emotion network. Although we identified an identical network in the ONS dataset using ICA, we found no linear relation between activation of any network and pleasantness scores within this dataset. Our results indicate that flavor pleasantness is processed in a network encompassing amygdala, ventral prefrontal, insular, striatal and parahippocampal regions for familiar drinking products. For more unfamiliar ONS products the association is not obvious, which could be related to the unfamiliarity of these products.
Collapse
Affiliation(s)
- Jelle R. Dalenberg
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liselore Weitkamp
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luca Nanetti
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gert J. ter Horst
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|